В таблице представлены теплофизические свойства раствора хлористого кальция CaCl 2 в зависимости от температуры и концентрации соли: удельная теплоемкость раствора, теплопроводность, вязкость водных растворов, их температуропроводность и число Прандтля. Концентрация соли CaCl 2 в растворе от 9,4 до 29,9 %. Температура, при которой приведены свойства определяется содержанием соли в растворе и находится в диапазоне от -55 до 20°С.

Хлорида кальция CaCl 2 может не замерзать до температуры минус 55°С . Для достижения этого эффекта концентрация соли в растворе должна быть 29,9%, а его плотность составит величину 1286 кг/м 3 .

При увеличении концентрации соли в растворе увеличивается не только его плотность, но и такие теплофизические свойства, как динамическая и кинематическая вязкость водных растворов, а также число Прандтля. Например, динамическая вязкость раствора CaCl 2 с концентрацией соли 9,4 % при температуре 20°С равна 0,001236 Па·с, а при увеличении концентрации хлорида кальция в растворе до 30% его динамическая вязкость увеличивается до значения 0,003511 Па·с.

Следует отметить, что на вязкость водных растворов этой соли наиболее сильное влияние оказывает температура. При охлаждении раствора хлорида кальция с 20 до -55°С его динамическая вязкость может увеличиться в 18 раз, а кинематическая — в 25 раз.

Даны следующие теплофизические свойства раствора CaCl 2 :

  • , кг/м 3 ;
  • температура замерзания °С;
  • динамическая вязкость водных растворов, Па·с;
  • число Прандтля.

Плотность раствора хлористого кальция CaCl 2 в зависимости от температуры

В таблице указаны значения плотности раствора хлористого кальция CaCl 2 различной концентрации в зависимости от температуры.
Концентрация хлорида кальция CaCl 2 в растворе от 15 до 30 % при температуре от -30 до 15°С. Плотность водного раствора хлористого кальция увеличивается при снижении температуры раствора и увеличением в нем концентрации соли.

Теплопроводность раствора CaCl 2 в зависимости от температуры

В таблице представлены значения теплопроводности раствора хлористого кальция CaCl 2 различной концентрации при отрицательных температурах.
Концентрация соли CaCl 2 в растворе от 0,1 до 37,3 % при температуре от -20 до 0°С. По мере роста концентрации соли в растворе его теплопроводность снижается.

Теплоемкость раствора CaCl 2 при 0°С

В таблице представлены значения массовой теплоемкости раствора хлористого кальция CaCl 2 различной концентрации при 0°С. Концентрация соли CaCl 2 в растворе от 0,1 до 37,3 %. Следует отметить, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Температура замерзания растворов солей NaCl и CaCl 2

В таблице приведена температура замерзания растворов солей хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации соли. Концентрация соли в растворе от 0,1 до 37,3 %. Температура замерзания солевого раствора определяется концентрацией соли в растворе и для хлорида натрия NaCl может достигать значения минус 21,2°С для эвтектического раствора.

Необходимо отметить, что раствор хлористого натрия может не замерзать до температуры минус 21,2°С , а раствор хлористого кальция не замерзает при температуре до минус 55°С .

Плотность раствора NaCl в зависимости от температуры

В таблице представлены значения плотности раствора хлористого натрия NaCl различной концентрации в зависимости от температуры.
Концентрация соли NaCl в растворе от 10 до 25 %. Значения плотности раствора указаны при температуре от -15 до 15°С.

Теплопроводность раствора NaCl в зависимости от температуры

В таблице даны значения теплопроводности раствора хлористого натрия NaCl различной концентрации при отрицательных температурах.
Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре от -15 до 0°С. По данным таблицы видно, что теплопроводность водного раствора хлорида натрия снижается по мере роста концентрации соли в растворе.

Удельная теплоемкость раствора NaCl при 0°С

В таблице представлены значения массовой удельной теплоемкости водного раствора хлористого натрия NaCl различной концентрации при 0°С. Концентрация соли NaCl в растворе от 0,1 до 26,3 %. По данным таблицы видно, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Теплофизические свойства раствора NaCl

В таблице представлены теплофизические свойства раствора хлористого натрия NaCl в зависимости от температуры и концентрации соли. Концентрация хлорида натрия NaCl в растворе от 7 до 23,1 %. Необходимо отметить, что при охлаждении водного раствора хлорида натрия его удельная теплоемкость меняется слабо, теплопроводность снижается, а значение вязкости раствора увеличивается.

Даны следующие теплофизические свойства раствора NaCl :

  • плотность раствора, кг/м 3 ;
  • температура замерзания °С;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град);
  • динамическая вязкость раствора, Па·с;
  • кинематическая вязкость раствора, м 2 /с;
  • коэффициент температуропроводности, м 2 /с;
  • число Прандтля.

Плотность растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации при 15°С

В таблице представлены значения плотности растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации. Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре раствора 15°С. Концентрация хлорида кальция CaCl 2 в растворе находится в диапазоне от 0,1 до 37,3 % при его температуре 15°С. Плотность растворов хлорида натрия и кальция растет при увеличении содержания в нем соли.

Коэффициент объемного расширения растворов хлористого натрия NaCl и кальция CaCl 2

В таблице даны значения среднего коэффициента объемного расширения водных растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации и температуры.
Коэффициент объемного расширения раствора соли NaCl указан при температуре от -20 до 20°С.
Коэффициент объемного расширения раствора хлорида CaCl 2 представлен при температуре от -30 до 20°С.

Источники:

  1. Данилова Г. Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: Пищевая промышленность, 1976.- 240 с.

При какой температуре замерзает вода? Казалось бы – простейший вопрос, ответить на который может даже ребёнок: температура замерзания воды при обычном атмосферном давлении в 760 мм ртутного столба составляет ноль градусов по Цельсию.

Однако вода (несмотря на чрезвычайно широкую распространённость её на нашей планете) является самой загадочной и не до конца изученной субстанцией, поэтому ответ на этот вопрос требует обстоятельного и аргументированного разговора.

  • В России и в Европе температуру измеряют по шкале Цельсия, самое высокое значение которой имеет отметку в 100 градусов.
  • Американский учёный Фаренгейт разработал свою шкалу, насчитывающую 180 делений.
  • Существует ещё одна единица измерения температуры – кельвин, названная в честь английского физика Томсона, получившего звание лорда Кельвина.

Состояния и виды воды

Вода на планете Земля может принимать три основных агрегатных состояния: жидкое, твёрдое и газообразное, которые способны трансформироваться в разные формы, одновременно сосуществующие друг с другом (айсберги в морской воде, водяной пар и кристаллы льда в облаках на небе, ледники и свободно текущие реки).

