Мы видели, что поверхность проводника, как нейтрального, так и заряженного, является эквипотенциальной поверхностью (§ 24) и внутри проводника напряженность поля равна нулю (§ 16). То же относится и к полому проводнику: поверхность его есть поверхность эквипотенциальная и поле внутри полости равно нулю, как бы сильно ни был заряжен проводник, если, конечно, внутри полости нет изолированных от проводника заряженных тел.

Этот вывод был наглядно продемонстрирован английским физиком Майклом Фарадеем (1791-1861), обогатившим науку рядом крупнейших открытий. Его опыт состоял в следующем. Большая деревянная клетка была оклеена листами станиоля (оловянной бумагой), изолирована от Земли и сильно заряжена при помощи электрической машины. В клетку помещался сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что с внешней поверхности клетки при приближении к ней тел, соединенных с Землей, вылетали искры, указывая этим на большую разность потенциалов между клеткой и Землей, электроскоп внутри клетки не показывал никакого отклонения (рис. 53).

Рис. 53. Опыт Фарадея

Видоизменение этого опыта показано на рис. 54. Если сделать из металлической сетки замкнутую полость и привесить листочки бумаги с внутренней и внешней сторон полости, то обнаружим, что отклоняются лишь наружные листочки. Это показывает, что электрическое поле существует только в пространстве между клеткой и окружающими ее предметами, т. е. снаружи клетки; внутри же клетки поле отсутствует.

Рис. 54. Видоизменение опыта Фарадея. Металлическая клетка заряжена. Листочки бумаги снаружи отклоняются, указывая на наличие заряда на внешних поверхностях стен клетки. Внутри клетки заряда нет, листочки бумаги не отклоняются

При зарядке любого проводника заряды распределяются в нем так, что электрическое поле внутри него исчезает, и разность потенциалов между любыми точками обращается в нуль. Посмотрим, каким образом для этого должны разместиться заряды.

Зарядим полый проводник, например полый изолированный шар 1 (рис. 55), имеющий небольшое отверстие. Возьмем маленькую металлическую пластинку 2, укрепленную на изолирующей ручке («пробную пластинку»), коснемся ею какого-либо места внешней поверхности шара и затем приведем в соприкосновение с электроскопом. Листки электроскопа разойдутся на некоторый угол, указывая этим, что пробная пластинка при соприкосновении с шаром зарядилась. Если мы, однако, коснемся пробной пластинкой внутренней поверхности шара, то пластинка будет оставаться незаряженной, как бы сильно ни был заряжен шар. Почерпнуть заряды можно только с внешней поверхности проводника, а с внутренней это оказывается невозможным. Более того, если мы предварительно зарядим пробную пластинку и коснемся ею внутренней поверхности проводника, то весь заряд перейдет на этот проводник. Это происходит независимо от того, какой заряд уже имелся на проводнике. В § 19 мы подробно разъяснили это явление. Итак, в состоянии равновесия заряды распределяются только на внешней поверхности проводника. Конечно, если бы мы повторили с полым проводником опыт, изображенный на рис. 45, касаясь проводника концом проволоки, ведущей к электрометру, то убедились бы, что вся поверхность проводника, как внешняя, так и внутренняя, есть поверхность одного потенциала: распределение зарядов по внешней поверхности проводника есть результат действия электрического поля. Только тогда, когда весь заряд перейдет на поверхность проводника, установится равновесие, т. е. внутри проводника напряженность поля сделается равной нулю и все точки проводника (внешняя поверхность, внутренняя поверхность и точки в толще металла) будут иметь один и тот же потенциал.

Рис. 55. Исследование распределения заряда в проводнике 1 при помощи пробной пластинки 2. Внутри полости проводника заряда нет

Таким образом, проводящая поверхность вполне защищает область, которую она окружает, от действия электрического поля, созданного зарядами, расположенными на этой поверхности или вне ее. Линии внешнего поля оканчиваются на этой поверхности, в проводящем слое они не могут проходить, и внутренняя полость оказывается свободной от поля. Поэтому такие металлические поверхности называются электростатическими защитами. Интересно отметить, что даже поверхность, сделанная из металлической сетки, может служить защитой, если только сетка достаточно густа.

31.1. В центре полого изолированного металлического шара находится заряд. Отклонится ли заряженный грузик, подвешенный на шелковой нити и помешенный вне шара? Разберите подробно, что при этом происходит. Что будет, если шар заземлен?

31.2. Почему пороховые склады для защиты от удара молний окружают со всех сторон заземленной металлической сеткой? Почему введенные в такое здание водопроводные трубы должны быть также хорошо заземлены?

