Определение 2

Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

Рисунок 1. Вписанная окружность

Теорема 1 (об окружности, вписанной в треугольник)

Теорема 1

В любой треугольник можно вписать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Существование: Проведем окружность с центром в точке $O$ и радиусом $OK.\ $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M\ и\ L$. Так как $OM,OK\ и\ OL$ - перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O"$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

Приведем еще несколько фактов, связанных с понятием вписанной окружности:

    Не во всякий четырехугольник можно вписать окружность.

    В любом описанном четырехугольнике суммы противоположных сторон равны.

    Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Определение 3

Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

Определение 4

Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

Рисунок 3. Описанная окружность

Теорема 2 (об окружности, описанной около треугольника)

Теорема 2

Около любого треугольника можно описать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

Рисунок 4. Иллюстрация теоремы 2

Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O"$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

Приведем еще несколько фактов, связанных с понятием описанной окружности:

    Около четырехугольника не всегда можно описать окружность.

    В любом вписанном четырехугольнике сумма противоположных углов равна ${180}^0$.

    Если сумма противоположных углов четырехугольника равна ${180}^0$, то около него можно описать окружность.

Пример задачи на понятия вписанной и описанной окружности

Пример 1

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

Рисунок 5.

Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора ${BM}^2={BC}^2-{MC}^2,\ BM=\sqrt{{BC}^2-\frac{{AC}^2}{4}}=\sqrt{25-16}=\sqrt{9}=3$. $OM=OH=r$ -- искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4\ см$. Следовательно, $BH=5-4=1\ см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

\[{(3-r)}^2=r^2+1\] \ \ \

Ответ: $\frac{4}{3}$.

И круг - геометрические фигуры, взаимосвязанные между собой. есть граничная ломаная линия (кривая) круга ,

Определение. Окружность - замкнутая кривая, каждая точка которой равноудалена от точки, называемой центром окружности.

Для построения окружности выбирается произвольная точка О, принятая за центр окружности, и с помощью циркуля проводится замкнутая линия.

Если точку О центра окружности соединить с произвольными точками на окружности, то все полученные отрезки будут между собой равны, и называются такие отрезки радиусами, сокращенно обозначаются латинской маленькой или большой буквой «эр» (r или R ). Радиусов в окружности можно провести столько же, сколько точек имеет длина окружности.

Отрезок, соединяющий две точки окружности и проходящий через ее центр, называется диаметром. Диаметр состоит из двух радиусов , лежащих на одной прямой. Диаметр обозначается латинской маленькой или большой буквой «дэ» (d или D ).

Правило. Диаметр окружности равен двум ее радиусам .

d = 2r
D = 2R

Длина окружности вычисляется по формуле и зависит от радиуса (диаметра) окружности. В формуле присутствует число ¶, которое показывает во сколько раз длина окружности больше, чем ее диаметр. Число ¶ имеет бесконечное число знаков после запятой. Для вычислений принято ¶ = 3,14.

Длина окружности обозначается латинской большой буквой «цэ» (C ). Длина окружности пропорциональна ее диаметру. Формулы для расчета длины окружности по ее радиусу и диаметру:

C = ¶d
C = 2¶r

  • Примеры
  • Дано: d = 100 см.
  • Длина окружности: C = 3,14 * 100 см = 314 см
  • Дано: d = 25 мм.
  • Длина окружности: С = 2 * 3,14 * 25 = 157 мм

Секущая окружности и дуга окружности

Всякая секущая (прямая линия) пересекает окружность в двух точках и делит ее на две дуги. Величина дуги окружности зависит от расстояния между центром и секущей и измеряется по замкнутой кривой от первой точки пересечения секущей с окружностью до второй.

Дуги окружности делятся секущей на большую и малую, если секущая не совпадает с диаметром, и на две равные дуги, если секущая проходит по диаметру окружности.

Если секущая проходит через центр окружности, то ее отрезок, расположенный между точками пересечения с окружностью, есть диаметр окружности, или самая большая хорда окружности.

Чем дальше секущая расположена от центра окружности, тем меньше градусная мера меньшей дуги окружности и больше - большей дуги окружности, а отрезок секущей, называемый хордой , уменьшается по мере удаления секущей от центра окружности.