В зависимости от особенностей происхождения, назначения и состава вода может быть:

  • пресной;
  • минеральной;
  • морской;
  • питьевой (сюда же отнесём водопроводную воду);
  • дождевой;
  • талой;
  • солоноватой;
  • структурированной;
  • дистиллированной;
  • деионизированной.

Наличие изотопов водорода делает воду:

  1. лёгкой;
  2. тяжёлой (дейтериевой);
  3. сверхтяжёлой (тритиевой).

Все мы знаем о том, что вода бывает мягкой и жёсткой: этот показатель определяется содержанием катионов магния и кальция.

Каждый из перечисленных нами видов и агрегатных состояний воды имеет свою температуру замерзания и плавления.

Температура замерзания воды

Почему вода замерзает? Обычная вода всегда содержит некоторое количество взвешенных частиц минерального или органического происхождения. Это могут быть мельчайшие частицы глины, песка или домашней пыли.

Когда температура окружающей среды опускается до определённых значений, эти частицы берут на себя роль центров, вокруг которых начинают образовываться кристаллы льда.

Ядрами кристаллизации могут стать также воздушные пузырьки, а также трещины и повреждения на стенках сосуда, в котором находится вода. Скорость процесса кристаллизации воды во многом определяется количеством этих центров: чем их больше, тем быстрее замерзает жидкость.

В обычных условиях (при нормальном атмосферном давлении) температурой фазового перехода воды из жидкого состояния в твёрдое является отметка 0 градусов по Цельсию. Именно при такой температуре происходит замерзание воды на улице.

Отчего горячая вода замерзает быстрее холодной?

Горячая вода замерзает быстрее холодной – на этот феномен обратил внимание Эрасто Мпемба – школьник с Танганьики. Его эксперименты с массой для приготовления мороженого показали, что скорость замерзания подогретой массы значительно выше, чем холодной.

Одной из причин этого интересного явления, получившего название «парадокс Мпембы», является более высокая теплоотдача горячей жидкости, а также наличие в ней большего количества ядер кристаллизации по сравнению с холодной водой.

Взаимосвязаны ли температура замерзания воды и высота?

При изменении давления, часто связанного с нахождением на разной высоте, температура замерзания воды начинает радикально отличаться от стандартной, характерной для обычных условий.
Кристаллизация воды на высоте происходит при следующих температурных значениях:

  • как ни парадоксально, на высоте 1000 м вода замерзает при 2 градусах тепла по шкале Цельсия;
  • на высоте 2000 метров это происходит уже при 4 градусах тепла.

Самая высокая температура замерзания воды в горах наблюдается на высоте свыше 5000 тысяч метров (например, в Фанских горах или на Памире).

Как давление влияет на процесс кристаллизации воды?

Давайте попробуем увязать динамику изменения температуры замерзания воды с переменой давления.

  • При давлении 2 атм вода замерзнет при температуре -2 градуса.
  • При давлении 3 атм началом замерзания воды станет температура -4 градуса по Цельсию.

При повышенном давлении температура начала процесса кристаллизации воды понижается, а температура кипения увеличивается. При низком давлении получается диаметрально противоположная картина.

Именно поэтому в условиях высокогорья и разреженной атмосферы весьма трудно сварить даже яйца, поскольку вода в котелке закипает уже при 80 градусах. Понятно, что при такой температуре приготовить пищу попросту невозможно.

При высоком давлении процесс плавления льда под лезвиями коньков происходит даже при очень низких температурах, но именно благодаря ему коньки скользят по ледяной поверхности.

Аналогичным образом объясняется примерзание полозьев сильно нагруженных нарт в рассказах Джека Лондона. Тяжёлые нарты, оказывающие давление на снег, вызывают его плавление. Образующаяся при этом вода облегчает их скольжение. Но стоит нартам остановиться и задержаться продолжительное время на одном месте, как вытесненная вода, замерзнув, приморозит полозья к дороге.

Температура кристаллизации водных растворов

Будучи отличным растворителем, вода легко вступает в реакции с различными органическими и неорганическими веществами, образуя массу подчас неожиданных химических соединений. Разумеется, каждое из них будет замерзать при разных температурах. Отразим это в наглядном списке.

  • Температура замерзания смеси спирта и воды зависит от процентного соотношения в ней обоих компонентов. Чем больше воды добавлено в раствор, тем ближе к нулю температура его замерзания. Если же в растворе больше спирта, процесс кристаллизации начнётся при значениях, близких к -114 градусам.

    Важно знать, что фиксированной температуры замерзания водно-спиртовые растворы не имеют. Обычно говорят о температуре начала процесса кристаллизации и температуре окончательного перехода в твёрдое состояние.

    Между началом образования первых кристаллов и полным застыванием спиртового раствора лежит температурный интервал величиной в 7 градусов. Так, температура замерзания воды со спиртом 40% концентрации на начальном этапе составляет -22,5 градуса, а окончательный переход раствора в твёрдую фазу произойдёт при -29,5 градусах.

Температура замерзания воды с солью находится в тесной связи со степенью её солёности: чем больше соли в растворе, тем при более низком положении ртутного столбика он замёрзнет.

Для измерения солёности воды используют особую единицу – «промилле». Итак, мы установили, что температура замерзания воды с увеличением концентрации солей понижается. Поясним это на примере:

Уровень солёности океанской воды равна 35 промилле, при этом средняя величина её замерзания составляет 1,9 градуса. Степень солёности черноморских вод насчитывает 18-20 промилле, поэтому замерзают они при более высокой температуре с диапазоном от -0,9 до -1,1 градуса Цельсия.

  • Температура замерзания воды с сахаром (для раствора, моляльность которого составляет 0,8) равна -1,6 градуса.
  • Температура замерзания воды с примесями во многом зависит от их количества и характера примесей, входящих в состав водного раствора.
  • Температура замерзания воды с глицерином зависит от концентрации раствора. Раствор, содержащий 80 мл глицерина, замёрзнет при -20 градусах, при снижении содержания глицерина до 60 мл процесс кристаллизации начнётся при -34 градусах, а начало замерзания 20% раствора – минус пять градусов. Как можно заметить, линейная зависимость в данном случае отсутствует. Для замерзания 10% раствора глицерина будет достаточно температуры -2 градуса.
  • Температура замерзания воды с содой (подразумевается едкая щёлочь или каустическая сода) представляет ещё более загадочную картину: 44% раствор каустика замерзает при +7 градусах Цельсия, а 80% - при+ 130.

Замерзание пресных водоёмов

Процесс образования льда на пресноводных водоемах происходит в несколько ином температурном режиме.

