На электрические заряды в электростатическом поле действуют силы. Поэтому, если заряды перемещаются, то эти силы совершают работу. Рассчитаем работу сил однородного электростатического поля при перемещении положительного заряда q из точки A в точку B (рис. 1).

На заряд q , помещенный в однородное электрическое поле с напряженностью E , действует сила \(~\vec F = q \cdot \vec E \). Работу поля можно рассчитать по формуле

\(~A_{AB} = F \cdot \Delta r \cdot \cos \alpha,\)

где Δr ⋅cos α = AC = x 2 x 1 = Δx - проекция перемещения на силовую линию (рис. 2).

\(~A_{AB} = q \cdot E \cdot \Delta x. \ \ (1)\)

Рассмотрим теперь перемещение заряда по траектории ACB (см. рис. 1). В этом случае работа однородного поля может быть представлена как сумма работ на участках AC и CB :

\(~A_{ACB} = A_{AC} + A_{CB} = q \cdot E \cdot \Delta x + 0 = q \cdot E \cdot \Delta x\)

(на участке CB работа равна нулю, т.к. перемещение перпендикулярна силе \(~\vec F \)). Как видно, работа поля такая же, как и при перемещении заряда по отрезку AB .

Не сложно доказать, что работа поля при перемещении заряда между точками AB по любой траектории будет находиться все по той же формуле 1.

Таким образом,

  • работа по перемещению заряда в электростатическом поле не зависит от формы траектории, по которой двигался заряд q, а зависит только от начального и конечного положений заряда .
  • Это утверждение справедливо и для неоднородного электростатического поля.

Найдем работу на замкнутой траектории ABCA :

\(~A_{ABCA} = A_{AB} + A_{BC} + A_{CA} = q \cdot E \cdot \Delta x + 0 - q \cdot E \cdot \Delta x = 0.\)

Поле, работа сил которого не зависит от формы траектории и на замкнутой траектории равна нулю, называется потенциальным или консервативным .

Потенциал

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система "заряд - электростатическое поле" обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

\(~A_{12} = -(W_{2} - W_{1}) = W_{1} - W_{2} . \)

Сравнивая полученное выражение с уравнением 1, можно сделать вывод, что

\(~W = -q \cdot E \cdot x, \)

где x - координата заряда на ось 0Х, направленную вдоль силовой линии (см. рис. 1). Так как координата заряда зависит от выбора системы отсчета, то и потенциальная энергия заряда так же зависит от выбора системы отсчета.

Если W 2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q 0 равна работе, которая была бы совершена при перемещении заряда q 0 из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q . Будем помещать в некоторую точку этого поля различные пробные заряды q 0 . Потенциальная энергия их различна, но отношение \(~\dfrac{W}{q_0} = \operatorname{const}\) для данной точки поля и служит характеристикой поля, называемой потенциалом поля φ в данной точке.

  • Потенциал электростатического поля φ в данной точке пространства - скалярная физическая величина, равная отношению потенциальной энергии W , которой обладает точечный заряд q в данной точке пространства, к величине этого заряда:
\(~\varphi = \dfrac{W}{q} .\)

Единицей потенциала в СИ является вольт (В): 1 В = 1 Дж/Кл.

  • Потенциал - это энергетическая характеристика поля.

Свойства потенциала.

  • Потенциал, как и потенциальная энергия заряда, зависит от выбора системы отсчета (нулевого уровня). В технике за нулевой потенциал выбирают потенциал поверхности Земли или проводника, соединенного с землей. Такой проводник называют заземленным . В физике за начало отсчета (нулевой уровень) потенциала (и потенциальной энергии) принимается любая точка, бесконечно удаленная от зарядов, создающих поле.
  • На расстоянии r от точечного заряда q , создающего поле, потенциал определяется формулой
\(~\varphi = k \cdot \dfrac{q}{r}.\)
  • Потенциал в любой точке поля, создаваемого положительным зарядом q , положителен , а поля, создаваемого отрицательным зарядом, отрицателен: если q > 0, то φ > 0; если q < 0, то φ < 0.
  • Потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R , в точке, находящейся на расстоянии r от центра сферы \(~\varphi = k \cdot \dfrac{q}{R}\) при r R и \(~\varphi = k \cdot \dfrac{q}{r}\) при r > R .
  • Принцип суперпозиции : потенциал φ поля, созданного системой зарядов, в некоторой точке пространства равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:
\(~\varphi = \varphi_1 + \varphi_2 + \varphi_3 + ... = \sum_{i=1}^n \varphi_i .\)

