Сущность логико-вероятностных методов заключается в использовании функций алгебры логики (ФАЛ) для аналитической записи условий работоспособности системы и переходе от ФАЛ к вероятностным функциям (ВФ), объективно выражающим безотказность системы. Т.е. с помощью логико-вероятностного метода можно описать схемы ИС для расчета надежности с помощью аппарата математической логики с последующим использованием теории вероятностей при определении показателей надежности .

Система может находится только в двух состояниях: в состоянии полной работоспособности (у = 1) и в состоянии полного отказа (у = 0). При этом предполагается, что действие системы детерминировано зависит от действия ее элементов, т.е. у является функцией х 1 , х 2 , … , x i , … , x n . Элементы могут находиться также только в двух несовместных состояниях: полной работоспособности (x i = 1) и полного отказа (x i = 0).

Функцию алгебры логики, связывающую состояние элементов с состоянием системы у (х 1 , х 2 ,…, x n ) называют функцией работоспособности системы F (y )= 1.

Для оценки работоспособных состояний системы используют два понятия:

1) кратчайшего пути успешного функционирования (КПУФ), который представляет собой такую конъюнкцию её элементов, ни одну из компонент которой нельзя изъять, не нарушив функционирования системы. Такая конъюнкция записывается в виде следующей ФАЛ:

где i – принадлежит множеству номеров , соответствующих данному
l -му пути.

Другими словами, КПУФ системы описывает одно из её возможных работоспособных состояний, которое определяется минимальным набором работоспособных элементов, абсолютно необходимых для выполнения заданных для системы функций.

2) минимального сечения отказов системы (МСО) представляющего собой такую конъюнкцию из отрицаний её элементов, ни одну из компонент которой нельзя изъять, не нарушив условия неработоспособности системы. Такую конъюнкцию можно записать в виде следующей ФАЛ:

где означает множество номеров, соответствующих данному сечению.

Другими словами, МСО системы описывает один из возможных способов нарушения работоспособности системы с помощью минимального набора отказавших элементов.

Каждая избыточная система имеет конечное число кратчайших путей (l = 1, 2,…, m ) и минимальных сечений (j = 1, 2,…, m ).

Используя эти понятия можно записать условия работоспособности системы.

1) в виде дизъюнкции всех имеющихся кратчайших путей успешного функционирования.

;

2) в виде конъюнкции отрицаний всех МСО

;

Таким образом, условия работоспособности реальной системы можно представить в виде условий работоспособности некоторой эквивалентной (в смысле надежности) системы, структура которой представляет параллельное соединение кратчайших путей успешного функционирования, или другой эквивалентной системы структура которой представляет соединение отрицаний минимальных сечений.

Например, для мостиковой структуры ИС функция работоспособности системы с помощью КПУФ запишется следующим образом:

;

функцию работоспособности этой же системы через МСО можно записать в следующем виде:

При небольшом числе элементов (не более 20) может быть использован табличный метод расчета надежности, который основан на использовании теоремы сложения вероятностей совместных событий.

Вероятность безотказной работы системы можно вычислить по формуле (через вероятностную функцию вида):

Логико-вероятностные методы (методы: разрезания, табличный, ортогонализации) широко применяют в диагностических процедурах при построении деревьев отказов и определении базисных (исходных) событий, вызывающих отказ системы.

Для надежности компьютерной системы со сложной структурой резервирования может быть использован метод статистического моделирования.

Идея метода заключается в генерировании логических переменных x i c заданной вероятностью pi возникновения единицы, которые подставляются в логическую структурную функцию моделируемой системы в произвольной форме и затем вычисляется результат.

Совокупность х 1 , х 2 ,…, х n независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий p (x i ), причем .

Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале

Значение p i выбирается равным вероятности безотказной работы i -й подсистемы. При этом процесс вычисления повторяется N 0 раз с новыми, независимыми случайными значениями аргументов x i (при этом подсчитывается количество N (t ) единичных значений логический структурной функции). Отношение N (t )/N 0 является статистической оценкой вероятности безотказной работы

где N (t ) – количество безотказно работающих до момента времени t объектов, при их исходном количестве.

Генерирование случайных логических переменных x i с заданной вероятностью появления единицы р i осуществляется на основании равномерно распределенных в интервале случайных величин, получаемых с помощью стандартных программ, входящих в математическое обеспечение всех современных компьютеров.

1. Назовите метод оценки надежности ИС, где вероятность безотказной работы системы определяется как Р н ≤Р с ≤Р в .

2. Для расчета надежности каких систем используется метод путей и сечений?

3. С помощью какого метода можно оценить надежность устройств мостикового типа?

4. Какие методы определения показателей надежности восстанавливаемых систем известны?

5. Структурно представьте мостиковую схему набором минимальных путей и сечений.

6. Дайте определение минимального пути и минимального сечения.

7. Запишите функцию работоспособности для устройства с разветвленной структурой?

8. Что называется функцией работоспособности?

9. Что такое кратчайший путь успешного функционирования (КПУФ). Запишите условия работоспособности в виде КПУФ.

10. Где используется логико-вероятностный метод оценки надежности?

Литература: 1, 2, 3, 5, 6, 8.


Тема: Расчет надежности восстанавливаемых систем (метод дифференциальных уравнений)

1. Общие методы расчета надежности восстанавливаемых систем.