  • Температура замерзания воды в озере, точно так же, как и температура замерзания воды в реке, равна нулю градусов по шкале Цельсия. Замерзание самых чистых речек и ручьев начинается не с поверхности, а со дна, на котором присутствуют ядра кристаллизации в виде частиц донного ила. Коркой льда поначалу покрываются коряги и водные растения. Стоит лишь донному льду подняться на поверхность, как река мгновенно промерзает насквозь.
  • Замерзшая вода на Байкале иногда может охлаждаться до отрицательных температур. Происходит это лишь на мелководье; температура воды при этом может составлять тысячные, а иногда и сотые доли одного градуса ниже нуля.
  • Температура байкальской воды под самой коркой ледяного покрова, как правило, не превышает +0,2 градуса. В низших пластах она постепенно повышается до +3,2 на дне самой глубокой котловины.

Температура замерзания дистиллированной воды

Замерзает ли дистиллированная вода? Напомним о том, что для замерзания воды необходимо присутствие в ней неких центров кристаллизации, коими могут стать пузырьки воздуха, взвешенные частицы, а также повреждения стенок ёмкости, в которой она находится.

Дистиллированная вода, совершенно лишённая всяких примесей, не имеет и ядер кристаллизации, а поэтому её замерзание начинается при очень низких температурах. Начальная точка замерзания дистиллированной воды составляет -42 градуса. Учёным удалось добиться переохлаждения дистиллированной воды до -70 градусов.

Вода, подвергнутая воздействию очень низких температур, но при этом не кристаллизовавшаяся, называется «переохлаждённой». Можно, поместив бутылку с дистиллированной водой в морозильную камеру, добиться её переохлаждения, а затем продемонстрировать очень эффектный трюк - смотрите в видео:

Тихонько постучав по бутылке, извлечённой из холодильника, или бросив в неё небольшой кусочек льда, можно показать, как мгновенно она превращается в лед, имеющий вид удлинённых кристаллов.

Дистиллированная вода: замерзает или нет под давлением эта очищенная субстанция? Такой процесс возможен лишь в специально созданных лабораторных условиях.

Температура замерзания соленой воды


Соли, растворенные в морской воде. В морокой воде растворено много различных солей, которые придают ей своеобразный горько-соленый вкус. Соленый вкус морской воды обусловливается главным образом раствором хлористого натрия (поваренной соли). Горький же вкус зависит от растворов солей магния (MgCl 2 , MgSO 4 ). 1 тыс. г (литр) океанической воды в среднем содержит 27,2 г хлористого натрия, 3,8 г хлористого магния, 1,7 г сернокислого магния. Далее идут сернокислый кальций (CaSO 4 ) 1,2 г, сернокислый калий (K 2 SO 4 ) 0,9 г и другие, содержание которых не превышает 0,1 г. Таким образом, на 1 тыс. г океанической воды приходится 35 г солей.

Как бы ни была разбавлена морская вода пресными водами, процентное соотношение солей, входящих в ее состав, остается строго постоянным.

Так:

Кроме того, в состав морской воды входит еще до 30 различных веществ, но количество их так мало, что все они вместе составляют не более 0,1%.

Вода океанов и морей, как уже говорилось, находится в непрерывном круговороте. Она испаряется, падает атмосферными осадками, проходит длинные пути подземными и наземными водами и снова возвращается в океан. Проходя эти длинные пути, вода растворяет много различных веществ и приносит их в Мировой океан. Таким образом, Мировой океан является как бы местом накопления тех растворимых веществ, которые все время приносятся туда реками и речками. Однако, если сравнить химический состав растворов, содержащихся в морской и пресной воде, то мы заметим большую разницу.

В морской воде преобладают хлористые соли, а в речной, наоборот, их очень мало. В речной воде очень много углекислых солей (углекислого кальция), тогда как в морской воде их очень мало. Последнее объясняется тем, что углекислый кальций, кремний и другие вещества в морях в огромном количестве расходуются животными и растительными организмами на создание всякого рода скелетных образований, раковин, коралловых построек и т. д. После смерти этих организмов их скелеты и раковины падают на дно, образуя там огромные толщи отложений. Вообще следует отметить, что соотношение солей в морской воде все время регулируется органической жизнью моря.

Соленость. На 1 л (1 тыс. г) морокой воды, как уже говорилось, всреднем приходится около 35 г солей. Иначе говоря: на 1 тыс. весовых частей морокой воды приходится 35 весовых частей солей. Число 35 в данном случае обозначает соленость морской воды, выраженную в тысячных долях. Символически соленость обозначается так: S =35°/оо, т. е. соленость (S ) = 35 промилле.

Вода океанов, взятая вдали от берегов, имеет обычно соленость (S )=35°/ oo . Вода же прибрежных частей, опресненная реками, имеет соленость 34-33 и даже 32%о. В поясах пассатных ветров, где дожди падают редко, а испарение большое, соленость повышается до 36 и даже 37%о.

В Северном Ледовитом океане, наоборот, в связи с малой испаряемостью соленость на поверхности понижается до 34%о. Пониженная соленость наблюдается также в экваториальном поясе, где выпадает очень много осадков (рис.157).

На глубине свыше 1000-1500 м соленость во всех океанах 35% 0 .

Несколько иначе обстоит дело с морями. Краевые моря, соединенные с океанами широким проливом или большим количеством проливов, имеют довольно высокую соленость. Так, например, в Японском море она выражается в ЗЗ 0 / 00 в Охотском - 32°/оо. Отдаленные от океанов внутриматериковые моря, в которые вливается много больших рек, имеют слабую соленость. Так, например, соленость Черного моря 14-19°/ О о, Балтийского 8-12% 0 , а в северной части Ботнического залива даже 3°/ 00 . Наоборот, моря, окруженные областями с сухим климатом, имеют повышенную соленость. Так, Средиземное море имеет соленость 38-39°/оо, а Красное море, окруженное пустынями, имеет соленость около 41% 0 .

Изучение солености имеет большое значение как в науке, так и в практической жизни. Точное знание солености дает возможность определять течения и вообще движение водных масс как в горизонтальном, так и вертикальном направлении. Большое значение соленость и удельный вес морских вод имеет в оборонном деле. Плавание подводных лодок, глубина и скорость погружения, минирование вод, торпедирование неприятельских судов и пр. требуют точных знаний о солености и течениях в том или другом участке моря.

Цвет. Чистое оконное стекло нам кажется совершенно прозрачным. Но если положить два-три десятка чистых прозрачных стекол в стопку, то окажется, что стопка стекол стала полупрозрачной и с трудом пропускает голубой или слегка зеленоватый свет. Значит, чистое прозрачное стекло все же не вполне прозрачно и не бесцветно.

Приблизительно то же приходится, сказать и о воде. Чистая дистиллированная вода кажется бесцветной и совершенно прозрачной. Однако это наблюдается только в том случае, если слой воды сравнительно тонок. В более толстом слое вода кажется голубоватой. Этот голубоватый цвет легко заметить в белой ванне, наполненной чистой прозрачной водой.

