Содержание:
ВВЕДЕНИЕ………………………………………………………… ………….……….4
1. Требования к турбинным маслам……………………………………………….….6
2.Композиции турбинных масел………………………………………………………6
3.Турбинные смазочные материалы…………………………… ……………………..8
4.Мониторинг и техническое обслуживание турбинных масел………….………..14
5.Срок службы масел для паровых турбин……………………………… ……….…15
6.Масла для газовых турбин – применение и требование……………………...…..16
Заключение…………………………………………………… ……………………….19
Библиографический список……………………………………………………….…. 20

Введение.
Паровые турбины существуют уже более 90 лет. Они представляют собой двигатели с вращающими элементами, которые превращают энергию пара в механическую работу в одну или несколько ступеней. Паровая турбина обычно связана с приводно машиной, чаще всего через коробку передач.

Рис.1 Паровая турбина ЛМЗ
Температура пара может достигать 560 °С, а давление находится в пределах от 130 до 240 атм. Повышение эффективности за счет повышения температуры и давления пара является фундаментальным фактором при совершенствовании паровых турбин. Однако высокие температуры и давления повышают требования к смазочным материалам, применяемым для смазки турбин. Изначально турбинные масла изготавливались без присадок и не могли удовлетворить этим требованиям. Поэтому уже около 50 лет в паровых турбинах применяются масла с присадками. Такие турбинные масла содержат ингибиторы окисления и антикоррозийные агенты и при условии соблюдения некоторых специфических правил обеспечивают высокую надежность. Современные турбинные масла также содержат небольшое количество противозадирных и противоизносных присадок, которые защищают смазываемые узлы от износа. Паровые турбины применяются на электростанциях для привода электрогенераторов. На обычных электростанциях их выходная мощность составляет 700-1000 МВт, тогда как на атомных электростанциях эта цифра составляет около 1300 МВт.

Рис.2.Схема газотурбинной электростанции комбинированного цикла.

1.Требования к турбинным маслам.
Требование к турбинным маслам определяются собственно турбинами и специфическими условиями их эксплуатации. Масло в системах смазки и управления паровых и газовых турбин должно выполнять следующие функции:
- гидродинамической смазки всех подшипников и каробок передач;
- рассеивания тепла;
- функциональной жидкости для контуров управления и безопасности;
- предупреждения возникновения трения и износа ножек зубьев в коробках передач турбин при ударных ритмах работы турбин.
Нарду с этим механика – динамическими требованиями турбинные масла должны обладать следующими физика – химическими характеристиками:
- стойкостью к старению при длительной эксплуатации;
- гидролитической стабильностью (особенно если применяются присадки);
- антикоррозийными свойствами даже в присутствии воды/пара, конденсата;
- надёжным водоотделением (паров и выделением конденсированной воды);
- быстрым деаэрированием – низким вспениванием;
- хорошей фильтруемостью и высокой степенью чистоты.

Только тщательно подобранные базовые масла, содержащие специальные присадки, могут удовлетворять этим строгим требованиям к смазочным материалам для паровых и газовых трубин.

