Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Концепция решения тригонометрических уравнений.

  • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
  • Решение основных тригонометрических уравнений.

    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  • Преобразования, используемые при решении тригонометрических уравнений.

    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.
    • Нахождение углов по известным значениям функций.

      • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
      • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Отложите решение на единичной окружности.

      • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
      • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
      • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Методы решения тригонометрических уравнений.

      • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
        • Метод 1.
      • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.
      • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
      • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
      • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
      • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
        • Метод 2.
      • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
      • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
      • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Пример 10. tg x + 2 tg^2 x = ctg x + 2
      • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
  • Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
    Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
    Программная среда "1С: Математический конструктор 6.1"

    Что будем изучать:
    1. Что такое тригонометрические уравнения?

    3. Два основных метода решения тригонометрических уравнений.
    4. Однородные тригонометрические уравнения.
    5. Примеры.

    Что такое тригонометрические уравнения?

    Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

    Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

    Повторим вид решения простейших тригонометрических уравнений:

    1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

    X= ± arccos(a) + 2πk

    2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

    3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

    5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

    Для всех формул k- целое число

    Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

    Пример.

    Решить уравнения: а) sin(3x)= √3/2

    Решение:

    А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

    Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

    Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

    Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

    Тогда x= ((-1)^n)×π/9+ πn/3

    Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

    Ещё примеры тригонометрических уравнений.

    Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

    Решение:

    А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

    X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

    Ответ: x=5πk, где k – целое число.

    Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

    3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

    Ответ: x=2π/9 + πk/3, где k – целое число.

    Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

    Решение:

    Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

    4x= ± π/4 + 2πk;

    X= ± π/16+ πk/2;

    Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
    При к=1, x= π/16+ π/2=9π/16, опять попали.
    При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

    Ответ: x= π/16, x= 9π/16

    Два основных метода решения.

    Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

    Решим уравнение:

    Решение:
    Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

    В результате замены получим: t 2 + 2t -1 = 0

    Найдем корни квадратного уравнения: t=-1 и t=1/3

    Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

    X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

    Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

    Пример решения уравнения

    Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

    Решение:

    Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

    Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

    2 cos 2 (x) - 3 cos(x) -2 = 0

    Введем замену t=cos(x): 2t 2 -3t - 2 = 0

    Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

    Тогда cos(x)=2 и cos(x)=-1/2.

    Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

    Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

    Ответ: x= ±2π/3 + 2πk

    Однородные тригонометрические уравнения.

    Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

    Уравнения вида

    однородными тригонометрическими уравнениями второй степени.

    Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
    Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

    Решить уравнение:
    Пример: cos 2 (x) + sin(x) cos(x) = 0

    Решение:

    Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

    Тогда нам надо решить два уравнения:

    Cos(x)=0 и cos(x)+sin(x)=0

    Cos(x)=0 при x= π/2 + πk;

    Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

    1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

    Ответ: x= π/2 + πk и x= -π/4+πk

    Как решать однородные тригонометрические уравнения второй степени?
    Ребята, придерживайтесь этих правил всегда!

    1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

    2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


    Делаем замену переменной t=tg(x) получаем уравнение:

    Решить пример №:3

    Решить уравнение:
    Решение:

    Разделим обе части уравнения на косинус квадрат:

    Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

    Найдем корни квадратного уравнения: t=-3 и t=1

    Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

    Tg(x)=1 => x= π/4+ πk

    Ответ: x=-arctg(3) + πk и x= π/4+ πk

    Решить пример №:4

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

    Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

    Решить пример №:5

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

    Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

    Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
    2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

    2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

    Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

    Задачи для самостоятельного решения.

    1) Решить уравнение

    А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

    2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

    3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

    4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

    5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

    6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

    Тригонометрические уравнения - тема не самая простая. Уж больно они разнообразные.) Например, такие:

    sin 2 x + cos3x = ctg5x

    sin(5x+π /4) = ctg(2x-π /3)

    sinx + cos2x + tg3x = ctg4x

    И тому подобное...

    Но у этих (и всех остальных) тригонометрических монстров есть два общих и обязательных признака. Первый - вы не поверите - в уравнениях присутствуют тригонометрические функции.) Второй: все выражения с иксом находятся внутри этих самых функций. И только там! Если икс появится где-нибудь снаружи, например, sin2x + 3x = 3, это уже будет уравнение смешанного типа. Такие уравнения требуют индивидуального подхода. Здесь мы их рассматривать не будем.