Для точного определения цвета чистой воды брали стеклянную трубку в 5 м длины и, наполнив ее дистиллированной водой, закрывали оба конца трубки плоскими стеклами. Трубку помещали в светонепроницаемый футляр. Установив один конец трубки в окно, смотрели в другой конец на свет. Оказалось, что чистая дистиллированная вода имеет замечательный нежный и чистый голубой цвет. Это значит, что вода поглощает красные и желтые лучи спектра и хорошо пропускает голубые.


Зная, что чистая вода имеет голубой цвет, мы легко поймем, почему чистая вода озер, морей и океанов имеет преобладающий голубой цвет. Всякая же примесь к воде изменяет окраску. Так, например, если к чистой воде прибавить тончайший порошок желтого или красноватого цвета, то вода приобретает зеленоватый оттенок и т. д. Последнее хорошо видно на море у берегов после сильных прибоев: взмученная вода у берегов приобретает зеленоватую окраску.

Соли, растворенные в морской воде, на цвет воды не влияют, в силу чего вода морей имеет преобладающую голубую окраску. Однако примеси взвешенных частичек ила сразу же придают воде тот или другой оттенок. Так, например, р. Хуанхэ (Желтая), протекающая через лессовые области Китая, окрашивает морскую воду в желтоватый цвет (Желтое море). Примесь илистых частиц, приносимых реками, придает воде Белого моря зеленоватый цвет, а водам Балтийского моря - мутно-зеленый оттенок.

Прозрачность. Примеси различных веществ не только меняют цвет, но также изменяют и степень прозрачности воды. Каждому известно, что мутные воды наименее прозрачны, а чистая вода отличается наибольшей прозрачностью. В науке и в практической жизни (особенно в оборонном деле) изучение цвета и прозрачности воды имеет большое значение. Для исследования степени прозрачности воды употребляется очень простой прибор - диск Секки. Он состоит из цинкового диска, имеющего 30 см в диаметре, окрашенного в белый цвет. Диск наподобие чашки обычных весов привешивается к шнуру и медленно погружается в воду. При этом сверху следят, на какой глубине белый диск перестает быть видимым. Эта глубина определяет степень прозрачности воды в бассейне. Так, например, в Белом море диск становится невидимым на глубине 6-8 м, в Балтийском 11 -13 м, в Черном 28 м. Наибольшей прозрачностью отличаются воды Средиземного моря - до 50-60 м. Большой прозрачностью отличаются также воды Тихого океана (59 м) и особенно Саргассова моря (66 м).

При определении прозрачности обычно определяют и цвет. Белый диск по мере погружения меняет цвет. В одних бассейнах диск на некоторой глубине принимает голубой цвет, в других зеленый и т. д.

Для точности обозначения наблюдаемого цвета употребляется шкала, состоящая из ряда трубочек, наполненных растворами различных оттенков от голубого до желтого цвета.

Свечение моря. В ночное время нередко наблюдается свечение морской воды. Последнее происходит не от самой воды, а от некоторых организмов, обитающих в морской воде, способных испускать свет. К числу таких организмов относятся: светящиеся бактерии, одноклеточные (особенно ночесветка, которые в большом количестве появляются в конце лета), некоторые медузы и др.

Температура морской воды. Вода - самое теплоемкое тело на Земле. Чтобы нагреть 1 см 3 воды на 1 0 , нужно затратить тепла столько же, сколько потребуется его на нагревание 5 см 3 на тот же 1° гранита или 3134 см 3 воздуха. Это значит, что теплоемкость воды в пять раз больше теплоемкости гранита и в 3 тыс. с лишним раз более теплоемкости воздуха.

Поверхность океанов и морей составляет более 2 / 3 поверхности земного шара. Стало быть, более 2 / 3 солнечной энергии, поглощаемой поверхностью земного шара, приходится на Мировой океан. Часть этого тепла расходуется на испарение, часть на нагревание воздуха над морем, часть, отражаясь, излучается в небесное пространство и часть идет на нагревание самой водной поверхности. В итоге, по приблизительным подсчетам, из всего количества солнечного тепла, падающего на единицу поверхности водного бассейна, в тропическом поясе на нагревание уходит 60%, в умеренных около 30% и в холодных до 10%.

Роль этого тепла в жизни атмосферы и жизни материковых вод нами уже отмечалось. Говорилось также и о том, что суточные и годовые колебания температуры водной поверхности совершенно иные по сравнению

с сушей. Напомним только, что суточная амплитуда поверхности океана в тропическом поясе выражается в 0,5-1°, в умеренном поясе около 0°,4 и холодном около 0°,1. Что же касается годовой амплитуды, то она также очень невелика: в жарком поясе 2-3°, в умеренном от 5 до 10° и холодном 1-2°. Отметив эти особенности в нагревании водной поверхности, перейдем теперь к температурам океанов и морей.

Измерение температур морей и океанов. Измерение температуры поверхностных слоев не представляет никаких трудностей. Берут ведро воды, опускают в ведро термометр, который и покажет температуру. Что же касается более глубоких слоев воды и в особенности измерения температуры на глубинах, то здесь приходится применять термометры совершенно особого устройства, называемые глубинными термометрами (рис. 158).

Глубинный термометр прежде всего должен противостоять силе того огромного давления, которое существует на глубинах. Это достигается, во-первых, тем, что термометр заключается в трубку из толстого стекла, а потом в медную гильзу таким образом, чтобы вода касалась толстостенной стеклянной трубки термометра только около ртутного шарика. Кроме того, глубинный термометр должен фиксировать ту температуру, которая отмечена им на глубине. Последнее достигается тем, что в нужный момент, по данному сверху сигналу, термометр быстро поворачивается верхом вниз. При этом столбик ртути в термометре разрывается, что и позволяет фиксировать показание термометра.

Температура поверхности океанов и морей. Кораб ли, которые плавают по различным морям и океанам, ежедневно, вместе с определением географических координат, определяют и температуру воды на поверхности моря. На основании подобных многочисленных наблюдений составляются карты средних месячных и годовых температур поверхности Мирового океана и наносятся соответствующие изотермы (рис. 159). По картам изотерм видно, что температура поверхности океанов в жарком поясе повышается к западу, а в умеренном к востоку. Последнее зависит, как мы увидим дальше, от морских течений, которые в тропическом поясе направляются преимущественно на запад, а в умеренном отклоняются к востоку.

Сравнивая те же средние годовые температуры воздуха над сушей и над океанами, мы видим, что в жарком поясе средняя годовая температура на суше несколько выше, чем над морем. В умеренном и холодном поясах, наоборот, температура над морем значительно выше, чем над сушей. Это умеряющее и согревающее влияние моря мы в свое время уже отмечали.