Тем обстоятельством, что заряды распределяются на внешней поверхности проводника, часто пользуются на практике. Когда желают полностью перенести заряд какого-нибудь проводника на электроскоп (или электрометр), то к электроскопу присоединяют по возможности замкнутую металлическую полость и вводят заряженный проводник внутрь этой полости. Проводник полностью разряжается, и весь его заряд переходит на электроскоп. Это приспособление в честь Фарадея называют «фарадеевым цилиндром», так как на практике эта полость чаще всего выполняется в виде металлического цилиндра. Мы уже пользовались этим свойством фарадеева цилиндра (стакана) в опыте, изображенном на рис. 9, и подробно разъяснили его в § 19.

Ван-де-Грааф предложил использовать свойства фарадеева цилиндра для получения очень высоких напряжений. Принцип действия его генератора показан на рис. 56. Бесконечная лента 1 из какого-нибудь изолирующего материала, например шелка, движется при помощи мотора на двух роликах и одним своим концом заходит внутрь полого, изолированного, от Земли металлического шара 2. Вне шара лента при помощи кисточки 3 заряжается каким-либо источником, например батареей или электрической машиной 4, до напряжения 30-50 кВ относительно Земли, если второй полюс батареи или машины заземлен. Внутри шара 2 заряженные участки ленты касаются кисточки 5 и полностью отдают шару свой заряд, который сейчас же перераспределяется по внешней поверхности шара. Благодаря этому ничто не препятствует непрерывному переносу заряда на шар. Напряжение между шаром 2 и Землей непрерывно увеличивается. Таким образом можно получить напряжение в несколько миллионов вольт. Подобные машины применяли в опытах по расщеплению атомных ядер.

Рис. 56. Принцип устройства генератора Ван-де-Граафа

31.3. Мог бы описанный выше генератор Ван-де-Граафа работать, если бы шар его был сделан из изолирующего материала или если бы транспортерная лента в нем была проводящей (металлической)?

Металлические проводники в целом являются нейтральными: в них поровну отрицательных и положительных зарядов. Положительно заряженные - это ионы в узлах кристаллической решетки, отрицательные - электроны, свободно перемещающиеся по проводнику. Когда проводнику сообщают избыточное количество электронов, он заряжается отрицательно, если же у проводника «отбирают» какое-то количество электронов, он заряжается положительно.

Избыточный заряд распределяется только по внешней поверхности проводника. Если проводник полый, то на его внутренних поверхностях нет зарядов. Это используют для полной передачи заряда от одного проводника другому (см. рис. 8).

Отсутствие поля внутри полости в проводнике позволяет создать электростатическую защиту. Проводник или достаточно густая металлическая сетка, окружающие со всех сторон некоторую область, экранируют ее от электрических полей, созданных внешними зарядами.

В электростатике рассматривается стационарное, неизменное распределение зарядов. Условием стационарности является равенство нулю напряженности поля внутри проводника: Е = 0. Если бы напряженность не была равна нулю, это создало бы электрические силы, вызывающие направленное перемещение электронов, т.е. электрический ток.

Избыточные заряды, сообщаемые проводнику, распределяется равномерно только по поверхности металлических сферы или шара. Во всех остальных случаях заряды распределяются неравномерно: чем больше кривизна поверхности, тем больше поверхностная плотность зарядов на поверхности проводника. Докажем это. Возьмем два шара радиусами R 1 и R 2 , заряженные зарядами q 1 и q 2 , соответственно. Соединим их проволочкой. Заряды будут перемещаться с одного шара на другой до тех пор, пока потенциал всей системы не станет одинаковым. Влиянием проволочки будем пренебрегать.

Таблица 14

Найдем напряженность поля заряженного проводника вблизи его поверхности, используя теорему Гаусса. Весь проводник представляет собой одну эквипотенциальную поверхность. Силовые линии перпендикулярны эквипотенциальным поверхностям. Выберем в качестве гауссовой поверхности S цилиндр очень малого размера, образующие которого перпендикулярны поверхности проводника (см. рис. 9). В пределах цилиндра поверхностную плотность заряда будем считать постоянной.

Таблица 15

Таким образом, чем более искривлена поверхность заряженного проводника, тем больше скапливается на ней зарядов и тем больше оказывается напряженность поля в этом месте. На рис.показаны силовые линии и эквипотенциальные поверхности поля заряженного тела. Наибольшая напряженность получается у острых выступов поверхности. Это приводит к так называемому «стеканию зарядов». В действительности из-за высокой напряженности вблизи острия возникают сложные явления: могут ионизироваться молекулы воздуха, дипольные молекулы втягиваются в область более сильного поля, в результате скорость потока частиц от острия оказывается большей, и образуется «электрический ветер». Этот ветер может привести во вращение легкое колесо, находящееся вблизи острия. Воздух становится проводящей средой, возникает разряд, вблизи острых концов часто наблюдается свечение. Поэтому всем деталям в электроустановках, находящихся под высоким напряжением, придают закругленную форму и делают их поверхности гладкими.