Определение. Кругом называется часть плоскости, лежащая внутри окружности.

Центр, радиус, диаметр окружности являются одновременно центром, радиусом и диаметром соответствующего круга.

Так как круг - это часть плоскости, то одним из его параметров является площадь.

Правило. Площадь круга (S ) равна произведению квадрата радиуса (r 2 ) на число ¶.

  • Примеры
  • Дано: r = 100 см
  • Площадь круга:
  • S = 3,14 * 100 см * 100 см = 31 400 см 2 ≈ 3м 2
  • Дано: d = 50 мм
  • Площадь круга:
  • S = ¼ * 3,14 * 50 мм * 50 мм = 1 963 мм 2 ≈ 20 см 2

Если в круге провести два радиуса к разным точкам окружности, то образуется две части круга, которые называется секторами . Если в круге провести хорду, то часть плоскости между дугой и хордой называется сегментом окружности .

Определение. Окружностью называется множество всех точек плоскости, для которых расстояние от данной точки, называемой центром окружности, есть величина постоянная, называемая радиусом окружности.

Выведем уравнение окружности. Пусть точка  произвольная точка окружности радиуса . Введем прямоугольную систему координат, у которой начало совпадает с центром окружности. В этом случае точкаимеет координаты
. По определению окружности
. Учитывая, что
, получим
, или

. (1.27)

Выражение (1.27) называется уравнением окружности с центром в точке
и радиуса.

Покажем, что любая точка, координаты которой удовлетворяют уравнению (1.27), принадлежит окружности с центром в точке
и радиуса.

Пусть координаты точки
удовлетворяют уравнению (1.27). Тогда, т. е.
является точкой окружности.

С учетом формулы преобразования прямоугольных координат точки при параллельном переносе осей получим уравнение окружности с центром в точке
и радиуса:

П р и м е р 13. Составить уравнение окружности, проходящей через начало координат, центр которой находится на одинаковом расстоянии от параллельных прямых
и
.

Решение. Для того чтобы составить уравнение окружности вида , необходимо найти координаты
ее центра
и радиус. Искомая окружность касается прямых
и
, поэтому радиусравен половине расстояниямежду этими прямыми. Расстояние между параллельными прямыми равно расстоянию от произвольной точки одной прямой до другой прямой. На прямой, задаваемой уравнением
, возьмем произвольную точку
, тогда
. По формуле (1.15) имеем:
. Таким образом,
. Центр окружности равноудален от заданных прямых, поэтому координаты
ее центра
должны удовлетворять равенству
, т. е.
. Известно, что окружность проходит через начало координат, поэтому. Получили систему уравнений относительно координат центра
окружности:
. Ее решениями будут
. Итак, существует два уравнения, удовлетворяющих условиям задачи:
.

1.12. Эллипс

Определение. Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Выберем прямоугольную систему координат таким образом, чтобы ось абсцисс проходила через фокусы и, а начало координат
совпадало с серединой отрезка
. Обозначим
,
,
, где, фокальные радиусы (расстояния от точки до фокусов) точки эллипса. Тогда фокусы иимеют координаты
,
.

Пусть
 произвольная точка эллипса. Имеем:
,
. Из определения эллипса

, (1.29)

или  искомое уравнение эллипса, которое неудобно для использования. Из последнего равенства следует, что .Так как
, то можем обе части уравнения возвести в квадрат и после эквивалентных преобразований получим:
. Следовательно,. Введем новую переменную
. Имеем:
. Из этого равенства следует, что

. (1.30)

Уравнение (1.30) называется каноническим (простейшим) уравнением эллипса. Это уравнение является уравнением второго порядка. Таким образом, любая точка эллипса, удовлетворяющая уравнению (1.29), удовлетворяет и уравнению (1.30). Докажем, что все точки плоскости, координаты которых удовлетворяют уравнению (1.30), являются точками эллипса, т. е. их координаты удовлетворяют уравнению (1.29).

Для фокального радиуса выполняется соотношение
. Из уравнения (1.30) имеем:
. Поэтому
, или
. Аналогично находим, что
. Следовательно,
.