Температуры на глубинах. Непосредственные измерения показали, что суточные колебания, правда, очень ничтожные, можно заметить до глубины 25-30 м, годовые же до 200-300 м, а в некоторых случаях даже до 350 м. Глубже 300-350 м температура остается неизменной во все времена года. Иначе говоря, на глубине 300-350 м мы имеем слой постоянной температуры. Однако с глубиной температура продолжает постепенно понижаться (на каждые 1 тыс. м глубины приблизительно на 1-2°), и на глубине 3-4 тыс. м она доходит до 2° и даже до - 1°. Это


постепенное понижение температуры с глубиной объясняется тем, что холодная вода, имея большую плотность, погружается вниз, а теплая вода, как более легкая, сосредоточивается в верхних слоях. В отличие от пресной воды морская вода приобретает наибольшую плотность не при 4° С, а при 2° и ниже, что опять-таки зависит от степени ее солености. Низкая температура глубин всех океанов объясняется влиянием полярных морей и океанов. Там вода, охлаждаясь до - 1 и - 2°, опускается и медленно растекается по дну всех океанов. Происходит, правда, очень медленное, но постоянное движение воды в придонных частях от полюсов к экватору и в верхних частях от экватора к полюсам (рис. 160). Наличие подобного движения делает понятным, почему придонные температуры южных частей океанов ниже тех же придонных температур северных частей океанов. Подводный порог (Томсона) в Атлантическом океане преграждает путь придонным холодным водам Северного Ледовитого океана, в силу чего в северной части Атлантического океана придонная температура 3°,5 и 4°, а за порогом Томсона, в Северном Ледовитом океане, она сразу же падает до -1°,2.

Отсутствие подобных порогов в южной части Атлантического океана приводит к обратным результатам. Там уже с 50° ю. ш. придонная температура ниже 0°.

Еще резче отделена северная часть Тихого океана от Северного Ледовитого океана, что приводит к понижению температур к югу.


Замерзание морской воды. Процесс замерзания морской воды протекает значительно сложнее по сравнению с пресной. Пресная вода при обычных условиях замерзает при 0°, а морская - при более низких температурах. Температура замерзания морской воды зависит прежде всего от степени ее солености, что хорошо можно видеть из приведенной таблицы:


Пресная вода наибольшую плотность имеет при 4°С. Что же касается морской воды, то она наибольшей плотности достигает при более низких температурах, опять-таки в зависимости от степени солености. Так, например:

Вода пресноводных бассейнов при охлаждении с поверхности становится более тяжелой и погружается вниз, а на ее место из глубины поднимается более легкая теплая вода. Это своеобразное движение (называемое конвекцией) постепенно захватывает все большие и большие толщи воды. Когда же, наконец, вся масса воды охлаждается до 4°С, т. е. достигнет своей максимальной плотности, конвекция прекращается, потому что вода на поверхности бассейна, охлаждаясь далее, становится легче. При создавшихся условиях поверхностный слой дальше охлаждается очень быстро и скоро замерзает. В морской воде конвекция не прекращается, потому что плотность воды с понижением температуры все время возрастает. Кроме того, при замерзании морской воды кристаллики льда образуются из чистой (пресной) воды, причем соль выделяется и повышает соленость незамерзшей воды. С повышением же солености температура замерзания и температура наибольшей плотности, как это видно из приведенных выше таблиц, значительно понижается. Все это вместе взятое сильно замедляет процесс замерзания. Таким образом, для замерзания морской воды требуются более низкие температуры и большая продолжительность времени. Обильное выпадение снега (опресняющего поверхность морской воды) ускоряет замерзание. Волнение, наоборот, замедляет замерзание.

При замерзании пресных вод мы различали три момента: образование сала, образование блинчатого льда и, наконец, полное замерзание всей поверхности. Приблизительно так же протекает и замерзание моря. Кристаллы в морской воде образуются более крупные и срастаются более крупными комками и льдинками, которые почти сплошь покрывают море. Последнее придает морю своеобразный матовый оттенок. Этот начальный период замерзания моря известен у моряков под названием ледяного сала.


Далее льдины увеличиваются в размерах, трутся друг о друга и принимают вид больших плавающих тарелок более или менее округлой формы. Этот своеобразный, пока еще не сплошной подвижный ледяной покров называют блинчатым льдом.

Если погода стоит тихая и волнение на море слабое, то отдельные «блины» смерзаются, в результате чего образуется сплошной ледяной покров, толщина которого постепенно увеличивается. Сильное волнение обычно разбивает ледяной покров на огромные плоские ледяные куски, которые называются ледяными полями. Ледяные поля под влиянием ветров надвигаются друг на друга, взламываются по краям, нагромождая груды и валы обломков, известных под названием ледяных торосов (рис. 161).

Высота торосов над поверхностью ледяного поля обыкновенно не превышает 5 м, но в отдельных случаях доходит до 9 м. Эта подводная масса льда удерживается большим скоплением льда под торосом. Толщина ледяных масс под торосом обычно превосходит высоту тороса в два-три раза, так что общая толщина тороса доходит до 15-20 м.

Торосистые льды легко застревают на мелях и образуют у берегов скопления подвижных льдов, известных под названием берегового припая. Наибольших размеров береговой припай достигает у восточных берегов Таймыра и особенно у Новосибирских островов и о. Врангеля (300-400 км ширины). Отдельно сидящие на мелях торосы называют стамухами.

Ледяные поля, находящиеся в пределах Северного Ледовитого океана, не успевают растаивать в течение короткого и прохладного лета. В следующую зиму толщина льда увеличивается. Получается более толстый двухлетний лед. Утолщение льда продолжается и в следующие годы. В результате образуется толстый и очень крепкий лед до 5 и более метров. Большие скопления движущегося многолетнего льда известны под названием полярного пака. Полярный пак занимает большую часть поверхности Северного Ледовитого океана.

Мы уже говорили о том, что ледяные поля Северного Ледовитого океана за лето не могут растаять. Если бы в Северный Ледовитый океан не вливались теплые воды Атлантического океана (течение Гольфстрим) и холодное Гренландское течение не выносило полярные льды в Атлантический океан, то весь Северный Ледовитый океан превратился бы в сплошную ледяную пустыню. Очень возможно, что отсутствие прохода между Атлантическим и Северным Ледовитым океанами и было одной из


главнейших причин тех ледниковых периодов, которые пережила Евразия и Северная Америка в четвертичное время. Влияние течений на замерзание Мирового океана хорошо видно на приложенной климатической карте.

Айсберги. Материк Антарктида, о. Гренландия и многие другие острова Северного Ледовитого океана, как мы уже знаем, имеют мощные толщи материкового льда. Материковые льды, сползая в море, дают начало многочисленным плавающим горам, или айсбергам. По приблизительным подсчетам в одно только Баффиново море с западных берегов Гренландии ежегодно поступает более 7 тыс. айсбергов.