Зная потенциал φ поля в данной точке, можно рассчитать потенциальную энергию заряда q 0 помещенного в эту точку: W 1 = q 0 ⋅φ. Если положить, что вторая точка находится в бесконечности, т.е. W 2 = 0, то

\(~A_{1\infty} = W_{1} = q_0 \cdot \varphi_1 .\)

Потенциальная энергия заряда q 0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q 0 из данной точки в бесконечность. Из последней формулы имеем

\(~\varphi_1 = \dfrac{A_{1\infty}}{q_0}.\)

  • Физический смысл потенциала : потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в бесконечность.

Потенциальная энергия заряда q 0 помещенного в электростатическое поле точечного заряда q на расстоянии r от него,

\(~W = k \cdot \dfrac{q \cdot q_0}{r}.\)

  • Если q и q 0 - одноименные заряды, то W > 0, если q и q 0 - разные по знаку заряды, то W < 0.
  • Отметим, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение W выбрано ее значение при r = ∞.

Разность потенциалов. Напряжение

Работа сил электростатического поля по перемещению заряда q 0 из точки 1 в точку 2 поля

\(~A_{12} = W_{1} - W_{2} .\)

Выразим потенциальную энергию через потенциалы поля в соответствующих точках:

\(~W_{1} = q_0 \cdot \varphi_1 , W_{2} = q_0 \cdot \varphi_2 .\)

\(~A_{12} = q_0 \cdot (\varphi_1 - \varphi_2) .\)

Таким образом, работа определяется произведением заряда на разность потенциалов начальной и конечной точек.

Из этой формулы разность потенциалов

\(~\varphi_1 - \varphi_2 = \dfrac{A_{12}}{q_0} .\)

  • Разность потенциалов - это скалярная физическая величина, численно равная отношению работы сил поля по перемещению заряда между данными точками поля к этому заряду.

В СИ единицей разности потенциалов является вольт (В).

  • 1 В - разность потенциалов между двумя такими точками электростатического поля, при перемещении между которыми заряда в 1 Кл силами поля совершается работа в 1 Дж.

Разность потенциалов в отличие от потенциала не зависит от выбора нулевой точки. Разность потенциалов φ 1 - φ 2 часто называют электрическим напряжением между данными точками поля и обозначают U :

\(~U = \varphi_1 - \varphi_2 .\)

  • Напряжение между двумя точками поля определяется работой сил этого поля по перемещению заряда в 1 Кл из одной точки в другую.

Работу сил электрического поля иногда выражают не в джоулях, а в электронвольтах .

  • 1 эВ равен работе, совершаемой силами поля при перемещении электрона (е = 1,6·10 -19 Кл) между двумя точками, напряжение между которыми равно 1 В.
1 эВ = 1,6·10 -19 Кл·1 В = 1,6·10 -19 Дж. 1 МэВ = 10 6 эВ = 1,6·10 -13 Дж.

Разность потенциалов и напряженность

Рассчитаем работу, совершаемую силами электростатического поля при перемещении электрического заряда q 0 из точки с потенциалом φ 1 в точку с потенциалом φ 2 однородного электрического поля.

С одной стороны работа сил поля \(~A = q_0 \cdot (\varphi_1 - \varphi_2)\).

С другой стороны работа по перемещению заряда q 0 в однородном электростатическом поле \(~A = q_0 \cdot E \cdot \Delta x\).

Приравнивая два выражения для работы, получим:

\(~q_0 \cdot (\varphi_1 - \varphi_2) = q_0 \cdot E \cdot \Delta x, \;\; E = \dfrac{\varphi_1 - \varphi_2}{\Delta x},\)

где Δx - проекция перемещения на силовую линию.

Эта формула выражает связь между напряженностью и разностью потенциалов однородного электростатического поля. На основании этой формулы можно установить единицу напряженности в СИ: вольт на метр (В/м).