2. Построение графа возможных состояний системы для оценки надежности восстанавливаемых систем.

3. Метод систем дифференциальных уравнений (СДУ), правило Колмогорова для составления СДУ

4. Нормировочные и начальные условия для решения СДУ.

Ключевые слова

Восстанавливаемая система, количественные характеристики надежности, граф состояний, работоспособное состояние, система дифференциальных уравнений, правило Колмогорова, вероятность безотказной работы, интенсивность восстановления, интенсивность отказа нормировочные условия, начальные условия, параметры надежности, нерезервированная система.

Основной задачей расчета надежности проектируемых ИС является построение математических моделей адекватных вероятностным процессам их функционирования. Эти модели позволяют оценить степень удовлетворения требований по надежности к проектируемым или эксплуатируемым системам.

Вид математической модели определяет возможность получения расчетных формул. Для проведения расчета надежности восстанавливаемых резервированных и нерезервированных систем используются: метод интегральных уравнений, метод дифференциальных уравнений, метод переходных интенсивностей, метод оценки надежности по графу возможных состояний и др. .

Метод интегральных уравнений . Метод интегральных уравнений является наиболее общим, его можно применять при расчете надежности любых (восстанавливаемых и невосстанавливаемых) систем при любых распределениях ВБР и времени восстановления.

В этом случае для определения показателей надежности системы составляют и решают интегральные и интегро-дифференциальные уравнения, связывающие характеристики распределения ВБР, а для восстанавливаемых систем – и время восстановления элементов.

В ходе составления интегральных уравнений обычно выделяют один или несколько бесконечно малых интервалов времени, для которых рассматривают сложные события, проявляющие при совместном действии нескольких факторов.

В общем случае решения находят численными методами с помощью компьютера. Метод интегральных уравнений не получил широкого распространения из-за трудности решения .

Метод дифференциальных уравнений . Метод применяется для оценки надежности восстанавливаемых объектов и основан на допущении о показательных распределениях времени между отказами (наработки) и времени восстановления. При этом параметр потока отказов w = λ = 1/t cp . и интенсивность восстановления µ = 1/t в , где t cp . – среднее время безотказной работы, t в – среднее время восстановления.

Для применения метода необходимо иметь математическую модель для множества возможных состояний системы S = {S 1 , S 2 ,…, S n }, в которых она может находиться при отказах и восстановлениях системы. Время от времени система S скачком переходит из одного состояния в другое под действием отказов и восстановлений ее отдельных элементов.

При анализе поведения системы во времени в процессе износа удобно пользоваться графом состояний. Граф состояний – это направленный граф, где кружками или прямоугольниками изображают возможные состояния системы. Он содержит столько вершин, сколько различных состояний возможно у объекта или системы. Ребра графа отражают возможные переходы из некоторого состояния во все остальные с параметрами интенсивностей отказов и восстановлений (около стрелок показаны интенсивности переходов).

Каждой комбинации отказовых и работоспособных состояний подсистем соответствует одно состояние системы. Число состояний системы n = 2 k , где k – количество подсистем (элементов).

Связь между вероятностями нахождения системы во всех его возможных состояниях выражается системой дифференциальных уравнений Колмогорова (уравнений первого порядка).

Структура уравнений Колмогорова построена по следующим правилам: в левой части каждого уравнения записывается производная вероятности нахождения объекта в рассматриваемом состоянии (вершине графа), а правая часть содержит столько членов, сколько ребер графа состояний связано с этой вершиной. Если ребро направлено из данной вершины, соответствующий член имеет знак минус, если в данную вершину – знак плюс. Каждый член равен произведению параметра интенсивности отказа (восстановления), связанного с данным ребром, на вероятность нахождения в той вершине графа, из которой исходит ребро.

Система уравнений Колмогорова включает столько уравнений, сколько вершин в графе состояний объекта.

Система дифференциальных уравнений дополняется нормировочным условием:

где P j (t j -м состоянии;

n – число возможных состояний системы.

Решение системы уравнений при конкретных условиях дает значение искомых вероятностей P j (t ).

Все множество возможных состояний системы разбивается на две части: подмножество состояний n 1 , в которых система работоспособна, и подмножество состояний n 2 , в которых система неработоспособна.

Функция готовности системы:

К г ,

где P j (t ) – вероятность нахождения системы в j работоспособном состоянии;

n 1 – число состояний в которых система работоспособна.

Когда необходимо вычислить коэффициент готовности системы или коэффициент простоя (перерывы в работе системы допустимы), рассматривают установившийся режим эксплуатации при t→∞ . При этом все производные и система дифференциальных уравнений переходят в систему алгебраических уравнений, которые легко решаются.

Пример графа состояний нерезервированной восстанавливаемой системы с n – элементами приведен на рис. 1.

Рис. 1. Граф состояний восстанавливаемой системы (штриховкой отмечены неработоспособные состояния)

Рассмотрим возможные состояния в которых может находиться система. Здесь возможны следующие состояния:

S 0 – все элементы работоспособны;

S 1 – первый элемент неработоспособен остальные работоспособны;

S 2 – второй элемент неработоспособен остальные работоспособны;

S n n -й элемент неработоспособен остальные работоспособны.