Удельный вес льда около 0,9, в то время как удельный вес морской воды немного более 1,0. При данных условиях ледяные горы оказываются погруженными в воду на 6 / 7 своего объема. Таким образом, над водой поднимается всего 1 / 5 - 1 / 7 часть льдины.

Насколько велики могут быть плавающие ледяные горы Антарктиды, можно видеть из следующих примеров. Материковые льды Антарктики сползают огромными массами, образуя ледяные стены, поднимающиеся над уровнем моря на 30-40 и более метров. Ледяная стена «Великого барьера» (рис. 162), отвесно падающая в море, тянется на протяжении 750 км. Над водой она поднимается на 30-40, а местами на 70 м. Средняя толщина льда здесь не менее 180-200 м. Понятно, что обломки такого ледника могут достигать огромных размеров и имеют столообразную форму. В 1854 г. в южной части Атлантического океана ряд кораблей в своих судовых журналах отметил встречу с ледяной горой, длина которой была более 100 км, а высота над водой 90 м. В 1911 г. к югу от Австралии была встречена ледяная гора 64 км длины. Ледяные горы меньшего размера встречаются значительно чаще. Так, например, наша экспедиция под начальством Беллинсгаузена в 1819 г. встретила у берегов Антарктиды до 250 ледяных гор. Иногда судам приходится идти среди ледяных гор на протяжении 400-500 км.


Айсберги выносятся течениями иногда очень далеко за пределы полярного круга. Так плавающие ледяные горы у берегов Северной Америки заходят значительно южнее о. Ньюфаундленд и создают большую угрозу кораблям. В южной части океана айсберги заходят еще дальше. В отдельных случаях они достигали 30 и даже 25° ю. ш., т. е. почти пределов тропического пояса.

— Источник—

Половинкин, А.А. Основы общего землеведения/ А.А. Половинкин.- М.: Государственное учебно-педагогическое издательство министерства просвещения РСФСР, 1958.- 482 с.

Post Views: 981

Морская вода замерзает при температурах ниже нуля градусов. Чем больше соленость морской воды, тем ниже температура ее замерзания. Это можно видеть из следующей таблицы:

Соленость в °/ 00

Температура замерзания
(в градусах)

Соленость в °/ 00 Температура замерзания
(в градусах)
0 (пресная вода) 0 20 -1,1
2 -0,1 22 -1,2
4 -0,2 24 -1,3
6 -0,3 26 -1,4
8 -0,4 28 -1,5
10 -0,5 30 -1,6
12 -0,6 32 -1,7
14 -0,8 35 -1,9
16 -0,9 37 -2,0
18 -1,0 39 -2,1

Эта таблица показывает, что увеличение солености на 2 °/ 00 понижает температуру замерзания приблизительно на одну десятую градуса.

Для того чтобы начала замерзать вода с океанической соленостью 35 °/ 00 , ее нужно охладить ниже нуля почти на два градуса.

Выпадая на незамерзшую пресную речную воду, обычный снег с температурой таяния, равной нулю градусов, как правило, тает. Если же этот самый снег выпадает на незамерзшую морскую воду с температурой -1°, то он не тает.

Зная соленость воды, можно определить температуру замерзания любого моря, пользуясь приведенной выше таблицей.

Соленость воды Азовского моря зимой около 12 °/ 00 ; следовательно, вода начинает замерзать только при температуре 0°,6 ниже нуля.

В открытой части Белого моря соленость доходит до 25 °/ 00 . Значит, для замерзания вода должна охладиться ниже минус 1°,4.

Вода с соленостью 100 °/ 00 (такую соленость можно встретить в Сивашах, отделенных от Азовского моря Арабатской стрелкой) будет замерзать при температуре минус 6°,1, а в Кара-Богаз-Голе соленость больше 250 °/ 00 , и вода замерзает только тогда, когда ее температура опускается значительно ниже 10° мороза!

Когда соленая морская вода охлаждается до соответствующей температуры замерзания, в ней начинают появляться первичные ледяные кристаллы, имеющие форму очень тонких шестигранных призм, похожих на иглы.

Поэтому их обыкновенно называют ледяными иглами. Первичные ледяные кристаллы, образующиеся в соленой морской воде, не содержат соли, она остается в растворе, увеличивая его соленость. В этом легко убедиться. Собрав ледяные иглы сачком из очень тонкой марли или тюля, надо ополоснуть их пресной водой, чтобы смыть соленую воду, а затем растопить в другой посуде. Получится пресная вода.

Лед, как известно, легче воды, поэтому ледяные иглы всплывают. Их скопления на поверхности воды напоминают по внешнему виду пятна жира на остывшем супе. Эти скопления так и называются салом.

Если мороз усиливается и поверхность моря быстро теряет тепло, то сало начинает смерзаться и при тихой погоде возникает ровная, гладкая, прозрачная ледяная корка, которую поморы, жители нашего северного побережья, называют нилас. Он так чист и прозрачен, что в хижинах, сделанных из снега, его можно употреблять вместо стекла (конечно, если внутри такой хижины нет отопления). Если растопить нилас, то вода окажется соленой. Правда, соленость ее будет ниже, чем воды, из которой образовались ледяные иглы.

Отдельные ледяные иглы не содержат соли, а в образовавшемся из них морском льде появляется соль. Это происходит потому, что беспорядочно расположенные ледяные иглы, смерзаясь, захватывают мельчайшие капельки соленой морской воды. Таким образом, в морском льде соль распределяется неравномерно - отдельными включениями.

Соленость морского льда зависит от температуры, при которой он образовался. При небольшом морозе ледяные иглы смерзаются медленно и захватывают мало соленой воды. При сильном морозе ледяные иглы смерзаются гораздо быстрее и захватывают много соленой воды. В этом случае морской лед окажется более соленым.

Когда морской лед начинает таять, то из него прежде всего вытаивают соленые включения. Поэтому старый, многолетний полярный лед, несколько раз «перелетовавший», становится пресным. Полярные зимовщики используют для питьевой воды обычно снег, а когда его нет, то старый морской лед.

Если во время образования льда идет снег, то он, не растаивая, остается на поверхности морской воды, пропитывается ею и, смерзаясь, образует мутный, белесоватый, непрозрачный неровный лед - молодик. И нилас и молодик при ветре и волнении разламываются на куски, которые, сталкиваясь друг с другом, обивают углы и постепенно превращаются в круглые льдины - блинки. Когда волнение ослабевает, блинки смерзаются, образуя сплошной блинчатый лед.

У берегов, на отмелях, морская вода остывает скорее, поэтому лед появляется раньше, чем в открытом море. Обычно лед примерзает к берегам, это припай. Если морозы сопровождаются тихой погодой, припай быстро растет, достигая иногда ширины многих десятков километров. Но сильные ветры и волнения разламывают припай. Оторвавшиеся от него части уплывают по течению, уносятся ветром. Так возникают плавучие льды. В зависимости от размеров они носят различные названия.