Идеальной физической моделью заряда в электростатике является точечный заряд.

Точечным зарядом называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других тел или до рассматриваемой точки поля. Иными словами, точечный заряд - это материальная точка, которая имеет электрический заряд.

Если заряженное тело настолько велико, что его нельзя рассматривать как точечный заряд, то в этом случае необходимо знать распределение зарядов внутри тела.

Выделим внутри заряженного тела малый объем и обозначим через электрический заряд, находящийся в этом объеме. Предел отношения , когда объем неограниченно уменьшается, называют объемной плотностью электрического заряда в данной точке . Обозначают ее буквой :

Единицей объемной плотности заряда в СИ является кулон на кубический метр (Кл/м 3).

В случае неравномерно заряженного тела плотность различна в разных точках. Распределение заряда в объеме тела задано, если известно как функция координат.

В металлических телах заряды распределяются только внутри тонкого слоя, прилегающего к поверхности. В этом случае удобно пользоваться поверхностной плотностью заряда , которая представляет собой предел отношения заряда к площади поверхности, по которой распределен этот заряд:

где - заряд, находящийся на участке поверхности площадью .

Следовательно, поверхностная плотность заряда измеряется зарядом, приходящимся на единицу поверхности тела. Распределение зарядов по поверхности описывается зависимостью поверхностной плотности (x, y, z) от координат точек поверхности.

Единицей поверхностной плотности заряда в СИ является кулон на квадратный метр (Кл/м 2).

В том случае, если заряженное тело по форме представляет собой нить (диаметр поперечного сечения тела много меньше его длины , удобно использовать линейную плотность заряда

где - заряд, находящийся на длине тела.

Единицей линейной плотности заряда в СИ является кулон на метр (Кл/м).

Если известно распределение зарядов внутри тела, то можно вычислить напряженность электростатического поля, создаваемого этим телом. Для этого заряженное тело мысленно разбивают на бесконечно малые части и, рассматривая их как точечные заряды, вычисляют напряженность поля, создаваемую отдельными частями тела. Суммарную напряженность поля находят затем суммированием полей, создаваемых отдельными частями тела, т.е.

Под словом «проводник» в физике понимается проводящее тело любых размеров и формы, содержащее свободные заряды (электроны или ионы). Для определенности в дальнейшем будем рассматривать металлы.

Если проводнику сообщить некоторый заряд q, то он распределится так, чтобы соблюдалось условие равновесия (т.к. одноименные заряды отталкиваются, они располагаются на поверхности проводника).


1.
Если заряды проводника находятся в равновесии, то равнодействующая всех сил, действующих на каждый заряд, равна нулю:

т.к. а Е=0, то

в любой точке внутри проводника Е=0.

2. Т.к.

во всех точках внутри проводника потенциал постоянен.

3. Т.к. при равновесии заряды не движутся по поверхности проводника, то работа по их перемещению равна нулю:

т.е. поверхность проводника является эквипотенциальной.

4. Т.к. линии вектора перпендикулярны эквипотенциальным поверхностям, линии перпендикулярны поверхности проводника.

5. Согласно теореме Гаусса

Если S - поверхность заряженного проводника, то внутри нее E=0,

т.е. заряды располагаются на поверхности проводника.

6. Выясним, как связана поверхностная плотность заряда с кривизной поверхности.

Для заряженной сферы

Плотность зарядов определяется кривизной поверхности проводника: растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика на острие. При этом имеющиеся в воздухе в небольшом количестве ионы обоих знаков и электроны разгоняются вблизи острия сильным полем и ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов, направленный от острия, создает впечатление «стекания зарядов». При этом острие разрежается попадающими на него ионами противоположного знака. Возникающее при этом ощутимое движение газа у острия называют «электрическим ветром».

Проводник во внешнем электрическом поле:

При внесении незаряженного проводника в электрическое поле его электроны (свободные заряды) приходят в движение, на поверхности проводника появляются индуцированные заряды, поле внутри проводника равно нулю. Это используют для электростатической защиты, т.е. экранировки электро- и радиоприборов (и человека) от влияния электростатических полей. Прибор окружают проводящим экраном (сплошным или в виде сетки). Внешнее поле компенсируется внутри экрана полем возникающих на его поверхности индуцированных зарядов.