Вероятность одновременного появления двух неработоспособных элементов пренебрежимо мала. Символами λ 1 , λ 2 ,…, λ n обозначены интенсивности отказов, µ 1 , µ 2 ,…, µ n интенсивности восстановления соответствующих элементов;

По графу состояний (рис. 1) составляют систему дифференциальных уравнений (уравнение для состояния S 0 опускаем из-за громоздкости):

С нормировочным условием: .

Начальные условия:

При установившемся режиме эксплуатации (при t →∞) имеем:

Решив полученную систему алгебраических уравнений с учетом нормировочного условия, находим показатели надежности.

При решении системы уравнений можно использовать преобразование Лапласа для вероятностей состояний или численные методы.

Контрольные вопросы и задания

1. Какие методы определения показателей надежности восстанавливаемых систем известны?

2. Как определяются состояния элементов и устройств ИС?

3. Как определить области работоспособных состояний системы?

4. Почему метод дифференциальных уравнений получил широкое распространение при оценке надежности восстанавливаемых систем?

5. Что является необходимым условием при решении систем дифференциальных уравнений?

6. Как составляется дифференциальные уравнения для определения параметров надежности ИС?

7. Каким условием должно быть дополнено система дифференциальных уравнений (СДУ) для более эффективного решения.

8. Запишите условия работоспособности системы, состоящий из трех элементов.

9. Чему равно число состояний устройства состоящего из четырех элементов?

10. Какое правило используется при составлении СДУ?

Литература: 1, 2, 3, 5, 6, 8.


Тема: Марковские модели для оценки надежности резервированных восстанавливаемых информационных систем

1. Понятие Марковского свойства, определение состояния системы.

2. Методика и алгоритм построения Марковской модели.

3. Расчетные формулы для расчета показатели надежности ТС

4. Матрица интенсивностей переходов для оценки показателей надежности резервированных восстанавливаемых ИС.

Ключевые слова

Марковская модель, состояние системы, работоспособность, матрица интенсивностей переходов, граф состояний, восстанавливаемая система, резервирование, последовательная схема, постоянный резерв, система дифференциальных уравнений, правило Колмогорова, схема расчета надежности, приближенный метод, алгоритмы построения СДУ, нормировочные условия, начальные условия, вероятность безотказной работы, интенсивность отказа.

Функционирование ИС и их составных частей можно представить как совокупность процессов перехода из одного состояния в другое под воздействием каких либо причин.

С точки зрения надежности восстанавливаемых ИС их состояние в каждый момент времени характеризуется тем, какие из элементов работоспособны, а какие восстанавливаются.

Если каждому возможному множеству работоспособных (неработоспособных) элементов поставить в соответствие множество состояний объекта, то отказы и восстановления элементов будут отображаться переходом объекта из одного состояния в другое:

Пусть, к примеру, объект состоит из двух элементов. Тогда он может находиться в одном из четырех состояний: n = 2 k = 2 2 = 4.

S 1 – оба элемента работоспособны;

S 2 – неработоспособен только первый элемент;

S 3 – неработоспособен только второй элемент;

S 4 – неработоспособны оба элемента.

Множество возможных состояний объекта: S = {S 1 , S 2 , S 3 , S 4 }.

Полное множество состояний исследуемой системы может быть дискретным, либо непрерывным (непрерывно заполнять один или несколько интервалов числовой оси).

В дальнейшем будем рассматривать системы с дискретным пространством состояний. Последовательность состояний такой системы и сам процесс переходов из одного состояния в другое называется цепью.

В зависимости от времени пребывания системы в каждом состоянии различают процессы с непрерывным временем и процессы с дискретным временем. В процессах с непрерывным временем переход системы из одного состояния в другое осуществляется в любой момент времени. Во втором случае время пребывания системы в каждом состоянии – фиксировано так, что моменты переходов размещаются на временной оси через равные промежутки.

В настоящее время наиболее изучены цепи, обладающие марковским свойством. Вероятности переходов обозначаются символами P ij (t ), а процесс P ij переходов называется Марковской цепью или цепью Маркова.

Марковское свойство связанно с отсутствием последействия. Это означает, что поведение системы в будущем зависит только от ее состояния в данный момент времени, и не зависит от того каким образом она пришла в это состояние.

Марковские процессы позволяют описать последовательности отказов-восстановлений в системах, описываемых при помощи графа состояний.

Наиболее часто для расчета надежности применяется метод марковских цепей с непрерывным временем, основанный на системе дифференциальных уравнений, которая в матричной форме может быть записана как:

,

где P (t ) = P 0 – начальные условия;

,

а Λ – матрица интенсивности переходов (матрица коэффициента при вероятностях состояний):

где λ ij – интенсивности перехода системы из i-го состояния в j-е;

P j – вероятность того, что система находится в j-м состоянии.

При оценке надежности сложных резервированных и восстанавливаемых систем метод марковских цепей приводит к сложным решениям из-за большого числа состояний. В случае однотипных подсистем работающих в одинаковых условиях, для уменьшения числа состояний используют метод укрупнения. Состояния с одинаковым количеством подсистем объединяются. Тогда размерность уравнений уменьшается .

Последовательность методики оценки надежности резервированных восстанавливаемых систем с использованием метода марковских цепей следующая:

1. Анализируется состав устройства и составляется структурная схема надежности. По схеме строится граф, в котором учитывается все возможные состояния;

2. Все вершины графа в результате анализа структурной схемы разделяются на два подмножества: вершины соответствующие работоспособному состоянию системы и вершины соответствующие неработоспособному состоянию системы.