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 228-233.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. - 2-е изд., исправленное. - Минск: Нар. асвета, 2008. - С. 86-95.

Система заряженных тел обладает потенциальной энергией, называемой электростатической, т.к. электростатическое поле может перемещать помещенные в него заряженные тела, совершая при этом работу.

Рассмотрим работу электростатических сил по перемещению заряда q в однородном электростатическом поле с напряженностью Е, созданном двумя бесконечно большими пластинами с равными по модулю и противоположными по знаку зарядами. Свяжем начало отсчета оси координат с отрицательно заряженной пластиной. На точечный заряд q в поле действует сила . При перемещении заряда из т.1 в т.2 по силовой линии электростатическое поле совершает работу .

При перемещении заряда из т.1 в т.3 . Но . Следовательно, .

Работа электростатических сил при перемещении электрического заряда из т.1 в т.3 вычисляется по выведенной формуле при любой форме траектории. Если заряд перемещается по кривой, то ее можно разбить на очень маленькие прямолинейные участки вдоль напряженности поля и перпендикулярные ей. На перпендикулярных полю участках работа не совершается. Сумма же проекций остальных участков на силовую линию равна d 1 -d 2 , т.е.

.

Таким образом, работа при перемещении заряда в однородном электростатическом поле не зависит от формы траектории, по которой движется заряд, а зависит только от координат начальной и конечной точек пути. Этот вывод справедлив и для неоднородного электростатического поля. Следовательно, кулоновская сила является потенциальной или консервативной и ее работа при перемещении зарядов связана с изменением потенциальной энергии. Работа консервативных сил не зависит от формы траектории тела и равна изменению потенциальной энергии тела, взятой с противоположным знаком.

.

. Значит, .

Точный физический смысл имеет не сама потенциальная энергия, т.к. ее численное значение зависит от выбора начала координат, а изменение потенциальной энергии, т.к. только оно определяется однозначно.

Работа электростатического поля при перемещении заряда по замкнутому пути равна нулю, т.к. d 2 =d 1 .

ВЕЛИЧИНА, РАВНАЯ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ, ПРИХОДИВШЕЙСЯ БЫ НА ЕДИНИЧНЫЙ ПОЛОЖИТЕЛЬНЫЙ ЗАРЯД, ПОМЕЩЕННЫЙ В ДАННУЮ ТОЧКУ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, НАЗЫВАЕТСЯ ПОТЕНЦИАЛОМ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ДАННОЙ ТОЧКЕ.

Потенциал - скалярная величина. Это энергетическая характеристика поля, т.к. определяет потенциальную энергию заряда в данной точке.

Потенциал определяется с точностью до некоторой постоянной, значение которой зависит от выбора нулевого уровня потенциальной энергии. С удалением в неоднородном поле от заряда, создающего поле, поле ослабевает. Значит уменьшается и его потенциал.j = О в бесконечно удаленной от заряда точке. Следовательно, потенциал поля в данной точке поля - это работа, совершаемая электростатическими силами при перемещении единичного положительного заряда из этой точки в бесконечно удаленную. Потенциал любой точки поля, созданного положительным зарядом положителен. В электротехнике за поверхность с нулевым потенциалом принимается поверхность Земли.

Разность потенциалов - разность значений потенциала в начальной и конечной точках траектории.

.

Разность потенциалов между двумя точками - это работа кулоновских сил по перемещению единичного положительного заряда между ними. Разность потенциалов имеет точный физический смысл, т.к. не зависит от выбора системы отсчета.

[V]=Дж/Кл=В. 1 вольт - это разность потенциалов между точками, при перемещении между которыми заряда в 1Кл кулоновские силы совершают работу в 1Дж.

Рассчитаем потенциал точек поля, созданного точечным зарядом Q.

Пусть заряд q перемещается в поле заряда Q по радиальной прямой. Заряд движется в неоднородном поле. Следовательно, при движении будет изменяться сила, действующая на заряд. Но можно разбить все перемещение на настолько маленькие участки dr, на каждом из которых силу можно считать постоянной. Тогда, . Тогда работа на всем пути

Работа в электростатическом поле не зависит от формы траектории.