Ледяным полем называются плавучие льды площадью более одной квадратной морской мили.

Обломками ледяного поля называют плавучие льды длиной больше одного кабельтова.

Крупнобитый лед короче одного кабельтова, но больше одной десятой кабельтова (18,5 м). Мелкобитый лед не превышает одной десятой кабельтова, а ледяная каша состоит из мелких кусков, кувыркающихся на волнах.

Течения и ветер могут прижать плавучие льдины к припаю или друг к другу. Давление ледяных полей друг на друга вызывает дробление плавучих льдов. При этом обычно создаются нагромождения мелкобитого льда.

Когда одиночная льдина становится на дыбы и в таком положении вмерзает в окружающий лед, она образует ропак. Ропаки, засыпанные снегом, плохо видны с самолета и при посадке могут быть причиной катастрофы.

Часто при давлении ледяных полей образуются ледяные валы - торосы. Иногда торосы достигают высоты в несколько десятков метров. Торосистый лед трудно проходим, особенно для собачьих упряжек. Он представляет собой серьезное препятствие даже для мощных ледоколов.

Обломок тороса, возвышающийся над поверхностью воды и легко уносимый ветром, называется несяком. Несяк, севший на мель, называют стамухой.

Вокруг Антарктиды и в Северном Ледовитом океане встречаются ледяные горы - айсберги. Это обычно обломки материкового льда.

В Антарктиде, как это недавно установили исследователи, айсберги образуются и в море, на материковой отмели. Над поверхностью воды видна лишь часть айсберга. Большая же его доля (около 7/8) находится под водой. Площадь подводной части айсберга всегда гораздо больше, чем надводная. Поэтому айсберги опасны для кораблей.

Теперь айсберги легко обнаруживаются вдали и в тумане посредством точных радиоприборов на корабле. Раньше же были случаи столкновений кораблей с айсбергами. Так погиб, например, в 1912 г. огромный океанский пассажирский пароход «Титаник».

КРУГОВОРОТ ВОДЫ В МИРОВОМ ОКЕАНЕ

В приполярных зонах вода, остывая, становится более плотной и опускается на дно. Оттуда она медленно сползает к экватору. Поэтому на всех широтах глубинные воды холодные. Даже у экватора придонные воды имеют температуру только 1-2° выше нуля.

Так как от экватора течения уносят теплую воду в умеренные широты, то на ее место из глубины очень медленно поднимается холодная вода. На поверхности она снова прогревается, уходит в приполярные зоны, где остывает, опускается на дно и по дну снова перемещается к экватору.

Таким образом, в океанах существует своеобразный круговорот воды: по поверхности вода движется от экватора в приполярные зоны и по дну океанов - из приполярных зон к экватору. Этот процесс перемешивания воды наряду с другими явлениями, о которых говорилось выше, создает единство Мирового океана.

3.2. МОРСКОЙ ЛЕД

Все наши моря, за редким исключением, зимой покрываются льдом различной мощности. В связи с этим в одной части моря навигация в холодную половину года затрудняется, в другой прекращается и может осуществляться только с помощью ледоколов. Таким образом, замерзание морей нарушает нормальную работу флота и портов. Поэтому для более квалифицированной эксплуатации флота, портов и морских сооружений необходимы определенные знания физических свойств морского льда.

Морская вода, в отличии от пресной, не имеет определенной точки замерзания. Температура, при которой начинают образовываться кристаллы льда (ледяные иглы), зависит от солености морской воды S . Опытным путем установлено, что температуру замерзания морской воды можно определить (рассчитать) по формуле: t 3 = -0,0545S. При солености 24,7% температура замерзания равна температуре наибольшей плотности морской воды (-1,33°С). Это обстоятельство (свойство морской воды) позволило разделить по степени солености морскую воду на две группы. Вода с соленостью меньшей 24,7% называется солоноватой и при охлаждении сначала достигает температуры наибольшей плотности, а затем замерзает, т.е. ведет себя как пресная, у которой температура наибольшей плотности 4° С. Вода с соленостью больше 24,7°/00 называется морской.

Температура при наибольшей плотности ниже температуры замерзания. Это ведет к возникновению конвективного перемешивания, задерживающего замерзание морской воды. Замерзание замедляется также и из-за осолонения поверхностного слоя воды, которое наблюдается при появлении льда, так как при замерзании воды только часть солей, растворенных в ней, остается во льду, значительная же их часть остается в воде, увеличивая ее соленость, а следовательно, и плотность поверхностного слоя воды, тем самым понижая температуру замерзания. В среднем соленость морского льда в четыре раза меньше солености воды.

Как же происходит образование льда в морской воде, имеющей соленость 35°/00 и температуру замерзания -1,91° С? После того, как поверхностный слой воды охладится до указанной выше температуры, плотность его увеличится и вода будет опускаться вниз, а более теплая вода из нижележащего слоя будет подниматься вверх. Перемешивание будет продолжаться до тех пор, пока температура всей массы воды верхнего деятельного слоя не понизится до -1,91° С. Затем, после некоторого переохлаждения воды ниже температуры замерзания, на поверхности начинают появляться кристаллы льда (ледяные иглы).

Ледяные иглы образуются не только на поверхности моря, но и во всей толще перемешанного слоя. Постепенно ледяные иглы смерзаются, образуя на поверхности моря ледяные пятна, напоминающие по виду застывшее сало . По цвету оно мало чем отличается от воды.

При выпадении снега на поверхности моря процесс льдообразования ускоряется, так как при этом поверхностный слой опресняется и охлаждается, кроме того, в воду вводятся готовые ядра кристаллизации (снежинки). Если температура воды ниже 0°С, то снег не тает, а образует вязкую кашеобразную массу, называемую снежурой . Сало и снежура под действием ветра и волн сбивается в куски белого цвета, называемые шугой . При дальнейшем уплотнении и смерзании начальных видов льда (ледяные иглы, сало, шуга, снежура) на поверхности моря образуется тонкая, эластичная корка льда, легко прогибающаяся на волне и при сжатии образующая зубчатые наслоения, называемая ниласом . Нилас имеет матовую поверхность и толщину до 10 см, подразделяется на темный (до 5 см) и светлый (5-10 см) нилас.

Если поверхностный слой моря сильно опреснен, то при дальнейшем охлаждении воды и спокойном состоянии моря в результате непосредственного замерзания или из ледяного сала поверхность моря покрывается тонкой блестящей коркой, называемой склянкой . Склянка прозрачна, как стекло, легко ломается при ветре или волне, толщина ее до 5 см.

На легкой волне из ледяного сала, шуги или снежуры, а также в результате разлома склянки и ниласа при большой зыби образуется так называемый блинчатый лед . Он имеет преимущественно круглую форму от 30 см до 3 м в диаметре и приблизительно до 10 см толщины, с приподнятыми краями вследствие удара льдин одна о другую.