3. С помощью графа состояний составляется система дифференциальных уравнений (используется правило Колмогорова);

4. Выбираются начальные условия решения задачи;

5. Определяются вероятности нахождения системы в работоспособном состоянии в произвольный момент времени;

6. Определяется вероятность безотказной работы системы;

7. В случае необходимости определяются и другие показатели.

Контрольные вопросы и задания

1. Что подразумевается под цепью Маркова?

2. Приведите алгоритм оценки надежности ИС с использованием Марковских моделей.

3. Как составляется дифференциальные уравнения для определения параметров надежности ИС?

4. Значение каких показателей надежности можно получить используя Марковский метод?

5. Перечислите основные этапы построения Марковской модели надежности сложной системы.

6. Что является необходимым условием при решении систем дифференциальных уравнений?

7. Как определяются состояния элементов и устройств КС?

8. Дайте определение понятию восстанавливаемых систем.

9. Что такое Марковская цепь?

10. Для оценки каких систем используют Марковские модели надежности?

Литература: 1, 2, 3, 10, 11.


Тема: Приближенные методы расчета надежности технических средств ИС

1. Основные допущение и ограничения при оценки надежности последовательно-параллельных структур.

2. Приближенные методы расчета надежности восстанавливаемых ИС, при последовательном и параллельном включении подсистем ИС.

3. Структурные схемы расчета надежности ИС.

Ключевые слова

Надежность, последовательно-параллельная структура, приближенные методы расчета надежности, структурное схема расчета надежности, интенсивность отказа, интенсивность восстановления, коэффициент готовности, время восстановления, компьютерная система.

Задание

Вычислить вероятность безотказной работы P c системы со струк­турой и параметрами, заданными в п.6.4, логико-вероятностным мето­дом. Сравнить полученный результат с граничными оценками, пол­ученными в п.6.

Элементы теории

Пусть x=(x­ 1 ,..., x n) - n-мериый вектор, характеризующий со­стояние системы, где х­ i - булева переменная: х­ i = 1 , если i -я подсистема работоспособна, и,x­ i =0 в противном случае.

Введя соответствующий критерий отказадля системы, можно за­дать булеву функцию, описывающую состояние работоспособности илиотказа системы:

R(x)=1,если система работоспособна. R(x)=0если система отказывает.

Если система находится в состоянии отказа. если система работоспособна.

Здесь R(х) - функция работоспособности, - функция от­каза в состоянии х.

Перейдем к вероятностным функциям:

Здесь Р - вероятность безотказной работы системы и Q - вероят­ность отказа системы, определенные для случая, когда х i соответст­вует работоспособному состоянию i -го элемента (подсистемы). Р и Q здесь определены для того же момента времени, что и р (х i) и q (х i) - вероятности безотказной работы и отказа элементов.

Структура системы называется монотонной, если для функции R(х ) выполняются следующие условия:

а) R(1)= 1 , где 1 =(1 ,...,1);

б) R(0) = 0,где0 = (0,...,0);

в) R (х) ≥R(у) , если х ≥у,

где условие (в) понимается как совокупность п условий х i ≥у i .

Для оценки надежности таких систем применяются метод мини­мальных путей и минимальных сечений, логико-всроятностнчй метод и другие.

К монотонным структурам относятся последовательно-параллель­ные и параллельно-последовательные структуры, а также несводимые к ним, такие, например, как "мостиковые".

Пример решения

Применение логико-вероятностного метода, позволяющего пол­учить точное значение вероятности безотказной работы, рассмотрим на примере мостиковой структуры, представленной на рис. 6.1.

Функцию R (х) представим в дизъюнктивной нормальной форме (ДНФ) множеством минимальных путей (см. п.6.2)

R(х) = x 1 х 4 V х 1 x 3 x 5 V х 2 х 5 V х 2 x 3 х 4 ,

где х i - булева переменная, опреде­ляющая состояние работоспособностьi-го элемента. Матричная форма бу­левой функции R(х) представленана рис 7.1.

Для вычисления Р с необходимоR(х) представить в ортогональной форме R орт , т.е. в виде множества не­пересекающихся интервалов.

И соответствии с матрицей рис. 7.1 имеем:

Для вычисления достаточно в (7.1) х i за­менить на р i , на 1 -p i , конъюнкцию - на произведение и дизъ­юнкцию - на сумму. Проделав это, получим:

Пусть p i =p =0,8 тогда,

Сравнение с результатом, полученным в п. 6.3. дает:

0,9069<0,9611<0,9692

Библиографический список

1. Козлов Б.А., Ушаков И.А. Справочник по расчету надежности аппаратуры радиоэлектроники и автоматики. – М.:Сов.радио, 1975. – 472 с.

2. Иыуду К.А. Надежность, контроль и диагностика вычислительных машин и систем. – М.:Высш.шк., 1989. – 216 с.

3. Надежность технических систем: Справочник / Ю.К. Беляев, В.А. Богатырев, и др.; Под ред. И.А. Ушакова. – М.: Радио и связи, 1985. – 608 с.

4. Дружинин Г.В. Надежность автоматизированных производственных систем. – 4-е изд. – М.: Энергоатом-издат, 1986. – 480 с.