2.Композиции турбинных масел.
Современные смазочные материалы для турбин содержит специальные парафиновые масла с хорошими вязкостно – температурными характеристиками, а также антиоксиданты и ингибиторы коррозии. Если турбины с зубчатыми коробками передач нуждаются в высокой степени несущей способности (например: ступень отказа при испытании на шестереночном стенде FZG не ниже 8DIN 51 354-2, то в масло вводят противозадирные присадки.
В настоящее время турбинные базовые масла получают исключительно экстракцией и гидрированием. Такие операции, как очистка и последующая гидроочистка под высоким давлением, в значительной степени определяют и влияют на такие характеристики, как окислительная стабильность, вододеление, деаэрация и ценообразование. Это особенно справедливо в отношении вододеления и деаэрации, так как эти свойства не могут быть существенно улучшены с помощью присадок. Турбинные масла, как правило, получают из специальных парафиновых фракций базовых масел.
В турбинные масла для улучшения их окислительной стабильности вводят фенольные антиоксиданты в сочетании с аминными антиоксидантами. Для улучшения антикоррозионных свойств применяют не эмульгируемые антикоррозийные агенты и пассиваторы цветных металлов. Загрязнение водой или водяным паром не оказывают вредного влияния, так как эти вещества остаются во взвешенном состоянии. При применении стандартных турбинных масел в турбинах с зубчатой коробкой передач в масла вводят небольшие концентрации термически стойких и стойких к окислению противозадирных/ противоизносных присадок с длительным сроком службы (фосфорорганические и/или сернистые соединения). Кроме того, в турбинных маслах применяют не содержащие силиконов антипенные и депрессорные присадки.
Следует обратить пристальное внимание на полное исключение силиконов в антипенной присадке. Кроме того, эти присадки не должны отрицательно влиять на деаэрационные характеристики (очень чувствительные) масла. Присадки не должны содержать золы (например, не содержать цинка). Чистота турбинного масла в резервуарах в соответствии с ISO 4406 должна быть в пределах 15/12. Необходимо полностью исключить контакты турбинного масла и различных контуров, проводов, кабелей, изоляционных материалов, содержащих силиконы (строго соблюдать при производстве и применении).
3.Турбинные смазочные материалы.
Для газовых и паровых турбин обычно в качестве смазочных материалов применяются специальные парафиновые минеральные масла. Они служат для защиты подшипников вала турбины и генератора, а также коробки передач в соответствующих конструкциях. Эти масла также могут применяться в качестве гидравлической жидкости в системах управления и безопасности. В гидравлических системах, эксплуатируемых под давлением около 40 атм (если имеются раздельные контуры для смазочного масла и масла для регулирования, так называемые спиральные контурные системы) обычно применяются огнестойкие синтетические жидкости типа HDF-R . В 2001 г. был пересмотрен DIN 51 515 под названием «Смазочные и управляющие жидкости для турбин» (часть 1-L-TD официальный сервис, спецификации), а новые так называемые высокотемпературные турбинные масла описаны в DIN 1515, часть 2 (часть 2-L-TG смазочные материалы и управляющие жидкости для турбин - для высокотемпературных условий эксплуатации, спецификации). Следующий стандарт - ISO 6743, часть 5, семейство Т (турбины), классификация турбинных масел; последний вариант стандарта DIN 51 515, опубликованный в 2001/2004 гг., содержит классификацию турбинных масел, которая приведена в табл. 1.

Таблица 1. DIN 51515 классификация турбинных масел.

Требования, выдвигаемые в DIN 51 515-1 - масла для паровых турбин и DIN 51 515-2 - высокотемпературные турбинные масла, приведены в табл. 2 .
Таблица 2. Высокотемпературные турбинные масла.

Испытания
Предельные значения
Сопоставимы с ISO* стандартами
Группа смазочных масел
TD32
TD46
TD68
TD 100
Класс вязкости по ISO1)
ISO
VG32
ISO VG46
ISO VG 68
ISO VG100

DIN 51 519

ISO 3448
Кинематическая вязкость: при 40°С

Минимальная, мм2/с

Максимальная, мм2/с


DIN 51 562-1 или DIN51
562-2 или DIN EN ISO 3104

ISO 3104

41,441,4

90,0
110

110

Температура вспышки, минимальная, °С
160
185
205
215

DIN ISO 2592

ISO 2592
Деаэрационные свойства при 50°С максимальные, мин.

5

5

6
Не нормируется

DIN 51 381

_
Плотность при 15°С, максимальная, г/мл


DIN 51 757 или DIN EN ISO 3675

ISO 3675
Температура застывания, максимальная, °С

?-6

?-6

?-6

?-6

DIN ISO 3016

ISO 3016
Кислотное число,мг КОН/г
Должно быть указано поставщиком
DIN 51558, часть 1
ISO 6618
Зольность (оксидная зола) %масс.
Должно быть указано поставщиком
DIN EN ISO 6245
ISO 6245
Содержание воды, максимальное, мг/кг

150
DIN 51 777-1
ISO/D1S 12 937
Уровень чистоты, минимальный

20/17/14
DIN ISO 5884с DIN ISO 4406
ISO 5884 с ISO 4406
Водоотделение (после обработки паром), максимальное, с

300

300

300

300
4 51 589, часть 1
-
Медная коррозия, максимальная Коррозионная агрессивность (3 ч при 100°С)