Эллипс симметричен относительно координатных осей, так как содержит только четные степени и, и относительно начала координат. Оси симметрии эллипса называются его осями, а центр симметрии центром эллипса.

Эллипс пересекает координатные оси в точках
,
,
,
. Эти точки называются вершинами эллипса. При
эллипс вырождается в окружность радиусоми центром в начале координат. Вершины эллипса ограничивают на осях отрезки длиной
и
, причем
(это следует из того, что
).

Величины иназываются большой и малой полуосями эллипса, оси эллипса соответственно большой и малой осью.

Определение. Эксцентриситетом эллипса называется отношение, где половина расстояния между фокусами,  большая полуось, т. е.

. (1.31)

Учитывая, что
, получим
. Так как

, то
. Если
, т. е. эллипс приближается к окружности, то
. Если
, ак нулю не стремится, то эллипс вытянут вдоль большой оси. Таким образом, эксцентриситет эллипса характеризует меру его вытянутости вдоль большой оси.

Если фокусы эллипса
и
расположены на оси ординат, то в этом случае
и большой является полуось. Уравнение эллипса также имеет вид (1.30), но
, а его эксцентриситет вычисляется по формуле
.

П р и м е р 14. Составить уравнение эллипса, фокусы которого лежат на оси абсцисс симметрично относительно начала координат, зная, что расстояние между его фокусами
и эксцентриситет
.

Решение. Половина расстояния между фокусами
. Фокусы эллипса расположены на оси абсцисс, поэтому большой полуосью является. Из (1.31) следует, что
. Тогда. Таким образом, уравнение эллипса имеет вид
.

П р и м е р 15. Дан эллипс
. Найти его полуоси, фокусы, эксцентриситет.

Решение. Приведем уравнение эллипса к каноническому виду. Для этого обе части уравнения разделим на 45, получим
. Таким образом, его полуось
,
. Большой полуосью является полуось, поэтому фокусы эллипса расположены на оси ординат и

, следовательно, фокусы находятся в точках
и
. Эксцентриситет эллипса равен отношению половины расстояния между фокусами к большой полуоси, т. е.
.

П р и м е р 16. Вычислить площадь четырехугольника
, две вершиныикоторого лежат в фокусах эллипса
, две другиеи
совпадают с концами его малой оси.

Решение. Каноническое уравнение эллипса имеет вид
, поэтому
,
. Следовательно, вершины четырехугольникаи
имеют соответственно координаты
и
. Найдем координаты вершини. Так как
, то
,
. Полученный четырехугольник симметричен относительно координатных осей и относительно начала координат, следовательно,

.

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

  • В прямоугольной системе координат уравнение окружности радиуса r с центром в точке C (x о;y о) имеет вид:
(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2

Что такое единичная окружность . Единичная окружность -- это окружность с радиусом, равным 1, и с центром в начале координат. Вспомните, что уравнение окружности выглядит как x 2 +y 2 =1. Такая окружность может быть использована для нахождения некоторых "особых" тригонометрических соотношений, а также при построении графических изображений. С помощью нее и заключенной в ней линии можно оценивать и численные значения тригонометрических функций.

Запомните 6 тригонометрических соотношений. Помните, что

  • sinθ=противолежащий катет/гипотенуза
  • cosθ=прилежащий катет/гипотенуза
  • tgθ=противолежащий катет/прилежащий катет
  • cosecθ=1/sin
  • secθ=1/cos
  • ctgθ=1/tg.
  • Что такое радиан . Радиан -- одна из мер для определения величины угла. Один радиан -- это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса. Заметьте, что при этом величина и расположение окружности не играют никакой роли. Следует также знать, чему равно число радиан для полной окружности (360 градусов). Вспомните, что длина окружности равна 2πr, что превышает длину радиуса в 2π раза. Поскольку по определению 1 радиан -- это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Умейте перевести радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан=360 градусов
    • 1 радиан=(360/2π) градусов
    • 1 радиан=(180/π) градусов
    • 360 градусов=2π радиан
    • 1 градус=(2π/360) радиан
    • 1 градус=(π/180) радиан
  • Выучите "особые" углы. Эти углы в радианах составляют π/6, π/3, π/4, π/2, π и произведения данных величин (например, 5π/6)