5. Каган Б.М., Мкртумян И.Б. Основы эксплуатации ЭВМ. – М.: Энергоатомиздат, 1988. – 432 с.

Под структурно-сложной системой с точки зрения анализа надежности будем понимать систему, состоящую из произвольного количества произвольно соединенных резервированных звеньев (параллельно-последовательных, мостиковых). В предыдущих лекциях были рассмотрены два метода исследования надежности структурно-сложных систем: метод анализа сложных последовательно-параллельных структур, метод разложения относительно особого элемента. При большом количестве элементов и межэлементных связей проведение расчетов надежности этими методами является крайне сложной задачей. Автоматизация расчетов позволяет решить проблему анализа надежности структурно-сложных систем. Для осуществления автоматизации необходимо иметь общее формальное описание “надежностного поведения” анализируемой системы. В качестве такого описания была выбрана алгебра логики (см. приложение). Метод анализа надежности сложных систем, при котором их структура описывается средствами математического аппарата бинарной алгебры логики, а количественная оценка надёжности производится с помощью теории вероятностей, получил название логико-вероятностного метода .

Применение логико-вероятностных методов для определения значений вероятностных показателей надежности в момент времени t для системы, состоящей из n элементов, осуществляется в несколько этапов:

· конструирование логической функции работоспособности системы

· преобразование логической функции к форме перехода к замещению

· получение расчетной вероятностной формулы

1. Конструирование логической функции работоспособности (неработоспособности) системы

Делается предположение о том, что как сама система, так и составляющие ее элементы могут находится только в двух состояниях – работоспособности и отказа, причем отказы элементов предполагаются независимыми. Тогда, исходя из условий работоспособности (неработоспособности) системы, можно сконструировать логическую функцию ее работоспособности S(x ) (неработоспособности )

(1)

Аргументом функции S является вектор-строка x логических переменных ,, таких что

(2)

Например, если за исходное описание системы принять уже изученные нами блок-схемы надежности, то для системы, состоящей из двух последовательно соединенных в смысле надежности элементов (отказ каждого является отказом системы в целом) (рис.1.а), , а . Функция работоспособности дублированной системы, в которой одиночные отказы элементов не приводят к ее отказу (рис.1.б), равна , неработоспособности - . Для мостиковой структуры (рис.1.в) , . Эти функции построены достаточно формально – они отражают наличие хотя бы одной связи (пути) между входом и выходом надежностной схемы системы. Путь работоспособен, если работоспособны все входящие в него элементы. Поэтому каждому пути соответствует элементарная конъюнкция переменных, соответствующих входящим в путь элементам, а S(X) – есть дизъюнкция всех элементарных конъюнкций, соответствующих возможным путям от входа к выходу. Для систем небольшой размерности запись подобных логических выражений не представляет труда, для сложных систем, состоящих из большого числа компонентов, требуются специальные алгоритмы прохода схемы и формирования путей.

ЛОГИКО-ВЕРОЯТНОСТНЫЕ МЕТОДЫ АНАЛИЗА НАДЕЖНОСТИ

Любой метод анализа надежности требует описания условий работоспособности системы. Такие условия могут быть сформулированы на основании:

Структурной схемы функционирования системы (схемы расчета надежности);

Словесного описания функционирования системы;

Граф-схемы;

Функции алгебры логики.

Логико-вероятностный метод анализа надежности позволяет формализовать определение и смысл благоприятных гипотез. Сущность этого метода состоит в следующем.

· Состояние каждого элемента кодируется нулем и единицей:

В функциях алгебры логики состояния элементов представляются в следующем виде:

Х i - исправное состояние элемента, соответствующее коду 1;

Отказовое состояние элемента, соответствующее коду 0.

Записывается с помощью функций алгебры логики условие работоспособности системы через работоспособность (состояние) ее элементов. Полученная функция работоспособности системы является двоичной функцией двоичных, аргументов.

Полученная ФАЛ преобразуется таким образом, чтобы в ней содержались члены, соответствующие благоприятным гипотезам исправной работы системы.

В ФАЛ вместо двоичных переменных х i и подставляются вероятности соответственно безотказной работы р i и вероятности отказа q i . Знаки конъюнкции и дизъюнкции заменяются алгебраическими умножением и сложением.

Полученное выражение и есть вероятность безотказной работы системы P c (t).

Рассмотрим логико-вероятностный метод на примерах.

ПРИМЕР 5.10. Структурная схема системы представляет собой основное (последовательное) соединение элементов (рис. 5.14).

На структурной схеме х i , i = 1, 2,..., п - состояние i -го элемента системы, кодируемое 0, если элемент находится в отказовом состоянии, и 1, если он исправный. В данном случае система исправна, если исправны все ее элементы. Тогда ФАЛ является конъюнкцией логических переменных, т.е. у=x 1 ,x 2 ,…..,х п, представляющей собой совершенную дизъюнктивно нормальную форму системы.

Подставляя вместо логических переменных вероятности исправных состояний элементов и, заменяя конъюнкцию на алгебраическое умножение, получим:

ПРИМЕР 5.11. Структурная схема системы представляет собой дублированную систему с неравнонадежными, постоянно включенными подсистемами (рис. 5.15).

На рис. 5.15 х 1 и х 2 - состояния элементов системы. Составим таблицу истинности двух двоичных переменных (табл. 5.2).

