Любое тело может находиться в разных агрегатных состояниях при определенных температуре и давлении - в твердом, жидком, газообразном и плазменном состояниях.

Для перехода из одного агрегатного состояния в другое происходит при условии, что нагревание тела из вне происходит быстрее, чем его охлаждение. И наоборот, если охлаждение тела из вне происходит быстрее, чем нагрев тела за счет его внутренней энергии.

При переходе в другое агрегатное состояние вещество остается прежним, останутся те же молекулы, изменится только их взаимное расположение, скорость движения и силы взаимодействия друг с другом.

Т.е. изменение внутренней энергии частиц тела переводит его из одной фазы состояния в другую. При этом это состояние может поддерживаться в большом температурном интервале внешней среды.

При изменении агрегатного состояния нужно определенное количество энергии. И в процессе перехода энергия тратится не на изменение температуры тела, а на изменение внутренней энергии тела.

Отобразим на графике зависимость температуры тела T (при постоянном давлении) от количества подаваемого к телу тепла Q при переходе из одного агрегатного состояния в другое.

Рассмотри тело массой m , которое находится в твердом состоянии с температурой T 1 .

Тело переходит не моментально из одного состояния в другое. Сначала нужна энергия на изменение внутренней энергии, а на это нужно время. Скорость перехода зависит от массы тела и его теплоёмкости.

Начнем нагревать тело. Через формулы можно записать так:

Q = c⋅m⋅(T 2 -T 1)

Столько тепла тело должно усвоить, чтобы нагреться с температуры T 1 до T 2 .

Переход твердого тела в жидкое

Далее при критической температуре T 2 , которая для каждого тела своя, начинают рушиться межмолекулярные связи и тело переходит в другое агрегатное состояние - жидкость, т.е. межмолекулярные связи слабеют, молекулы начинаю перемещаться с большей амплитудой с большей скоростью и большей кинетической энергией. Поэтому температура одного и того же тела в жидком состоянии выше, чем в твердом.

Для того чтобы всё тело перешло из твердого состояния в жидкое, нужно время на накопление внутренней энергии. В это время вся энергия идет не на нагрев тела, а на разрушение старых межмолекулярных связей и создание новых. Количество энергии нужно:

λ - удельная теплота плавления и кристаллизации вещества в Дж/кг, для каждого вещества своя.

После того как всё тело перешло в жидкое состояние, эта жидкость опять начинает нагреваться по формуле: Q = c⋅m⋅(T-T 2); [Дж].

Переход тела из жидкого состояния в газообразное

При достижении новой критической температуры Т 3 , начинается новый процесс перехода из жидкого состояния в парообразный. Чтобы дальше перейти из жидкости в пар, нужно затратить энергии:

r - удельная теплота газообразования и конденсации вещества в Дж/кг, для каждого вещества своя.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой , а обратный ему процесс - десублимацией .

Переход тела из газообразного состояния в плазменное

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.

Плазма обычно возникает при высокой температуре, от нескольких тысяч °С и выше. По способу образования различают два вида плазмы: термическую, возникающую при нагревании газа до высоких температур, и газообразную, образующуюся при электрических разрядах в газовой среде.

Этот процесс очень сложный и имеет простого описания, да и нам в бытовых условиях он не достижим. Поэтому не будем подробно останавливаться на этом вопросе.

Любое изменение состояния вещества связано с метаморфозами температуры, давления. Можно одно вещество представить в следующих агрегатных состояниях: твердом, жидком, газообразном.

Отметим, что по мере перехода не наблюдается изменения состава вещества. Переход вещества из жидкого состояния в твердое сопровождается только изменением сил межмолекулярного взаимодействия, расположением молекул. Превращение из одного состояния в другое именуют

Плавление

Данный процесс предполагает превращение в жидкость. Для его осуществления необходима повышенная температура.

Например, можно наблюдать в природе такое состояние вещества. Физика легко объясняет процесс таяния снежинок под действием весенних лучей. Маленькие кристаллики льда, входящие в состав снега, после прогревания воздуха до нулевой отметки начинают разрушаться. Происходит плавление постепенно. Сначала лед поглощает тепловую энергию. По мере изменения температуры происходит полное превращение льда в жидкую воду.

Он сопровождается существенным ростом скорости движения частиц, тепловой энергией, повышением величины внутренней энергии.