2-100 A3


DIN EN ISO 2160

ISO 2160
Защита от коррозии стали, максимальная

Отсутствие ржавчины

DIN 51 585

ISO 7120
Стойкость к окислению (TOST)3) Время в часах до достижения дельта NZ 2,0 мг КОН/г

2000

2000

1500

1000

DIN 51 587

ISO 4263
Ступень 1 при 24°С, максимально, мл

450/0

ISO 6247

Ступень II при
93°С, максимально, мл

100/0
Ступень III при 24°С после 93°С, максимально, мл

450/0

ISO 6247


*) Международная организация стандартизации
1)Средняя вязкость при 40 °С в мм2/с.
2) Образец масла должен храниться без контакта со светом перед испытанием.
3) Испытание на стойкость к окислению должно проводиться по типовой методике, в связи с продолжительностью испытания.
4) Температура испытания составляет 25 °С и должна быть указана поставщиком, если потребителю нужны значения при низких температурах.
Приложение А (нормативное) для турбинных масел с противозадирными присадками. Если поставщик турбинного масла также поставляет набор турбинных зубчатых передач, то масло должно выдерживать минимум восьмую ступень нагрузки по DIN 51 345, часть 1 и часть 2 (FZG).

Рис.3 Принцип работы газовой турбины.
Атмосферный воздух поступает в воздухозаборник 1 через систему фильтров и подается на вход многоступенчатого осевого компрессора 2. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания 3 , куда через форсунки подается и определенное количество газового топлива. Воздух и топливо перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины 4. Часть полученной энергии расходуется на сжатие воздуха в компрессоре 2 турбины. Остальная часть работы передаётся на электрический генератор через ось привода 7. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт 5 и диффузор турбины 6, и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Таблица 3. ISO 6743-5 Классификация турбинных смазочных масел в сочетании с ISO/CD 8068