В таблице 0 - отказовое состояние элемента, 1 - исправное состояние элемента. В данном случае система исправна, если исправны оба элемента (1,1) или один из них ((0,1) или (1,0)). Тогда работоспособное состояние системы описывается следующей функцией алгебры логики:



Этафункция является совершенной дизъюнктивной нормальной формой. Заменяя операции дизъюнкции и конъюнкции на алгебраические операции умножения и сложения, а логические переменные - на соответствующие вероятности состояния элементов, получим вероятность безотказной работы системы:

ПРИМЕР 5.12. Структурная схема системы имеет вид, показанный на рис. 5.16.

Составим таблицу истинности (табл. 53).

В данном примере система исправна, если исправны все ее элементы или исправным является элемент x i и один из элементов дублированной пары (х 2 , х 3 ). На основании таблицы истинности СДНФ будет иметь вид:

Подставляя вместо двоичных переменных соответствующие вероятности, а вместо конъюнкций и дизъюнкций - алгебраические умножение и сложение, получим вероятность безотказной работы системы:

Функцию алгебры логики можно представить в минимальной форме, если воспользоваться следующими преобразованиями:

Операции поглощения и склеивания в алгебре не применимы. В связи с этим нельзя полученную ФАЛ минимизировать, а затем вместо логических переменных подставлять значения вероятностей. Вероятности состояний элементов следует подставлять в СДНФ, а упрощать по правилам алгебры.

Недостатком описанного метода является необходимость составления таблицы истинности, что требует перебора всех работоспособных состояний системы.

5.3.2. Метод кратчайших путей и минимальных сечений

Этот метод был рассмотрен ранее в разд. 5.2.3. Изложим его с позиции алгебры логики.

Функцию работоспособности можно описать с помощью кратчайших путей пешного функционирования системы и минимальных сечений ее отказа.

Кратчайшим путем называется минимальная конъюнкция работоспособных:стояний элементов, образующих работоспособную систему.

Минимальным сечением называется минимальная конъюнкция неработоспособных состояний элементов, образующих неработоспособное состояние системы.

ПРИМЕР 5.13. Необходимо образовать функцию работоспособности системы структурная схема которой приведена на рис. 5.17, используя метод кратчайших путей и минимальных сечений.

Решение. В данном случае кратчайшими путями, образующими работоспособную систему, будут: х 1 х 2 , х 3 х 4 , х 1 х 5 х 4 , х 3 х 5 х 2 . Тогда функция работоспособности запишется в виде следующей функции алгебры логики:

В соответствии с этой ФАЛ структурная схема системы рис. 5.17 может быть представлена структурной схемой рис. 5.18.

Минимальными сечениями, образующими неработоспособную систему, будут: х 1 х 3 , х 2 х 4 , х 1 х 5 х 4 , х 3 х 5 х 2 . Тогда функция неработоспособности запишется в виде следующей функции алгебры логики:

В соответствии с этой ФАЛ структурная схема системы будет представлена в виде, показанном на рис. 5.19.

Следует иметь в виду, что структурные схемы рис. 5.18 и рис. 5.19 не являются схемами расчета надежности, а выражения для ФАЛ работоспособного и неработоспособного состояний не являются выражениями для определения вероятности безотказной работы и вероятности отказа:

Основные достоинства ФАЛ в том, что они позволяют получить формально, не составляя таблицы истинности, СДНФ и СКНФ (совершенная конъюнктивная нормальная форма), которые дают возможность получить вероятность безотказной работы (вероятность отказа) системы путем подстановки в ФАЛ вместо логических переменных соответствующих значений вероятностей безотказной работы, заменив операции конъюнкции и дизъюнкции на алгебраические операции умножения и сложения.

Для получения СДНФ необходимо каждый дизъюнктивный член ФАЛ умножить на, где х i - недостающий аргумент, и раскрыть скобки. Ответом будет СДНФ. Рассмотрим этот способ на примере.

ПРИМЕР 5.14. Необходимо определить вероятность безотказной работы системы, структурная схема которой приведена на рис. 5.17. Вероятности безотказной работы элементов равны р 1 , р 2 , р 3 , р 4 , р 5 .

Решение. Воспользуемся методом кратчайших путей. Функция алгебры логики, полученная методом кратчайших путей, имеет вид:

Получим СДНФ системы. Для этого умножим дизъюнктивные члены на недостающие:

Раскрывая скобки и выполняя преобразования по правилам алгебры логики, получим СДНФ:

Подставляя в СДНФ вместо х 1 , х 2 , х 3 , х 4 , х 5 вероятности безотказной работы р 1 , р 2 , р 3 , р 4 , р 5 и используя соотношения q i = 1–р i , получим следующее выражение для вероятности безотказной работы системы.

Из приведенного примера видно, что метод кратчайших путей освободил нас от определения благоприятных гипотез. Тот же результат можно получить, если воспользоваться методом минимальных сечений.

5.3.3. Алгоритм разрезания

Алгоритм разрезания позволяет получить ФАЛ, подставляя в которую вместо логических переменных вероятности безотказной работы (вероятности отказа) элементов можно найти вероятность безотказной работы системы. Получения для этой цели СДНФ не требуется.