После достижения показателя, именуемого происходит разрыв структуры твердого вещества. У молекул появляется большая свобода, они «перескакивают», занимая разные положения. Расплавленное вещество имеет больший запас энергии, чем в твердом состоянии.

Температура отвердевания

Переход вещества из жидкого состояния в твердое осуществляется при определенном значении температуры. Если от тела будет отводиться тепло, то оно застывает (кристаллизуется).

Температуру отвердевания считают одной из важнейших характеристик.

Кристаллизация

Переход вещества из жидкого состояния в твердое положение называют кристаллизацией. При прекращении передачи тепла жидкости наблюдается снижение температуры до определенного значения. Фазовый переход вещества из жидкого состояния в твердое тело в физике называют кристаллизацией. При рассмотрении вещества, не содержащего примесей, температура плавления соответствует показателю кристаллизации.

Оба процесса протекают постепенно. Процесс кристаллизации сопровождается снижением молекул, содержащихся в жидкости. Силы притяжения, благодаря которым частицы удерживаются в строгом порядке, присущие твердым телам, возрастают. После того как частицы приобретут упорядоченное расположение, сформируется кристалл.

Называют физическую форму вещества, представленную в определенном интервале давлений и температур. Оно характеризуется количественными свойствами, которые изменены в выбранных интервалах:

  • способность вещества менять форму и объем;
  • отсутствие (присутствие) дальнего либо ближнего порядка.

Процесс кристаллизации связан с энтропией, свободной энергией, плотностью, иными физическими величинами.

Помимо жидкостей, твердых тел, газообразной формы, выделяют еще одно агрегатное состояние - плазму. В нее могут переходить газы в случае повышения температуры при неизменном давлении.

Рамки между разнообразными состояниями вещества далеко не всегда являются строгими. В физике подтверждено существование аморфных тел, способных сохранять структуру жидкости, имеющей небольшую текучесть. обладают способностью поляризовать электромагнитное излучение, которое через них проходит.

Заключение

Для того чтобы описывать различные состояния в физике, применяют определение термодинамической фазы. Критическими явлениями называют состояния, которые описывают превращение одной фазы в другую. Твердые тела отличаются сохранением на протяжении длительного временного промежутка своего среднего положения. Они будут совершать незначительные колебания (с минимальной амплитудой) около положения равновесия. У кристаллов есть определенная форма, которая при переходе в жидкое состояние будет изменяться. Информация о температурах кипения (плавления) позволяет физикам использовать переходы из одного агрегатного состояния в другое для практических целей.

Мы живем на поверхности твердого тела - земного шара, в сооружениях, построенных из твердых тел, - домах. Наше тело, хотя и содержит приблизительно 65% воды (мозг - 80%), тоже твердое. Орудия труда, машины также сделаны из твердых тел. Знать свойства твердых тел жизненно необходимо.

В § 2.6 было кратко описано молекулярное строение твердых кристаллических тел. Теперь мы рассмотрим подробнее их свойства и строение.

Кристаллы

Если рассматривать при помощи лупы или микроскопа крупинки сахара, соли, медного купороса, нафталина и т. п., то можно заметить, что они ограничены плоскими, как бы шлифованными гранями. Наличие таких естественных граней является признаком нахождения вещества в кристаллическом состоянии. Кристаллом* называется тело определенной геометрической формы, ограниченное естественными плоскими гранями.

* От греческого слова krystallos - буквально: лед.

Монокристаллы и поликристаллические тела

Тело, представляющее собой один кристалл, называется монокристаллом.

На рисунке 8.1 изображен крупный монокристалл кварца (горного хрусталя). Маленькая крупинка сахарного песка тоже является монокристаллом. Соблюдая большие предосторожности, можно вырастить металлический монокристалл больших размеров.

Большинство кристаллических тел состоит из множества беспорядочно расположенных и сросшихся между собой мелких кристалликов. Такие тела называются поликристаллическими. Поликристаллическими являются все металлы и минералы. Кусок сахара тоже поликристаллическое тело.

Форма и размеры кристаллов

Кристаллы различных веществ имеют разнообразную форму. На рисунке 8.2 изображены кристаллы: каменной соли 1, берилла 2, алмаза 3, граната 4, кварца 5, турмалина 6, изумруда 7 и кальцита 8. Один из видов кристаллов льда, образующих причудливые формы снежинок (рис. 8.3), представляет собой правильную шестиугольную призму (рис. 8.4).