    Злые уравнения в этом уроке мы тоже решать не будем.) Здесь мы будем разбираться с самыми простыми тригонометрическими уравнениями. Почему? Да потому, что решение любых тригонометрических уравнений состоит из двух этапов. На первом этапе злое уравнение путём самых различных преобразований сводится к простому. На втором - решается это самое простое уравнение. Иначе - никак.

    Так что, если на втором этапе у вас проблемы - первый этап особого смысла не имеет.)

    Как выглядят элементарные тригонометрические уравнения?

    sinx = а

    cosx = а

    tgx = а

    ctgx = а

    Здесь а обозначает любое число. Любое.

    Кстати, внутри функции может находиться не чистый икс, а какое-то выражение, типа:

    cos(3x+π /3) = 1/2

    и тому подобное. Это усложняет жизнь, но на методе решения тригонометрического уравнения никак не сказывается.

    Как решать тригонометрические уравнения?

    Тригонометрические уравнения можно решать двумя путями. Первый путь: с использованием логики и тригонометрического круга. Этот путь мы рассмотрим здесь. Второй путь - с использованием памяти и формул - рассмотрим в следующем уроке.

    Первый путь понятен, надёжен, и его трудно забыть.) Он хорош для решения и тригонометрических уравнений, и неравенств, и всяких хитрых нестандартных примеров. Логика сильнее памяти!)

    Решаем уравнения с помощью тригонометрического круга.

    Включаем элементарную логику и умение пользоваться тригонометрическим кругом. Не умеете!? Однако... Трудно же вам в тригонометрии придётся...) Но не беда. Загляните в уроки "Тригонометрический круг...... Что это такое?" и "Отсчёт углов на тригонометрическом круге". Там всё просто. В отличие от учебников...)

    Ах, вы в курсе!? И даже освоили "Практическую работу с тригонометрическим кругом" !? Примите поздравления. Эта тема будет вам близка и понятна.) Что особо радует, тригонометрическому кругу безразлично, какое уравнение вы решаете. Синус, косинус, тангенс, котангенс - ему всё едино. Принцип решения один.

    Вот и берём любое элементарное тригонометрическое уравнение. Хотя бы это:

    cosx = 0,5

    Надо найти икс. Если говорить человеческим языком, нужно найти угол (икс), косинус которого равен 0,5.

    Как мы ранее использовали круг? Мы рисовали на нём угол. В градусах или радианах. И сразу видели тригонометрические функции этого угла. Сейчас поступим наоборот. Нарисуем на круге косинус, равный 0,5 и сразу увидим угол. Останется только записать ответ.) Да-да!

    Рисуем круг и отмечаем косинус, равный 0,5. На оси косинусов, разумеется. Вот так:

    Теперь нарисуем угол, который даёт нам этот косинус. Наведите курсор мышки на рисунок (или коснитесь картинки на планшете), и увидите этот самый угол х.

    Косинус какого угла равен 0,5?

    х = π /3

    cos60° = cos(π /3 ) = 0,5

    Кое-кто скептически хмыкнет, да... Мол, стоило ли круг городить, когда и так всё ясно... Можно, конечно, хмыкать...) Но дело в том, что это - ошибочный ответ. Вернее, недостаточный. Знатоки круга понимают, что здесь ещё целая куча углов, которые тоже дают косинус, равный 0,5.

    Если провернуть подвижную сторону ОА на полный оборот , точка А попадёт в исходное положение. С тем же косинусом, равным 0,5. Т.е. угол изменится на 360° или 2π радиан, а косинус - нет. Новый угол 60° + 360° = 420° тоже будет решением нашего уравнения, т.к.

    Таких полных оборотов можно накрутить бесконечное множество... И все эти новые углы будут решениями нашего тригонометрического уравнения. И их все надо как-то записать в ответ. Все. Иначе решение не считается, да...)

    Математика умеет это делать просто и элегантно. В одном кратком ответе записывать бесконечное множество решений. Вот как это выглядит для нашего уравнения:

    х = π /3 + 2π n, n ∈ Z

    Расшифрую. Всё-таки писать осмысленно приятнее, чем тупо рисовать какие-то загадочные буковки, правда?)

    π /3 - это тот самый угол, который мы увидели на круге и определили по таблице косинусов.

    - это один полный оборот в радианах.

    n - это количество полных, т.е. целых оборотов. Понятно, что n может быть равно 0, ±1, ±2, ±3.... и так далее. Что и указано краткой записью:

    n ∈ Z

    n принадлежит ( ) множеству целых чисел (Z ). Кстати, вместо буквы n вполне могут употребляться буквы k, m, t и т.д.

