Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

Механизм металлической связи

Во всех узлах кристаллической решётки расположены положительные ионы металла . Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены.

Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. Если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой - металлической связью.


Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всему образцу с большой скоростью.

Становится понятной и электрическая проводимость металлов. Если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала: этот поток электронов, движущихся в одном направлении, и представляет собой всем знакомый электрический ток.

Как уже указывалось в п. 4.2.2.1, металлическая связь - электронная связь атомных ядер с минимальной локализацией обобществленных электронов как на отдельных (в отличие от ионной связи) ядрах, так и на отдельных (в отличие от ковалентной связи) связях. В результате это многоцентровая химическая связь с дефицитом электронов, в которой обобществленные электроны (в виде «электронного газа») обеспечивают связь с максимально возможным числом ядер (катионов), образующих структуру жидких или твердых металлических веществ. Поэтому металлическая связь в целом не- направлена и насыщена, ее следует рассматривать как предельный случай делокализации ковалентной связи. Напомним, что в чистых металлах металлическая связь представляется прежде всего гомоядер- ной , т.е. не может иметь ионной компоненты. В результате типичной картиной распределения электронной плотности в металлах являются сферически симметричные остовы (катионы) в равномерно распределенном электронном газе (рис. 5.10).

Следовательно, конечная структура соединений с преимущественно металлическим типом связи определяется прежде всего сте- рическим фактором и плотностью упаковки в кристаллической решетке этих катионов (высокие КЧ). Метод ВС не может интерпретировать металлические связи. Согласно ММО металлическая связь характеризуется дефицитом электронов по сравнению с ковалентной связью. Строгое приложение ММО к металлическим связям и соединениям приводит к зонной теории (электронная модель металла), согласно которой в атомах, входящих в кристаллическую решетку металла, существует взаимодействие почти свободных валентных электронов, находящихся на внешних электронных орбитах, с (электрическим) периодическим полем кристаллической решетки. В результате энергетические уровни электронов расщепляются и образуют более или менее широкую зону. В соответствии со статистикой Ферми наиболее высокая энергетическая зона заселяется свободными электронами вплоть до полного заполнения, в особенности, если энергетическим термам отдельного атома соответствуют два электрона с антипараллельными спинами. Однако она может быть заполнена частично, что обеспечивает для электронов возможность их перехода на более высокие энергетические уровни. Тогда

эта зона называется зоной проводимости. Существует несколько основных типов взаимного расположения энергетических зон, соответствующих изолятору, одновалентному металлу, двухвалентному металлу, полупроводнику с собственной проводимостью, полупроводнику «-типа и примесному полупроводнику/ьтипа. Соотношение энергетических зон определяет также тип проводимости твердого тела.

Однако эта теория не позволяет количественно охарактеризовать различные металлические соединения и не привела к решению проблемы происхождения реальных кристаллических структур металлических фаз. Специфика природы химической связи в гомоядерных металлах, металлических сплавах и интерметаллических гетеросоединениях рассмотрена Н.В. Агеевым }