Размеры кристаллов тоже разнообразны. Одни кристаллы крупны и легко различимы невооруженным глазом, другие же настолько малы, что могут быть рассмотрены только в микроскоп.

Размеры кристаллов поликристаллического типа могут с течением времени изменяться. Так, мелкие кристаллы железа и стали переходят в крупные. Этот переход ускоряется при ударах и сотрясениях. Он постоянно происходит в железнодорожных рельсах, вагонных осях, стальных мостах, отчего прочность этих сооружений с течением времени уменьшается.

Полиморфизм

Очень многие тела одинакового химического состава в кристаллическом состоянии в зависимости от условий могут существовать в двух или более разновидностях (модификациях). Это свойство называется полиморфизмом (многоформностью). У льда, например, известно до десяти различных модификаций, которые получают в лабораториях. В природе же встречается только один вид (см. рис. 8.4).

Особо важное значение для техники имеет полиморфизм углерода - углерод кристаллизуется в двух модификациях: графит и алмаз. Графит - мягкий материал матово-черного цвета. Из него, например, изготавливают грифели карандашей. Алмаз совершенно не похож на графит. Это прозрачный и очень твердый кристалл. При температуре около 150 °С (при нагревании в вакууме) алмаз превращается в графит. Чтобы графит превратить в алмаз, его нужно нагреть до 2000 °С под давлением 1010Па. В настоящее время освоено промышленное производство искусственных алмазов. Искусственные алмазы широко используются в различных режущих инструментах.

Что же такое «тройная точка» и как определить её координаты? Опыты показывают, что для каждого вещества существуют условия (давление и температура), при которых пар, жидкость и кристалл могут сосуществовать одновременно сколь угодно долго. Например, если поместить в закрытый сосуд при нуле градусов воду с плавающим льдом, то в свободное пространство будут испаряться и вода, и лёд. Однако при давлении паров 0,006 атм. (это «собственное» их давление, без учёта давления, создаваемого воздухом) и температуре 0,01 °С увеличение массы пара прекратится. С этого момента лёд, вода и пар будут сохранять свои массы сколь угодно долго. Это и есть тройная точка для воды (левая диаграмма). Если в условия левой области поместить воду или пар, то они станут льдом. Если в «нижнюю область» внести жидкость или твёрдое тело, то получится пар. В правой области вода будет конденсироваться, а лёд плавиться.

Аналогичную диаграмму можно построить для любого вещества. Цель таких диаграмм – дать ответ на вопрос: какое состояние вещества будет устойчивым при таком-то давлении и такой-то температуре. Например, правая диаграмма построена для углекислого газа. Тройная точка для этого вещества имеет координату «давление» 5,11 атм, то есть значительно больше, чем нормальное атмосферное давление. Поэтому при обычных условиях (давление 1 атм) мы можем наблюдать только переходы «ниже тройной точки», то есть самостоятельное превращение твёрдого тела в газ. При давлении 1 атм это будет происходить при температуре –78 °С (см. пунктирные линии координат ниже тройной точки).

Все мы живём «около» значений «нормальных условий», т. е. прежде всего при давлении, близком к одной атмосфере. Поэтому, если атмосферное давление, ниже давления, соответствующего тройной точке, при нагревании тела мы не увидим жидкости, – твёрдое вещество будет превращаться сразу в пар. Именно так и ведёт себя «сухой лёд», что очень удобно для продавцов мороженого. Брикеты мороженого можно перекладывать кусками «сухого льда» и не бояться при этом, что мороженое намокнет. Если же давление, соответствующее тройной точке, меньше атмосферного, то вещество относится к «плавящимся» – при повышении температуры оно сначала превращается в жидкость, а потом закипает.

Как видите, особенности агрегатных превращений веществ напрямую зависят от того, как текущие значения давления и температуры соотносятся с координатами «тройной точки» на диаграмме «давление-температура».

И в заключение назовём известные вам вещества, всегда сублимирующие при нормальных условиях. Это йод, графит, «сухой лёд». При давлениях и температурах, отличных от нормальных, эти вещества вполне можно наблюдать и в жидком, и даже в кипящем состоянии.


(C) 2013. Физика.ru при участии А.В.Кузнецовой (г. Самара)

В этом разделе мы рассмотрим агрегатные состояния , в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.