Алгоритм разрезания основан на следующей теореме алгебры логики: функция алгебры логики у(х ь х 2 ,...,х п) может быть представлена в следующей форме:

Покажем применимость этой теоремы на трех примерах:

Применяя второй распределительный закон алгебры логики, получим:

ПРИМЕР 5.15. Определить вероятность безотказной работы системы, струк­турная схема которой представлена на рис. 5.16, воспользовавшись алгоритмом разрезания.

Решение. Используя метод кратчайших путей, получим следующую ФАЛ:

Применим алгоритм разрезания:

Подставляя теперь вместо логических переменных вероятности и заменяя операции конъюнкции и дизъюнкции на алгебраические умножение и сложение, получим:

ПРИМЕР 5.16. Определить вероятность безотказной работы системы, структурная схема которой приведена на рис. 5.17. Воспользоваться алгоритмом разрезания.

Решение. Функция алгебры логики, полученная методом минимальных сечений, имеет вид:

Реализуем алгоритм разрезаний относительно х 5:

Упростим полученное выражение, пользуясь правилами алгебры логики. Вы-ражение в первых скобках упростим, используя правило выноса за скобки:

Тогда ФАЛ будет иметь вид:

Этому выражению соответствует структурная схема рис. 5.20.

Полученная схема является также схемой расчета надежности, если логические переменные заменить вероятностями безотказной работы р 1 , р 2 , р 3 , р 4 , р 5 , а переменную - вероятностью отказа q 5 . Из рис. 5.20 видно, что структурная схема системы сведена к последовательно-параллельной схеме. Вероятность безотказной работы вычисляется по следующей формуле:

Формула в объяснении не нуждается, она записана непосредственно по структурной схеме.

5.3.4. Алгоритм ортогонализации

Алгоритм ортогонализации, как и алгоритм разрезания, позволяет формальными процедурами образовать функцию алгебры логики, подставляя в которую вместо логических переменных вероятности, а вместо дизъюнкций и конъюнкции - алгебраические сложение и умножение, получить вероятность безотказной работы системы. Алгоритм основан на преобразовании функций алгебры логики в ортогональную дизъюнктивную нормальную форму (ОДНФ), которая существенно короче СДНФ. Прежде чем излагать методику, сформулируем ряд определений и приведем примеры.

Две конъюнкции называются ортогональными, если их произведение тождественно ноль. Дизъюнктивная нормальная форма называется ортогональной, если все ее члены попарно ортогональны. СДНФ является ортогональной, но самой длинной из всех ортогональных функций.

Ортогональную ДНФ можно получить с помощью следующих формул:

Эти формулы легко доказать, если воспользоваться вторым распределительным законом алгебры логики и теоремой де-Моргана. Алгоритмом получение ортогональной дизъюнктивной нормальной формы является следующая процедура преобразования функции у(х 1 ,х 2 ,..., х п) в ОДНФ:

Функция у(х 1 ,х 2 ,..., х п) преобразуется в ДНФ с помощью метода кратчайших путей или минимальных сечений;

Находится ортогональная дизъюнктивно-нормальная форма с помощью формул (5.10) и (5.11);

Минимизируется функция путем приравнивания к нулю ортогональных членов ОДНФ;

Логические переменные заменяются вероятностями безотказной работы (вероятностями отказов) элементов системы;

Окончательное решение получается после упрощения выражения, полученного на предыдущем шаге.

Рассмотрим методику на примере.

ПРИМЕР 5.17. Определить вероятность безотказной работы системы, струк­турная схема которой приведена на рис. 5.17. Применить метод ортогонализации.

Решение. В данном случае функционирование системы описывается следующей функцией алгебры логики (метод минимальных сечений):

Обозначим К 1 = х 1 х 2 , К 2 = х 3 х 4 , К 3 = х 1 х 5 х 4 , К 4 = х 3 х 5 х 2 . Тогда ОДНФ запишется в следующем виде:

Значения , i = 1,2,3, на основании формулы (5.10) будут иметь вид:

Подставляя эти выражения в (5.12), получим:

Заменяя в этом выражении логические переменные соответствующими вероятностями и выполняя алгебраические операции сложения и умножения, по­лучим вероятность безотказной работы системы:

Ответ совпадает с полученным в примере 5.14.

Из примера видно, что алгоритм ортогонализации более производительный, чем способы, рассмотренные ранее. Более подробно логико-вероятностные методы анализа надежности изложены в . Логико-вероятностный метод, как и любой другой, имеет свои достоинства и недостатки. О его достоинствах было сказано ранее. Укажем его недостатки.

Исходными данными в логико-вероятностном методе являются вероятности безотказной работы элементов структурной схемы системы. Однако во мно­гих случаях эти данные не могут быть получены. И не потому, что надежность элементов неизвестна, а потому, что время функционирования элемента является случайной величиной. Это имеет место в случае резервирования замещением, наличия последействия отказов, неодновременноcти работы элементов, наличия восстановления с различной дисциплиной обслуживания и во многих других случаях.

Приведем примеры, иллюстрирующие эти недостатки. Структурная схема системы имеет вид, показанный на рис. 5.21, где приняты следующие обозначения: x i - логические переменные, имеющие значения 0 и 1, соответствующие отказу и исправной работе элемента, x i = 1, 2, 3.