    Эта запись означает, что вы можете взять любое целое n . Хоть -3, хоть 0, хоть +55. Какое хотите. Если подставите это число в запись ответа, получите конкретный угол, который обязательно будет решением нашего сурового уравнения.)

    Или, другими словами, х = π /3 - это единственный корень из бесконечного множества. Чтобы получить все остальные корни, достаточно к π /3 прибавить любое количество полных оборотов (n ) в радианах. Т.е. 2π n радиан.

    Всё? Нет. Я специально удовольствие растягиваю. Чтобы запомнилось получше.) Мы получили только часть ответов к нашему уравнению. Эту первую часть решения я запишу вот как:

    х 1 = π /3 + 2π n, n ∈ Z

    х 1 - не один корень, это целая серия корней, записанная в краткой форме.

    Но есть ещё углы, которые тоже дают косинус, равный 0,5!

    Вернёмся к нашей картинке, по которой записывали ответ. Вот она:

    Наводим мышку на картинку и видим ещё один угол, который тоже даёт косинус 0,5. Как вы думаете, чему он равен? Треугольнички одинаковые... Да! Он равен углу х , только отложен в отрицательном направлении. Это угол -х. Но икс-то мы уже вычислили. π /3 или 60°. Стало быть, можно смело записать:

    х 2 = - π /3

    Ну и, разумеется, добавляем все углы, которые получаются через полные обороты:

    х 2 = - π /3 + 2π n, n ∈ Z

    Вот теперь всё.) По тригонометрическому кругу мы увидели (кто понимает, конечно)) все углы, дающие косинус, равный 0,5. И записали эти углы в краткой математической форме. В ответе получились две бесконечные серии корней:

    х 1 = π /3 + 2π n, n ∈ Z

    х 2 = - π /3 + 2π n, n ∈ Z

    Это правильный ответ.

    Надеюсь, общий принцип решения тригонометрических уравнений с помощью круга понятен. Отмечаем на круге косинус (синус, тангенс, котангенс) из заданного уравнения, рисуем соответствующие ему углы и записываем ответ. Конечно, нужно сообразить, что за углы мы увидели на круге. Иногда это не так очевидно. Ну так я и говорил, что здесь логика требуется.)

    Для примера разберём ещё одно тригонометрическое уравнение:

    Прошу учесть, что число 0,5 - это не единственно возможное число в уравнениях!) Просто мне его писать удобнее, чем корни и дроби.

    Работаем по общему принципу. Рисуем круг, отмечаем (на оси синусов, разумеется!) 0,5. Рисуем сразу все углы, соответствующие этому синусу. Получим вот такую картину:

    Сначала разбираемся с углом х в первой четверти. Вспоминаем таблицу синусов и определяем величину этого угла. Дело нехитрое:

    х = π /6

    Вспоминаем про полные обороты и, с чистой совестью, записываем первую серию ответов:

    х 1 = π /6 + 2π n, n ∈ Z

    Половина дела сделана. А вот теперь надо определить второй угол... Это похитрее, чем в косинусах, да... Но логика нас спасёт! Как определить второй угол через х? Да легко! Треугольнички на картинке одинаковые, и красный угол х равен углу х . Только отсчитан он от угла π в отрицательном направлении. Потому и красный.) А нам для ответа нужен угол, отсчитанный правильно, от положительной полуоси ОХ, т.е. от угла 0 градусов.

    Наводим курсор на рисунок и всё видим. Первый угол я убрал, чтобы не усложнял картинку. Интересующий нас угол (нарисован зелёным) будет равен:

    π - х

    Икс мы знаем, это π /6 . Стало быть, второй угол будет:

    π - π /6 = 5π /6

    Снова вспоминаем про добавку полных оборотов и записываем вторую серию ответов:

    х 2 = 5π /6 + 2π n, n ∈ Z

    Вот и всё. Полноценный ответ состоит из двух серий корней:

    х 1 = π /6 + 2π n, n ∈ Z

    х 2 = 5π /6 + 2π n, n ∈ Z

    Уравнения с тангенсом и котангенсом можно легко решать по тому же общему принципу решения тригонометрических уравнений. Если, конечно, знаете, как нарисовать тангенс и котангенс на тригонометрическом круге.