Рис. 4 Турбины компании «Siemens».
Спецификация согласно ISO 6743-5 и в соответствии с ISO CD 8086 «Смазочные материалы. Индустриальные масла и родственные им продукты (класс L)- Семейство T (турбинные масла), ISO-L-Т все еще находится в стадии рассмотрения»(2003).
4.Мониторинг и техническое обслуживание турбинных масел.
В нормальных условиях вполне достаточно производить мониторинг масла с интервалом в 1 год. Как правило, эта процедура осуществляется в лабораториях производителя. Кроме того, необходима еженедельная визуальная проверка для своевременного обнаружения и удаления загрязняющих масло примесей. Наиболее надежным методом является фильтрование масла с помощью центрифуги в байпасном контуре. При эксплуатации турбины следует учитывать загрязнение окружающего турбину воздуха газами и другими частицами. Такой метод, как подпитка утраченного масла (освежение уровней содержания присадок), заслуживает внимания. Фильтры, сита, а также такие параметры, как температура и уровень масла, должны проверяться регулярно. В случае продолжительного простоя (более двух месяцев) масло следует ежедневно рециркулировать, а также регулярно проверять содержание воды в нем.
Контроль отработанных:
- огнестойких жидкостей в турбинах;
- отработанных смазочных масел в турбинах;
- отработанных масел в турбинах, осуществляют в лаборатории поставщика масла.
5.Срок службы масел для паровых турбин.
Обычный срок службы паровых турбин составляет 100 000 ч. Однако уровень антиоксиданта снижается до 20-40% от уровня в свежем масле (окисление, старение). Срок жизни турбины в значительной степени зависит от качества турбинного базового масла, условий эксплуатации - температуры и давления, скоости циркуляции масла, фильтрации и качества технического обслуживания и, наконец, от количеств подпитанного свежего масла (это помогает поддерживать адекватные уровни присадок). Температура масла в турбине зависит от нагрузки на подшипники, размеров подшипников и скорости течения масла. Радиационная теплота может также быть важным параметром. Фактор циркуляции масла, т. е. отношение между объемом потока h-1 и объемом емкости с маслом, должен быть в пределах от 8 до 12 ч-1. Такой относительно низкий фактор циркуляции масла обеспечивает эффективное разделение газообразных, жидких и твердых загрязнителей, тогда как воздух и другие газы могут быть выпущены в атмосферу. Кроме того, низкие факторы циркуляции снижают термические нагрузки на масло (в минеральных маслах скорость окисления увеличивается вдвое при повышении температуры на 8-10 К). Во время эксплуатации турбинные масла подвергаются значительному обогащению кислородом. Турбинные смазочные материалы испытывают воздействие воздуха в ряде точек вокруг турбины. Температуры подшипников могут контролироваться с помощью термоэлементов. Они очень высоки и могут достигать 100 °С, а в смазочном зазоре даже выше. Температура подшипников может достигать 200 °С при локальном перегреве. Такие условия могут встречаться только в больших объемах масла и при высокой скорости циркуляции. Температура масла, сливаемого с подшипников скольжения, обычно находится в пределах 70-75 °С, а температура масла в баке может достигать 60-65 °С в зависимости от фактора циркуляции масла. Масло остается в баке в течение 5-8 мин. За это время воздух, увлеченный потоком масла, деаэрируется, твердые загрязнители выпадают в осадок и их выделяют. Если температура в баке выше, то компоненты присадок с более высоким давлением насыщенных паров могут испариться. Проблема испарения усложняется при установке устройств экстракции паров. Максимальная температура подшипников скольжения ограничивается пороговыми температурами вкладышей подшипников из белого металла. Эти температуры составляют около 120 °С. В настоящее время разрабатывают вкладыш подшипников из металлов, менее чувствительных к высоким температурам.
6.Масла для газовых турбин – применение и требование.
Газотурбинные масла применяются в стационарных турбинах, используемых для выработки электроэнергии или тепловой энергии. Компрессорные воздуховки нагнетают давление газа, который подается в камеры сгорания, до 30 атм. Температуры сгорания зависят от типа турбины и могут достигать 1000 °С (обычно 800-900 °С). Температуры выхлопных газов обычно колеблются около 400-500 °С. Газовые турбины с мощностью до 250 МВт применяются в городских и пригородных системах парового отопления, в бумагоделательной и химической промышленности. Преимущества газовых турбин заключаются в их компактности, быстроте запуска (<10 минут), атакже в малом расходе масла и воды. Масла для паровых турбин на базе минеральных масел применяются для обычных газовых турбин. Однако следует помнить о том, что температура некоторых подшипников в газовых турбинах выше, чем в паровых турбинах, поэтому возможно преждевременное старение масла. Кроме того, вокруг некоторых подшипников могут образовываться «горячие участки», где локальные температуры достигают 200-280 °С, при этом температура масла в баке сохраняется на уровне порядка 70-90 °С (горячий воздух и горячие газы могут ускорить процесс старения масла). Температура масла, поступающего в подшипник, чаще всего бывает в пределах 50- 55 °С, а температура на выходе из подшипника достигает 70-75 °С. В связи с тем, что объем газотурбинных масел обычно меньше, чем объем масел в паровых турбинах, а скорость циркуляции выше, их срок службы несколько короче. Объем масла для электрогенератора мощностью 40-60 МВт («General Electric») составляет приблизительно 600-700 л, а срок службы масла - 20 000-30 000 ч. Для этих областей применения рекомендуются полусинтетические турбинные масла (специально гидроочищенные базовые масла) - так называемые масла группы III - или полностью синтетические масла на базе синтетических ПАО. В гражданской и военной авиации газовые турбины применяются в качестве тяговых двигателей. Так как в этих турбинах температура очень высокая, для их смазки применяют специальные маловязкие (ISO VG10, 22) синтетические масла на базе насыщенных сложных эфиров (например, масла на базе сложных эфиров полиолов). Эти синтетические сложные эфиры, применяемые для смазки авиационных двигателей или турбин, имеют высокий индекс вязкости, хорошую термическую стойкость, окислительную стабильность и превосходные низкотемпературные характеристики. Некоторые из этих масел содержат присадки. Их температура застывания находится в пределах от -50 до -60 °С. И, наконец, эти масла должны отвечать всем требованиям военных и гражданских спецификаций на масла для авиационных двигателей. Смазочные масла для турбин самолетов в некоторых случаях могут также применяться для смазки вертолетных, судовых, стационарных и индустриальных турбин. Применяются также авиационные турбинные масла, содержащие специальные нафтеновые базовые масла (ISO VG 15-32) с хорошими низкотемпературными характеристиками.

Рис. 5 Газовая турбина компании « General Elektrik» отправляется заказчику.