1. Состояние твёрдого тела ,

2. Жидкое состояние и

3. Газообразное состояние .


Часто выделяют четвёртое агрегатное состояние – плазму .

Иногда, состояние плазмы считают одним из видов газообразного состояния.


Плазма - частично или полностью ионизированный газ , чаще всего существующий при высоких температурах.


Плазма является самым распространённым состоянием вещества во вселенной, поскоьку материя звёд пребывает именно в этом состоянии.


Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.


Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии . Но по мере нагрева они становятся жидкостями , затем газами . При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы .

Газ

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος ) характеризующееся очень слабыми связями между составляющими его частицами.


Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы .

Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ - изотропное вещество , то есть его свойства не зависят от направления.


При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие - подниматься вверх.


Газ имеет высокую сжимаемость - при увеличении давления возрастает его плотность. При повышении температуры расширяются.


При сжатии газ может перейти в жидкость , но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К .


Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ - сублимацией .

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниями характеризуется стабильностью формы .


Различают кристаллические и аморфные твёрдые тела .

Кристаллическое состояние вещества

Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение .


В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы .


В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.


В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.


Формы кристаллов


Каждое вещество образует кристаллы совершенно определённой формы.


Разнообразие кристаллических форм может быть сведено к семи группам:


1. Триклинная (параллелепипед),

2. Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная ,

6. Гексагональная (призма с основанием правильного центрированного
шестиугольника),

7. Кубическая (куб).


Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются в кубической системе . Простейшими формами этой системы являются куб, октаэдр, тетраэдр .


Магний, цинк, лёд, кварц кристализуются в гексагональной системе . Основные формы этой системы – шестигранные призмы и бипирамида .


Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.


Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.


Анизотропия


Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией .


Внутреннее строение кристаллов. Кристаллические решётки.


Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, - молекул, атомов или ионов.


Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.


В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток :


1. молекулярные ,

2. атомные ,

3. ионные и

4. металлические .


Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.


  • Атомные кристаллические решётки

  • В узлах атомных решёток находятся атомы . Они связаны друг с другом ковалентной связью .


    Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежат алмаз, кремний и некоторые неорганические соединения.


    Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностью ковалентной связи .


  • Молекулярные кристаллические решётки

  • В узлах молекулярных решёток находятся молекулы . Они связаны друг с другом межмолекулярными силами .


    Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы , за исключением углерода и кремния, все органические соединения с неионной связью и многие неорганические соединения .


    Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.


  • Ионные кристаллические решётки

  • В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы . Они связаны друг с другом силами электростатического притяжения .


    К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов .


    По прочности ионные решётки уступают атомным, но превышают молекулярные.


    Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.


  • Металлические кристаллические решётки

  • В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны .


    Наличием свободных электронов в кристаллических решётках металлов можно объяснить их многие свойства: пластичность, ковкость, металлический блеск, высокую электро- и теплопроводность


    Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью , а в других – металлической . Поэтому решётку графита можно рассматривать и как атомную , и как металлическую .


    Во многих неорганических соединениях, например, в BeO, ZnS, CuCl , связь между частицами, находящимися в узлах решётки, является частично ионной , а частично ковалентной . Поэтому решётки подобных соединений можно рассматривать как промежуточные между ионными и атомными .

    Аморфное состояние вещества

    Свойства аморфных веществ


    Среди твёрдых тел встречаются такие, в изломе которых нельзя обнаружить никаких признаков кристаллов. Например, если расколоть кусок обыкновенного стекла, то его излом окажется гладким и, в отличие от изломов кристаллов, ограничен не плоскими, а овальными поверхностями.


    Подобная же картина наблюдается при раскалывании кусков смолы, клея и некоторых других веществ. Такое состояние вещества называется аморфным .


    Различие между кристаллическими и аморфными телами особенно резко проявляется в их отношении к нагреванию.


    В то время как кристаллы каждого вещества плавятся при строго определённой температуре и при той же температуре происходит переход из жидкого состояния в твёрдое, аморфные тела не имеют постоянной температуры плавления . При нагревании аморфное тело постепенно размягчается, начинает растекаться и, наконец, становится совсем жидким. При охлаждении оно также постепенно затвердевает .


    В связи с отсутствием определённой температуры плавления аморфные тела обладают другой способностью: многие из них подобно жидкостям текучи , т.е. при длительном действии сравнительно небольших сил они постепенно изменяют свою форму. Например, кусок смолы, положенный на плоскую поверхность, в теплом помещении на несколько недель растекается, принимая форму диска.