    В приведённых выше примерах я использовал табличное значение синуса и косинуса: 0,5. Т.е. одно из тех значений, которые ученик знать обязан. А теперь расширим наши возможности на все остальные значения. Решать, так решать!)

    Итак, пусть нам надо решить вот такое тригонометрическое уравнение:

    Такого значения косинуса в кратких таблицах нет. Хладнокровно игнорируем этот жуткий факт. Рисуем круг, отмечаем на оси косинусов 2/3 и рисуем соответствующие углы. Получаем вот такую картинку.

    Разбираемся, для начала, с углом в первой четверти. Знать бы, чему равен икс, сразу бы ответ записали! Не знаем... Провал!? Спокойствие! Математика своих в беде не бросает! Она на этот случай придумала арккосинусы. Не в курсе? Зря. Выясните, Это много проще, чем вы думаете. По этой ссылке ни одного мудрёного заклинания насчёт "обратных тригонометрических функций" нету... Лишнее это в данной теме.

    Если вы в курсе, достаточно сказать себе: "Икс - это угол, косинус которого равен 2/3". И сразу, чисто по определению арккосинуса, можно записать:

    Вспоминаем про дополнительные обороты и спокойно записываем первую серию корней нашего тригонометрического уравнения:

    х 1 = arccos 2/3 + 2π n, n ∈ Z

    Практически автоматом записывается и вторая серия корней, для второго угла. Всё то же самое, только икс (arccos 2/3) будет с минусом:

    х 2 = - arccos 2/3 + 2π n, n ∈ Z

    И все дела! Это правильный ответ. Даже проще, чем с табличными значениями. Ничего вспоминать не надо.) Кстати, самые внимательные заметят, что эта картинка с решением через арккосинус ничем, в сущности, не отличается от картинки для уравнения cosx = 0,5.

    Именно так! Общий принцип на то и общий! Я специально нарисовал две почти одинаковые картинки. Круг нам показывает угол х по его косинусу. Табличный это косинус, или нет - кругу неведомо. Что это за угол, π /3, или арккосинус какой - это уж нам решать.

    С синусом та же песня. Например:

    Вновь рисуем круг, отмечаем синус, равный 1/3, рисуем углы. Получается вот такая картина:

    И опять картинка почти та же, что и для уравнения sinx = 0,5. Опять начинаем с угла в первой четверти. Чему равен икс, если его синус равен 1/3 ? Не вопрос!

    Вот и готова первая пачка корней:

    х 1 = arcsin 1/3 + 2π n, n ∈ Z

    Разбираемся со вторым углом. В примере с табличным значением 0,5 он был равен:

    π - х

    Так и здесь он будет точно такой же! Только икс другой, arcsin 1/3. Ну и что!? Можно смело записывать вторую пачку корней:

    х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

    Это совершенно правильный ответ. Хотя и выглядит не очень привычно. Зато понятно, надеюсь.)

    Вот так решаются тригонометрические уравнения с помощью круга. Этот путь нагляден и понятен. Именно он спасает в тригонометрических уравнениях с отбором корней на заданном интервале, в тригонометрических неравенствах - те вообще решаются практически всегда по кругу. Короче, в любых заданиях, которые чуть сложнее стандартных.

    Применим знания на практике?)

    Решить тригонометрические уравнения:

    Сначала попроще, прямо по этому уроку.

    Теперь посложнее.

    Подсказка: здесь придётся поразмышлять над кругом. Лично.)

    А теперь внешне простенькие... Их ещё частными случаями называют.

    sinx = 0

    sinx = 1

    cosx = 0

    cosx = -1

    Подсказка: здесь надо сообразить по кругу, где две серии ответов, а где одна... И как вместо двух серий ответов записать одну. Да так, чтобы ни один корень из бесконечного количества не потерялся!)

    Ну и совсем простые):

    sinx = 0,3

    cosx = π

    tgx = 1,2

    ctgx = 3,7

    Подсказка: здесь надо знать, что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс? Самые простые определения. Зато вспоминать никаких табличных значений не надо!)

    Ответы, разумеется, в беспорядке):

    х 1 = arcsin0,3 + 2π n, n ∈ Z
    х 2 = π - arcsin0,3 + 2

    Не всё получается? Бывает. Прочтите урок ещё раз. Только вдумчиво (есть такое устаревшее слово...) И по ссылкам походите. Главные ссылки - про круг. Без него в тригонометрии - как дорогу переходить с завязанными глазами. Иногда получается.)

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.