Заключение.
Турбинные масла предназначены для смазывания и охлаждения подшипников различных турбоагрегатов: паровых и газовых турбин, гидротурбин, турбокомпрессорных машин. Эти же масла используют в качестве рабочих жидкостей в системах регулирования турбоагрегатов, а также в циркуляционных и гидравлических системах различных промышленных механизмов.Несмотря на различия в условиях применения автомобильные и авиационные бензины характеризуются в основном общими показателями качества, определяющими их физико-химические и эксплуатационные свойства.
Турбинные масла должны обладать хорошей стабильностью против окисления, не выделять при длительной работе осадков, не образовывать стойкой эмульсии с водой, которая может проникать в смазочную систему при эксплуатации, защищать поверхность стальных деталей от коррозионного воздействия. Перечисленные эксплуатационные свойства достигаются использованием высококачественных нефтей, применением глубокой очистки при переработке и введением композиций присадок, улучшающих антиокислительные, деэмульгирующие, антикоррозионные, а в некоторых случаях противоизносные свойства масел.
Согласно правилам технической эксплуатации электрических станций и сетей Российской Федерации (РД 34.20.501-95 РАО "ЕЭС России") нефтяное турбинное масло в паровых турбинах, питательных электро- и турбонасосах должно удовлетворять следующим нормам: кислотное число не более 0,3 мг КОН/г; отсутствие воды, видимого шлама и механических примесей; отсутствие растворенного шлама; показатели масла после окисления по методу ГОСТ 981-75: кислотное число не более 0,8 мг КОН/г, массовая доля осадка не более 0,15 %.
В то же время согласно инструкции по эксплуатации нефтяных турбинных масел (РД 34.43.102-96 РАО "ЕЭС России"), применя
и т.д.................

Эксплуатация турбинных масел со временем приводит к его старению. Это неизбежный процесс, ведь данным маслам приходится работать в достаточно тяжелых условиях, поскольку масляные системы турбогенераторов находятся под постоянным воздействием целого ряда неблагоприятных факторов.

Факторы, воздействующие на турбинное масло

Влияние высоких температур

При нагреве масла в присутствии воздуха происходит усиленное окисление нефтепродукта. Параллельно изменяются также и другие характеристики масел. Испарение легкокипящих фракций приводит к увеличению вязкости, уменьшению температуры вспышки, ухудшению деэмульсионной способности и т.д. Наибольший нагрев турбинных масел наблюдается в подшипниках турбины (от 35-40 до 50-55 ºС). Нагрев масла происходит за счет трения в масляном слое подшипника и частично за счет передачи тепла по валу от более нагретых частей.

Чтобы получить представление о текущей температуре подшипника производят замер температуры масла в сливной линии. Но даже относительно низкая температура не исключает местного перегрева масла за счет несовершенства конструкции подшипника, его некачественного изготовления или неправильной сборки. Местные перегревы приводят к ускоренному старению турбинных масел, что является следствием резкого возрастания окисляемости из-за увеличения температуры выше 75-80 ºС.

Также масло может нагреваться в картерах подшипников и системах регулирования.

Разбрызгивание масла

К разбрызгиванию масла приводит наличие в составе паровых турбин таких составных частей, как зубчатые колеса, муфты, уступы, гребни на валу, заточки вала, регулятор скорости и т.п. При этом масло распыляется в кратерах подшипников и колонках центробежных регуляторов скорости. Такой нефтепродукт имеет большую площадь контакта с воздухом, который практически всегда присутствует в картере. В результате происходит смешивание масла с кислородом и последующее окисление нефтепродукта. Интенсифицирует данный процесс большая скорость частиц турбинного масла относительно воздуха.

Воздух в картерах подшипников появляется из-за несколько пониженного местного давления за счет подсасывания в зазор по валу.

Наибольшая интенсивность разбрызгивания масла наблюдается у подвижных муфт с принудительной смазкой. Поэтому с целью уменьшения окисляемости масел муфты окружают металлическими кожухами, которые ограничивают разбрызгивание масла.

Влияние воздуха, содержащегося в масле

Воздух может пребывать в турбинном масле в виде пузырьков различного размера, а также в растворенном состоянии. Попадает он туда за счет захвата в местах наиболее интенсивного перемешивания масла с воздухом, а также в сливных маслопроводах, где не наблюдается заполнение маслом всего сечения трубы.