    Строение аморфных веществ


    Различие между кристаллическим и аморфным состоянием вещества состоит в следующем.


    Упорядоченное расположение частиц в кристалле , отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов – во всём их объёме .


    В аморфных телах упорядоченность в расположении частиц наблюдается только на очень малых участках . Кроме того, в ряде аморфных тел даже эта местная упорядоченность носит лишь приблизительный характер.

    Это различие можно коротко сформулировать следующим образом:

    • структура кристаллов характеризуется дальним порядком ,
    • структура аморфных тел – ближним .

    Примеры аморфных веществ.


    К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др.


    Переход из аморфного состояния в кристаллическое.


    Некоторые вещества могут находиться как в кристаллическом, так и в аморфном состоянии. Диоксид кремния SiO 2 встречается в природе в виде хорошо образованных кристаллов кварца , а также в аморфном состоянии (минерал кремень ).


    При этом кристаллическое состояние всегда более устойчиво . Поэтому самопроизвольный переход из кристаллического вещества в аморфное невозможен, а обратное превращение – самопроизвольный переход из аморфного состояния в кристаллическое – возможно и иногда наблюдается.


    Примером такого превращения служит расстеклование – самопроизволная кристаллизация стекла при повышенных температурах, сопровождающаяся его разрушением.


    Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава.


    У металлов и сплавов аморфное состояние формируется, как правило, если расплав охлаждается за время порядка долей-десятков миллисекунд. Для стёкол достаточно намного меньшей скорости охлаждения.


    Кварц (SiO 2 ) также имеет низкую скорость кристаллизации. Поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоёв вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности и поэтому аморфного.

    Жидкости

    Жидкость – промежуточное состояние между твёрдым телом и газом.


    Жидкое состояние является промежуточным между газообразным и кристаллическим. По одним свойствам жидкости близки к газам , по другим – к твёрдым телам .


    С газами жидкости сближает, прежде всего, их изотропность и текучесть . Последняя обуславливает способность жидкости легко изменять свою форму.


    Однако высокая плотность и малая сжимаемость жидкостей приближает их к твёрдым телам .


    Способность жидкостей легко изменять свою форму говорит об отсутствии в них жёстких сил межмолекулярного взаимодействия.


    В то же время низкая сжимаемость жидкостей, обусловливающая способность сохранять постоянный при данной температуре объём, указывает на присутствие хотя и не жёстких, но всё же значительных сил взаимодействия между частицами.


    Соотношение потенциальной и кинетической энергии.


    Для каждого агрегатного состояния характерно своё соотношение между потенциальной и кинетической энергиями частиц вещества.


    У твёрдых тел средняя потенциальная энергия частиц больше их средней кинетической энергии. Поэтому в твёрдых телах частицы занимают определённые положения друг относительно друга и лишь колеблются относительно этих положений.


    Для газов соотношение энергий обратное , вследствии чего молекулы газов всегда находятся в состоянии хаотического движения и силы сцепления между молекулами практически отсутствуют, так что газ всегда занимает весь предоставленный ему объём.


    В случае жидкостей кинетическая и потенциальная энергия частиц приблизительно одинаковы , т.е. частицы связаны друг с другом, но не жёстко. Поэтому жидкости текучи, но имеют постоянный при данной температуре объём.


    Стуктуры жидкостей и аморфных тел схожи.


    В результате применения к жидкостям методов структурного анализа установлено, что по структуре жидкости подобны аморфным телам . В большинстве жидкостей наблюдается ближний порядок – число ближайших соседей у каждой молекулы и их взаимное расположение приблизительно одинаковы во всём объёме жидкости.


    Степень упорядоченности частиц у различных жидкостей различна. Кроме того, она изменяется при изменении температуры.


    При низких температурах, незначительно превышающих температуру плавления данного вещества, степень упорядоченности расположения частиц данной жидкости велика.


    С ростом температуры она падает и по мере нагревания свойства жидкости всё больше и больше приближаются к свойствам газа . При достижении критической температуры различие между жидкостью и газом исчезает.


    Вследствии сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твёрдым телам относят только вещества в кристаллическом состоянии.


    Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах в отличие от обычных жидкостей частицы имеют незначительную подвижность – такую же как в кристаллах.