В данном случае логическая переменная дс 3 является 0 до момента времени τ отказа основного элемента и 1 в течение времени (t-τ), где t - врем, в течение которого определяется вероятность безотказной работы системы. Время τ является величиной случайной, поэтому значение р(τ) неизвестно. В данном случае составить ФАЛ и тем более СДНФ невозможно. Ни один израссмотренных нами логико-вероятностных методов не позволяет найти вероятность безотказной работы системы.

Вот еще один типичный пример. Энергетическая система состоит из регулятора напряжения R н и двух параллельно работающих генераторов Г 1 и Г 2 . Структурная схема системы показана на рис. 5.22.

При отказе одного из генераторов оставшийся исправным работает один общую нагрузку. Его интенсивность отказов увеличивается. Если до момента τ отказа одного из генераторов интенсивность его отказа была равна λ , то после отказа λ 1 > λ 2 . Так как время τ является величиной случайной, то Р(τ) неизвестно. Здесь, как и в случае резервирования замещением, логико-вероятностные методы бессильны. Таким образом, указанные недостатки логико-вероятностных методов снижают их практическое применение при расчете надежности сложных систем.

5.4. Топологические методы анализа надежности

Топологическими будем называть методы, которые позволяют определить показатели надежности либо по графу состояний, либо по структурной схеме системы, не составляя и не решая уравнений. Топологическим методам посвящен ряд работ , в которых описаны различные способы их практической реализации. В настоящем разделе излагаются методы, позволяющие определить показатели надежности по графу состояний.

Топологические методы дают возможность вычислять следующие показатели надежности:

- Р(t) - вероятность безотказной работы в течение, времени t ;

- T 1 , - среднее время безотказной работы;

- К г (t) - функцию готовности (вероятность того, что система исправна в любой произвольный момент времени t );

- К г = - коэффициент готовности;

T - наработку на отказ восстанавливаемой системы.

Топологические методы имеют следующие особенности:

Простота вычислительных алгоритмов;

Высокая наглядность процедур определения количественных характери­стик надежности;

Возможность приближенных оценок;

Отсутствие ограничений на вид структурной схемы (системы, восстанавливаемые и невосстанавливаемые, нерезервированные и резервированные с любым видом резервирования и любой кратностью).

В настоящей главе будут рассматриваться ограничения топологических методов:

Интенсивности отказов и восстановления элементов сложной системы являются величинами постоянным»;

Временные показатели надежности, такие как вероятность безотказной работы и функция готовности, определяются в преобразованиях Лапласа;

Трудности, в ряде случаев непреодолимые, при анализе надежности сложных систем, описываемых многосвязным графом состояний.

Идея топологических методов состоит в следующем.

Граф состояний является одним из способов описания функционирования системы. Он определяет вид дифференциальных уравнений и их количество. Интенсивности переходов, характеризующие надежность элементов и их восстанавливаемость, определяют коэффициенты дифференциальных уравнений. Начальные условия выбираются кодированием узлов графа.

В графе состояний содержится вся информация о надежности системы. А это является основанием считать, что показатели надежности могут быть вычислены непосредственно по графу состояний.

5.4.1. Определение вероятностей состояний системы

Вероятность застать восстанавливаемую систему в состоянии i в фиксированный момент времени t в преобразовании Лапласа может быть записана в следующем виде:

где Δ(s) - главный определитель системы дифференциальных уравнений, записанной в преобразованиях Лапласа; Δ i (s) - частный определитель системы.

Из выражения (5.13) видно, что P i (s) будет определена, если из графа состояний будут найдены степени тип полиномов числителя и знаменателя, а также коэффициенты B ij (j = 0,1,2,..., m ) и А i (i = 0,1, 2,..., n -1).

Первоначально рассмотрим методику определения P i (s) графа состояний только таких систем, в графе состояний которых отсутствуют переходы через состояния. К ним относятся все неизбыточные системы, резервированные системы при общем резервировании с целой и дробной кратностью, резервированные системы любой структуры с обслуживанием отказавших устройств в последовательности, обратной их поступлению в ремонт. К указанному классу систем относятся также некоторые резервированные системы с равнонадежными устройствами при различной дисциплине их обслуживания.

Функционирование системы описывается дифференциальными уравнениями, число которых равно числу узлов графа. Это значит, что главный определитель системы Δ(s) в общем случае будет полиномом n -й степени, где n - число узлов графа состоянии. Легко показать, что полином знаменателя не содержит свободного члена. Действительно, т.к. то знаменатель функции P i (s) должен содержать s в качестве сомножителя, в противном случае финальная вероятность P i (∞) будет равна нулю. Исклю­чением являются случаи, когда число ремонтов ограничено.

Степень полинома числителя Δ i находится из выражения:

m i = n - 1 – l i ,

где n - число узлов графа состояний; l i - число переходов из начального состояния системы, определенного начальными условиями ее функционирования, в состояние i по кратчайшему пути.

Если начальным состоянием системы является состояние, когда все устройства исправны, то l i - номер уровня состояния i , т.е. l i равно минимальному числу отказавших устройств системы в состоянии i . Таким образом, степень полинома числителя вероятности Р i (s) пребывания системы в i -м состоянии зависит от номера состояния i и от начальных условий. Так как число переходов l i может быть 0,1,2,..., n -1, то степень полинома Δ i (s) на основании (5.14) также может принимать значения m i = 0,1,2,..., n -1.