Поэтому, если заряд перемещается от заряда, создающего поле, не по радиальной прямой, то можно из начальной точки переместить в конечную, перемещая его сначала по дуге окружности радиуса r 1 , а затем по радиальному отрезку до конечной точки. На первом участке работа совершаться не будет, т.к. кулоновская сила будет перпендикулярна скорости тела, а на втором - будет находиться по выше найденной формуле.

Потенциал результирующего поля системы зарядов в данной точке по принципу суперпозиции полей равен алгебраической сумме потенциалов составляющих полей в этой точке.

Геометрическое место точек поля равного потенциала называется ЭКВИПОТЕНЦИАЛЬНОЙ ПОВЕРХНОСТЬЮ . Эквипотенциальные поверхности перпендикулярны силовым линиям. Работа поля при перемещении заряда по эквипотенциальной поверхности равна нулю. Поверхность проводника в электростатическом поле является эквипотенциальной. Потенциал всех точек внутри проводника равен потенциалу на его поверхности. В противном случае, между точками проводника существовала бы разность потенциалов, что привело бы к возникновению электрического тока. Эквипотенциальные поверхности не могут пересекаться.

В отличие от остальных величин в электростатике разность потенциалов между телами легко измерить с помощью электрометра, соединив корпус и стрелку его с телами, находящимися в данных точках. При этом угол отклонения стрелки электрометра определяется только разностью потенциалов между телами (или, что то же самое, между стрелкой и корпусом электрометра). Практически разность потенциалов между точками в электрических цепях измеряется вольтметром, подключенным к этим точкам.

Работу по перемещению электрического заряда в однородном электростатическом поле можно найти через силовую характеристику поля - напряженность, и через энергетическую - потенциал. Это позволяет установить связь между ними.

Следовательно:

Эта зависимость позволяет ввести единицу напряжености поля в СИ. . Напряженность однородного электростатического поля равна , если разность потенциалов между точками, лежащими на одной силовой линии на расстоянии 1м, равна 1В.

В электростатическом поле напряженность направлена в сторону убывания потенциала.

Нетрудно показать, что в неоднородных полях:

Знак «-» говорит о том, что потенциал убывает вдоль силовой линии.

При переходе из одной среды в другую потенциал, в отличие от напряженности, не может изменяться скачками.

ЭЛЕКТРОЕМКОСТЬ.

Потенциал уединенного проводника пропорционален сообщенному ему заряду. Отношение же заряда на проводнике к его потенциалу не зависит от величины заряда. Оно характеризует способность данного проводника накапливать на себе заряды. ЭЛЕКТРОЕМКОСТЬЮ УЕДИНЕННОГО ПРОВОДНИКА НАЗЫВАЮТ ВЕЛИЧИНУ, РАВНУЮ ЭЛЕКТРИЧЕСКОМУ ЗАРЯДУ, ИЗМЕНЯЮЩЕМУ ПОТЕНЦИАЛ ПРОВОДНИКА НА ЕДИНИЦУ . Чтобы вычислить электроемкость уединенного проводника, надо сообщенный ему заряд разделить на возникший на нем потенциал.

1фарад - это электроемкость проводника, потенциал которого изменяется на 1В при сообщении ему заряда 1Кл. Фарад - это огромная емкость, поэтому на практике мы имеем дело с микро- и пикофарадами. Электроемкость проводника зависит от его геометрических размеров, формы и диэлектрической проницаемости среды, в которой он находится, а также от расположения окружающих тел.

Потенциал шара . Следовательно, его электроемкость

При перенесении заряда с одного из незаряженных проводников на другой между ними возникает разность потенциалов, пропорциональная величине перенесенного заряда. Отношение же модуля перенесенного заряда к возникшей разности потенциалов не зависит от величины перенесенного заряда. Оно характеризует способность данных двух тел накапливать электрический заряд. ВЗАИМНОЙ ЭЛЕКТРОЕМКОСТЬЮ ДВУХ ПРОВОДНИКОВ НАЗЫВАЕТСЯ ВЕЛИЧИНА, РАВНАЯ ЗАРЯДУ, КОТОРЫЙ НАДО ПЕРЕНЕСТИ С ОДНОГО ПРОВОДНИКА НА ДРУГОЙ ДЛЯ ИЗМЕНЕНИЯ РАЗНОСТИ ПОТЕНЦИАЛОВ МЕЖДУ НИМИ НА ЕДИНИЦУ.