При прохождении воздухсодержащего масла через главный масляный насос воздушные пузырьки быстро сжимаются. В крупных образованиях температура резко возрастает. Поскольку сжатие происходит очень быстро, воздух не успевает отдать тепло окружающей среде – процесс является, по сути, адиабатическим. Тепла выделяется очень мало и сам процесс выделения длится быстро. Однако, даже этого достаточно для существенного ускорения процесса окисления турбинного масла. После прохождения через насос происходит постепенное растворение сжатых пузырьков, а также переход в масло примесей, содержащихся в воздухе – пыли, золы, водяного пара и т.п. В результате нефтепродукт загрязняется и обводняется.

Старения масла из-за содержащегося в нем воздуха наиболее заметно в крупных турбинах, что объясняется большим давлением масла после главного маслонасоса.

Влияние воды и конденсационного пара

В турбинах старых конструкций основным источником обводнения масла является пар, выбивающийся из лабиринтовых уплотнений и подсасывающийся в корпус подшипника. Также обводнение может возникать вследствие неисправности парозапорной арматуры вспомогательного турбомаслонасоса. Также вода может попадать в масло из воздуха в результате конденсации и через маслоохладители.

Наиболее опасным считается обводнение масла после контакта с горячим паром. При этом нефтепродукт не только вбирает влагу, но еще и нагревается, что приводит к ускорению процесса его старения.

Наличие воды способствует образованию шлама. При попадании в линию смазки подшипников он может закупоривать отверстия в дозирующих шайбах, установленных на нагнетательных линиях. Это чревато перегревом или даже выплавлением подшипника. Проникновение шлама в систему регулирования нарушает нормальную работу золотников, букс и других элементов турбины.

Также в результате контакта турбинного масла с горячим паром образуется масловодяная эмульсия. Она может попадать в систему смазки и регулирования, резко ухудшая качество их работы.

Влияние металлических поверхностей

При циркуляции по маслосистеме турбинное масло практически всегда контактирует с различными металлами: сталью, чугуном, баббитом, бронзой, что также способствует окислению. При воздействии на металлические поверхности кислот образуются продукты коррозии, которые могут попадать в масло. Также некоторые металлы могут обладать каталитическим воздействием на процессы окисления нефтепродуктов.

Перечисленные выше факторы как по отдельности, так и все вместе вызывают старение турбинных масел. Под старением обычно понимается изменение физико-химических свойств в сторону ухудшения эксплуатационных качеств.

Признаками старения турбинных масел в процессе эксплуатации можно считать:

  1. увеличение вязкости;
  2. увеличение кислотного числа;
  3. снижение температуры вспышки;
  4. появление кислотной реакции водной вытяжки;
  5. появление шлама и механических примесей;
  6. уменьшение прозрачности.

Но наличие даже всех перечисленных признаков еще не означает, что турбинное масло не годно к эксплуатации.

Для использования в паровых турбинах допускаются нефтепродукты, отвечающие следующим требованиям :

  1. кислотное число не превыша­ет 0,5 мг КОН на 1 г масла;
  2. вязкость масла не отличается от первоначальной более чем на 25%;
  3. температура вспышки понизи­лась не более чем на 10°С от пер­воначальной;
  4. реакция водной вытяжки – нейтральная;
  5. масло прозрачно и не содер­жит воды и шлама.

Если один из параметров или характеристика масла не соответствует нормированному значению и не подлежит восстановлению, то такой продукт нужно заменить в кратчайшие сроки.

Установки для очистки турбинных масел

Как мы убедились выше, старение турбинного масла может привести к целому ряду негативных последствий. Выход из строя турбин, их простаивание и ремонт обходятся очень дорого. Да и само турбинное масло – продукт недешевый. Поэтому целесообразно вкладывать деньги в мероприятия, направленные на замедление процессов старения и восстановления свойств масел, уже побывавших в эксплуатации.

Установка СММ-4Т

На практике для решения таких задач компании GlobeCore . С помощью данного оборудования проводится комплексная очистка турбинных масел от воды и различных примесей. Системы очистки могут работать в режимах фильтрации и нагрева, а также фильтрации, осушки и дегазации масла. Результатом обработки является улучшение эксплуатационных характеристик турбинных масел до нормированных значений и существенное продление срока их службы.