В большинстве случаев льдообразование начинается у берега с появления заберегов (ширина их 100-200 м от берега), которые, постепенно распространяясь в море, переходят в припай. Забереги и припай относятся к неподвижному льду, т. е. ко льду, который образуется и остается неподвижным вдоль побережья, где он прикреплен к берегу, ледяной стене, к ледяному барьеру.

Верхняя поверхность молодого льда в большинстве случаев гладкая или слегка волнистая, нижняя, наоборот, очень неровная и в некоторых случаях (при отсутствии течений) похожа на щетку из ледяных кристаллов. В течение зимы толщина молодого льда постепенно увеличивается, поверхность его покрывается снегом, а цвет за счет стекания из него рассола меняется от серого до белого. Молодой лед толщиной 10-15 см называется серым , а толщиной 15-30 см - серо-белым . При дальнейшем нарастании толщины льда лед приобретает белый цвет. Морской лед, просуществовавший одну зиму и имеющий толщину от 30 см до 2 м, принято называть белым однолетним льдом , который подразделяется на тонкий (толщина от 30 до 70 см), средний (от 70 до 120 см) и толстый (более 120 см).

В районах Мирового океана, где лед не успевает растаять за лето и с начала следующей зимы начинает вторично нарастать и к концу второй зимы толщина его увеличивается и составляет уже более 2 м, называется двухлетним льдом . Лед, просуществовавший более двух лет, называется многолетним , толщина его более 3 м. Он имеет зеленовато-голубой цвет, а при большой примеси снега и пузырьков воздуха, имеет беловатый цвет, стекловидного вида. Со временем опресненный и уплотненный сжатиями многолетний лед приобретает голубой цвет. Морские льды по их подвижности разделяют на неподвижный лед (припай) и дрейфующий лед.

Дрейфующий лед по форме (размерам) подразделяют на блинчатый лед, ледяные поля, мелкобитый лед (кусок морского льда менее 20 м в поперечнике), тертый лед (битый лед менее 2 м в поперечнике), несяк (большой торос или группа торосов, смерзшихся вместе, высотой над уровнем моря до 5 м), сморозь (смерзшиеся в ледяное поле куски льда), ледяная каша (скопление дрейфующего льда, состоящее из обломков других форм льда не более 2 м в поперечнике). В свою очередь ледяные поля, в зависимости от горизонтальных размеров, подразделяются на:

Гигантские ледяные поля, более 10 км в поперечнике;

Обширные ледяные поля, от 2 до 10 км в поперечнике;

Большие ледяные поля, от 500 до 2000 м в поперечнике;

Обломки ледяных полей, от 100 до 500 м в поперечнике;

Крупнобитый лед, от 20 до 100 м в поперечнике.

Очень важной характеристикой для судоходства является сплоченность дрейфующего льда. Под сплоченностью понимается отношение площади морской поверхности, фактически покрытой льдом, к общей площади поверхности моря, на которой располагается дрейфующий лед, выраженное в десятых долях.

В СССР принята 10-балльная шкала сплоченности льда (1 балл соответствует 10% покрытой льдом площади), в некоторых зарубежных странах (Канаде, США)-8-балльная.

По сплоченности дрейфующий лед характеризуется так:

1. Сжатый дрейфующий лед. Дрейфующий лед, сплоченность которого составляет 10/10 (8/8), и воды не видно.

2. Смерзшийся сплошной лед. Дрейфующий лед, сплоченность которого составляет 10/10 (8/8), и льдины смерзлись вместе.

3. Очень сплоченный лед. Дрейфующий лед, сплоченность которого больше 9/10, но меньше 10/10 (от 7/8 до 8/8).

4. Сплоченный лед. Дрейфующий лед, сплоченность которого от 7/10 до 8/10 (от 6/8 до 7/8), состоящий из льдин, большинство которых соприкасается друг с другом.

5. Разреженный лед. Дрейфующий лед, сплоченность которого составляет от 4/10 до 6/10 (от 3/8 до 6/8), с большим числом разводий, льдины обычно не соприкасаются одна с другой.

6. Редкий лед. Дрейфующий лед, в котором сплоченность составляет от 1/10 до 3/10 (от 1/8 до 3/8), и пространство чистой воды преобладает над льдом.

7. Отдельные льдины. Большая площадь воды, в которой имеется морской лед сплоченностью менее 1/10 (1/8). При полном отсутствии льда эту площадь следует называть чистая вода.

Дрейфующие льды под влиянием ветра и течений находятся в постоянном движении. Всякая перемена ветра над районом, покрытым дрейфующим льдом, вызывает изменения в распреде- лении льда: тем больше, чем сильнее и продолжительнее действие ветра.

Многолетние наблюдения над ветровым дрейфом сплоченного льда показали, что дрейф льда находится в прямой зависимости от ветра, вызвавшего его, а именно: направление дрейфа льда отклоняется от направления ветра приблизительно на 30° в северном полушарии вправо, а в южном - влево, скорость дрейфа связана со скоростью ветра ветровым коэффициентом, равным приблизительно 0,02 (r = 0,02).

В табл. 5 приведены вычисленные значения скорости дрейфа льда в зависимости от скорости ветра.

Таблица 5

Дрейф отдельных льдин (мелких айсбергов, их обломков и небольших ледяных полей) отличается от дрейфа сплоченного льда. Скорость его больше, так как ветровой коэффициент возрастает от 0,03 до 0,10.

Скорость перемещения айсбергов (в Северной Атлантике) при свежих ветрах колеблется от 0,1 до 0,7 уз. Что же касается угла отклонения их движения от направления ветра, то он составляет 30-40°.

Практика ледового плавания показала, что самостоятельное плавание обычного морского судна возможно при сплоченности дрейфующего льда 5-6 баллов. Для крупнотоннажных судов со слабым корпусом и для старых судов предел сплоченности 5 баллов, для судов среднего тоннажа, находящихся в хорошем состоянии,-6 баллов. Для судов ледового класса этот предел может быть повышен до 7 баллов, а для ледокольных транспортных судов - до 8-9 баллов. Указанные пределы проходимости дрейфующего льда выведены из практики для средне- тяжелого льда. При плавании в тяжелых многолетних льдах эти пределы следует снизить на 1-2 балла. При хорошей видимости плавание во льдах сплоченностью до 3 баллов возможно для судов любого класса.

В случае необходимости следовать через район моря, покрытый дрейфующим льдом, необходимо иметь в виду, что легче и безопасней входить в кромку льда против ветра. Входить в лед при попутном или боковом ветре опасно, так как создаются условия навала на лед, что может привести к повреждению борта судна или его скуловой части.

Вперед
Оглавление
Назад