Взаимная электроемкость тел зависит от размеров и формы тел, от расстояния между ними, от диэлектрической проницаемость среды, в которой они находятся.

Большой электроемкостью обладают конденсаторы - система двух или более проводников, называемых обкладками, разделенных слоем диэлектрика . Зарядом конденсатора называют модуль заряда одной из обкладок.

Чтобы зарядить конденсатор, его обкладки соединяют с полюсами источника тока или, заземлив одну из обкладок, вторую присоединяют к любому полюсу источника, второй полюс которого также заземлен.

Электроемкостью конденсатора называют заряд, сообщение которого конденсатору вызывает появление между обкладками единичной разности потенциалов . Чтобы вычислить электроемкость конденсатора, надо его заряд разделить на разность потенциалов между обкладками.

Пусть расстояние между обкладками плоского конденсатора d гораздо меньше, чем их размеры. Тогда поле между обкладками можно считать однородным, а обкладки - бесконечными заряженными плоскостями. Напряженность электростатического поля от одной обкладки: . Общая напряженность:

Разность потенциалов между обкладками:

. =>

Данная формула справедлива при малых d, т.е. при однородном поле внутри конденсатора.

Различают конденсаторы постоянной, переменной и полупеременной емкости (триммеры). Конденсаторы постоянной емкости называют, как правило, по роду диэлектрика между обкладками: слюдяные, керамические, бумажные.

В конденсаторах переменной емкости часто используется зависимость емкости от площади перекрытия обкладок.

У триммеров (или подстроечных конденсаторов) емкость изменяется при настройке радиоустройств, а при работе остается постоянной.

Рассмотрим ситуацию: заряд q 0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q 0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории . Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными , а само поле называется потенциальным .

Потенциал

Система "заряд - электростатическое поле" или "заряд - заряд" обладает потенциальной энергией , подобно тому, как система "гравитационное поле - тело" обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал - это характеристика электростатического поля.


Вспомним потенциальную энергию в механике . Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело - наоборот.

Потенциальная энергия поля - это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.


Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов


Эту формулу можно представить в ином виде


Эквипотенциальная поверхность (линия) - поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности , равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ - точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком "минус". Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак "+", работа имеет знак "-".

На любой заряд, который находится в электрическом поле, воздействует сила. В связи с этим при передвижении заряда в поле происходит определенная работа электрического поля. Как же произвести расчет этой работы?

Работа электрического поля состоит в переносе электрозарядов вдоль проводника. Она будет равняться произведению напряжения, и времени, потраченного на работу.

Применив формулу закона Ома, мы можем получить несколько различных вариантов формулы для проведения подсчета работы тока:

A = U˖I˖t = I²R˖t = (U²/R)˖t.

В соответствии с законом сохранения энергии работа электрического поля равняется изменению энергии отдельно взятого участка цепи, в связи с чем энергия, выделяемая проводником, будет равняться работе тока.

Выразим в системе СИ:

[А] = В˖А˖с = Вт˖с = Дж

1 кВт˖час = 3600000 Дж.

Проведем опыт. Рассмотрим передвижение заряда в одноименном поле, которое образовано двумя параллельно расположенными пластинами А и В и заряженными разноименными зарядами. В таком поле силовые линии на всем своем протяжении перпендикулярны этим пластинам, и когда пластина А будет заряжена положительно, тогда Е будет направлена от А к В.

Предположим, что позитивный заряд q передвинулся из точки a в точку b по произвольному пути ab = s.

Так как сила, которая действует на заряд, который находится в поле, будет равняться F = qE, то работа, совершенная при передвижении заряда в поле согласно заданному пути, определится по равенству:

A = Fs cos α, или A = qFs cos α.

Но s cos α = d, где d - дистанция между пластинами.

Отсюда следует: A = qEd.

Допустим, теперь заряд q переместится из a и b по сути acb. Работа электрического поля, совершенная на этом пути, равняется сумме работ, совершенных на отдельных участках его: ac = s₁, cb = s₂, т.е.

A = qEs₁ cos α₁ + qEs₂ cos α₂,

A = qE(s₁ cos α₁ + s₂ cos α₂,).