    Изучите и запомните значения тригонометрических функций для особых углов. Для определения их величин вы должны взглянуть на единичную окружность. Вспомните об отрезке известной длины, заключенном в единичной окружности. Точка на окружности соответствует количеству радиан в образованном угле. Например, углу π/2 соответствует точка на окружности, радиус к которой образует с положительным горизонтальным радиусом угол величиной π/2. Для нахождения значения тригонометрической функции какого-либо угла определяются координаты точки, соответствующей этому углу. Гипотенуза всегда равна единице, поскольку она является радиусом круга, и так как любое число, поделенное на 1, равно самому себе, а противоположный катет равен длине вдоль оси Оy, отсюда следует, что значение синуса какого-либо угла -- это координата y соответствующей точки на окружности. Значение косинуса можно найти схожим образом. Косинус равен длине прилежащего катета, деленной на длину гипотенузы; поскольку последняя равна единице, а длина прилежащего катета равна координате x точки на окружности, отсюда следует, что косинус равен значению этой координаты. Найти тангенс немного сложнее. Тангенс угла прямоугольного треугольника равен противолежащему катету, деленному на прилежащий. В данном случае, в отличие от предыдущих, частное не является константой, поэтому вычисления несколько усложняются. Вспомним, что длина противолежащего катета равна координате y, а прилежащего -- координате x точки на единичной окружности; подставив эти значения, получим, что тангенс равен y/x. Поделив 1 на найденные выше значения, можно легко найти соответствующие обратные тригонометрические функции. Таким образом, можно рассчитать все основные тригонометрические функции:

    • sinθ=y
    • cosθ=x
    • tgθ=y/x
    • cosec=1/y
    • sec=1/x
    • ctg=x/y
  • Найдите и запомните значения шести тригонометрических функций для углов, лежащих на координатных осях , то есть углов, кратных π/2, таких как 0, π/2, π, 3π/2, 2π и т. д. Для точек круга, находящихся на координатных осях, это не представляет никаких проблем. Если точка лежит на оси Оx, синус равен нулю, а косинус -- 1 или -1, в зависимости от направления. Если же точка лежит на оси Оy, синус будет равняться 1 или -1, а косинус -- 0.

  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/6. Нанесите угол π/6 на единичную окружность. Вы знаете, как находить длины всех сторон особых прямоугольных треугольников (с углами 30-60-90 и 45-45-90) по известной длине одной из сторон, а поскольку π/6=30 градусов, данный треугольник является одним из особых случаев. Для него, как вы помните, короткий катет равен 1/2 гипотенузы, то есть координата y составляет 1/2, а длинный катет длиннее короткого в √3 раз, то есть равен (√3)/2, так что координата x будет (√3)/2. Таким образом, получаем точку на единичной окружности со следующими координатами: ((√3)/2,1/2). Пользуясь приведенными выше равенствами, находим:

    • sinπ/6=1/2
    • cosπ/6=(√3)/2
    • tgπ/6=1/(√3)
    • cosecπ/6=2
    • secπ/6=2/(√3)
    • ctgπ/6=√3
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/3. Угол π/3 отображается на окружности точкой, у которой координата x равна координате y угла π/6, а координата y такая же, как x для этого угла. Таким образом, точка имеет координаты (1/2, √3/2). В итоге получаем:

    • sinπ/3=(√3)/2
    • cosπ/3=1/2
    • tgπ/3=√3
    • cosecπ/3=2/(√3)
    • secπ/3=2
    • ctgπ/3=1/(√3)
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/4. Длина гипотенузы прямоугольного треугольника с углами 45-45-90 относится к длинам его катетов как √2 к 1, так же будут соотноситься и значения координат точки на единичной окружности. В итоге имеем:

    • sinπ/4=1/(√2)
    • cosπ/4=1/(√2)
    • tgπ/4=1
    • cosecπ/4=√2
    • secπ/4=√2
    • ctgπ/4=1
  • Определите, положительно или отрицательно значение функции. Все углы, принадлежащие одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку (одно быть положительным, второе -- отрицательным).
    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cosec, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.