Но s₁ cos α₁ + s₂ cos α₂ = d, а значит, и в данном случае A = qEd.

Кроме того, предположим, что заряд q передвигается из a в b по произвольной кривой линии. Чтобы подсчитать работу, совершенную на данном криволинейном пути, необходимо расслоить поле между пластинами А и В некоторым количеством которые будут настолько близки одна к другой, что отдельные участки пути s между данными плоскостями можно будет считать прямыми.

В таком случае работа электрического поля, произведенная на каждом из данных отрезков пути, будет равняться A₁ = qEd₁, где d₁ - дистанция между двумя сопредельными плоскостями. А полная работа на всем пути d будет равняться произведению qE и суммы расстояний d₁, равной d. Таким образом, и в результате криволинейного пути совершенная работа будет равняться A = qEd.

Примеры, рассмотренные нами, показывают, что работа электрического поля по перемещению заряда из какой-либо точки в другую не зависит от формы пути передвижения, а зависит исключительно от положения данных точек в поле.

Кроме того, мы знаем, что работа, которая совершается силой тяжести при передвижении тела по наклонной плоскости, имеющей длину l, будет равняться работе, которую совершает тело при падении с высоты h, и высоте наклонной плоскости. Значит, работа или, в частности, работа при передвижении тела в поле тяжести, тоже не зависит от формы пути, а зависит только от разности высот первой и последней точек пути.

Так можно доказать, что таким важным свойством может обладать не только однородное, а и всякое электрическое поле. Похожим свойством обладает и сила тяжести.

Работа электростатического поля по перемещению точечного заряда из одной точки в другую определяется линейным интегралом:

A₁₂ = ∫ L₁₂q (Edl),

где L₁₂ - траектория движения заряда, dl - бесконечно малое перемещение вдоль траектории. Если контур замкнутый, то для интеграла используется символ ∫; в этом случае предполагается, что выбрано направление обхода контура.

Работа электростатических сил не зависит от формы пути, а только лишь от координат первой и последней точек перемещения. Следовательно, силы поля консервативны, а само поле - потенциально. Стоит отметить, что работа любой по замкнутому пути будет равняться нулю.

Одним из основных понятий в электричестве является электростатическое поле. Его важным свойством считается работа по перемещению заряда в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени.

Условия выполнения работы

Сила, находящиеся в электростатическом поле, перемещает заряд из одного места в другое. На нее совершенно не влияет форма траектории. Определение силы зависит только от положения точек в начале и конце, а также, от общей величины заряда.

Исходя из этого, можно сделать следующий вывод: Если траектория при перемещении электрозаряда является замкнутой, то вся работа сил в электростатическом поле имеет нулевое значение. При этом, форма траектории не имеет значения, поскольку кулоновские силы производят одинаковую работу. Когда направление, в котором перемещается электрозаряд, изменяется на противоположное, то сама сила также изменяет свой знак. Поэтому, замкнутая траектория, независимо от своей формы, определяет всю работу, производимую кулоновскими силами, равной нулю.

Если в создании электростатического поля принимает участие сразу несколько точечных зарядов, то их общая работа будет складываться из суммы работ, производимых кулоновскими полями этих зарядов. Общая работа, независимо от формы траектории, определяется исключительно местом расположения начальных и конечных точек.

Понятие потенциальной энергии заряда

Свойственная электростатическому полю, позволяет определять потенциальную энергию какого-либо заряда. Кроме того, с ее помощью более точно устанавливается работа по перемещению заряда в электрическом поле. Чтобы получить это значение, в пространстве необходимо выбрать определенную точку и потенциальную энергию заряда, размещаемого в данной точке.

Заряд, помещаемый в любую точку, имеет потенциальную энергию, равной работе, совершаемой электростатическим полем, во время перемещения заряда из одной точки в другую.

В физическом смысле, потенциальная энергия представляет собой значение для каждой из двух разных точек пространства. При этом, работа по перемещению заряда находится вне зависимости от путей его перемещения и выбранной точки. Потенциал электростатического поля в данной пространственной точке, равняется работе, совершаемой электрическими силами, когда единичный положительный заряд удаляется из этой точки в бесконечное пространство.

Работа электрического поля