Кристаллические и аморфные тела

Цель урока:

    Раскрыть основные свойства кристаллических и аморфных тел.

    Познакомить учащихся с правильной формой кристаллов и со свойством анизотропии, методом моделирования в изучении свойств кристаллов.

Оборудование:

    Набор кристаллических тел; линза короткофокусная.

    Спиртовка, стеклянная палочка.

    Компьютер с мультимедийным проектором; план-конспект урока, мультимедийное приложение к уроку, выполненное в Mikrosoft Point .

Ход урока

Вступление: Большинство окружающих нас твердых тел представляют собой вещества в кристаллическом состоянии. К ним относятся строительные и конструкционные материалы: различные марки стали, всевозможные металлические сплавы, минералы и т. д. Специальная область физики-физика твердого тела - занимается изучением строения и свойств твердых тел. Эта область физики является ведущей во всех физических исследованиях. Она составляет фундамент современной техники.

В любой отрасли техники используются свойства твердого тела: механические, тепловые, электрические, оптические и т. д. Все большее применение в технике находят кристаллы. Вы, наверное, знаете о заслугах советских ученых - академиков, лауреатов Ленинской и Нобелевской премий А. М. Прохорова и Н Г Басова в создании квантовых генераторов. Действие современных оптических квантовых генераторов - лазеров - основано на использовании свойств монокристаллов (рубина и др.) Как устроен кристалл? Почему многие кристаллы обладают удивительными свойствами? Каковы особенности структуры кристаллов, которые отличают их от аморфных тел? Ответы на эти и аналогичные вопросы вы сможете дать в конце урока. Запишем тему “Кристаллические и аморфные тела”.

Изложение нового материала:

Обратимся к пройденному материалу. Какими свойствами обладают твёрдые тела?

Ученик:

1) Они сохраняют форму и объём.

2) В строении имеют кристаллическую решётку.

Учитель: Все твёрдые тела делятся на кристаллические и аморфные. Мы рассмотрим, в чём их сходство и различие.

Что такое кристаллы?

Кристаллы - это твёрдые тела, атомы или молекулы которых занимают определённые, упорядоченные положения в пространстве. Кристаллы одного и того же вещества имеют разнообразную форму. Углы между отдельными гранями кристаллов одинаковы. Некоторые формы кристаллов симметричны. Цвет кристаллов различен, - очевидно, это зависит от примесей.

Для наглядного представления внутренней структуры кристалла используют его изображение с помощью кристаллической решётки. Различают несколько типов кристаллов:

1) ионные

2) атомные

3) металлические

4) молекулярные.

Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии. Кристаллические тела делятся на монокристаллы и поликристаллы.

Монокристаллы - одиночные кристаллы (кварц, слюда…) Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии. Плоскость симметрии, ось симметрии, центр симметрии. На первый взгляд кажется, что число видов симметрии может быть бесконечно большим. В 1867 г. русский инженер А. В. Гадолин впервые доказал, что кристаллы могут обладать лишь 32 видами симметрии. Убедимся в симметрии кристаллика снега - снежинки

Симметрия кристаллов и другие их свойства, о которых мы будем говорить далее, привели к важной догадке о закономерностях в расположении частиц, составляющих кристалл. Может кто-нибудь из вас попытается ее сформулировать?

Ученик. Частицы в кристалле располагаются так, что они образуют определенную правильную форму, решетку.

Учитель. Частицы в кристалле образуют правильную пространственную решетку. Пространственные решетки различных кристаллов различны. Перед вами модель пространственной решетки поваренной соли. (Демонстрирует модель.) Шарики одного цвета имитируют ионы натрия, шарики другого цвета - ионы хлора. Если соединить эти узлы прямыми линиями, то образуется пространственная решетка, аналогичная представленной модели. В каждой пространственной решетке можно выделить некоторые повторяющиеся элементы ее структуры, иначе говоря, элементарную ячейку.

Понятие о пространственной решетке позволило объяснить свойства кристаллов.

Рассмотрим их свойства.

1) Внешняя правильная геометрическая форма (модели)

2) Постоянная температура плавления.

3) Анизотропия – различие в физических свойствах от выбранного в кристалле направления (показывает пример со слюдой, с кристаллом кварца)

Но монокристаллы в природе встречаются редко. Но такой кристалл можно вырастить в искусственных условиях.

А сейчас познакомимся с поликристаллами.

Поликристаллы - это твёрдые тела, состоящие из большого числа кристаллов, беспорядочно ориентированных друг относительно друга (сталь, чугун …)

Поликристаллы тоже имеют правильную форму и ровные грани, температура плавления у них имеет постоянное значение для каждого вещества. Но в отличие от монокристаллов, поликристаллы изотропны, т.е. физические свойства одинаковые по всем направлениям. Это объясняется тем, что кристаллы внутри располагаются беспорядочно, и каждый в отдельности обладает анизотропией, а в целом кристалл изотропен.

Кроме кристаллических тел существуют - аморфные тела.

Аморфные тела - это твёрдые тела, где сохраняется только ближний порядок в расположении атомов. (Кремнезём, смола, стекло, канифоль, сахарный леденец).

Например, кварц может находиться как в кристаллическом состоянии, так и аморфном - кремнезём. (См. рис в учебнике). Они не имеют постоянной температуры плавления и обладают текучестью (показывает сгибание стеклянной палочки над спиртовкой). Аморфные тела изотропны, при низких температурах они ведут себя подобно кристаллическим телам, а при высокой подобны жидкостям.

Наблюдение кристаллических и аморфных тел

(делают записи в тетрадь)

    Рассматриваем с помощью лупы кристаллики поваренной соли. - Какую форму они имеют? (форма кубиков).

    Рассмотрим кристаллы медного купороса. – Какова особенность данных кристаллов? (некоторые имеют плоские грани).

    Рассмотрим излом цинка и найдем на нем грани мелких кристалликов.

    Рассмотрим аморфные тела: стекло, канифоль или воск. Обратим внимание на излом стекла. В чем отличие от излома металла? (гладкая поверхность с острыми краями).

Задачи для самостоятельной работы.

1. Почему в мороз снег скрипит под ногами?

Ответ : Ломаются сотни тысяч снежинок – кристаллов.

2. Каково происхождение узоров на поверхности оцинкованного железа?

Ответ : Узоры появляются вследствие кристаллизации цинка.

3. Итоговый тест.

Учитель: Откройте дневники и запишите задание на дом: § 75,76(1); § 24, 26,27. Задание для желающих: вырастить кристаллы из раствора медного купороса или квасцов.

Литература:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика 10 кл. – М.: Просвещение 1992.

2. Пинский А.А. Физика 10 кл. – М. “Просвещение” 1993г.

3. Тарасов Л. В. Этот удивительно симметричный мир. - М.: Просвещение, 1982.

4. Школьникам о современной физике: физика сложных систем. - М.: Просвещение, 1978.

5. Энциклопедический словарь юного физика.

6. В.Г. Разумовский, Л.С. Хижнякова. Современный урок физики в средней школе. – М.: Просвещение, 1983.

7. Методика преподавания физики в 8–10 классах средней школы. Ч. 2/ Под ред. В.П. Орехова, А.В. Усовой и др. – М.: Просвещение 1980.

8. В.А.Волков. Поурочные разработки по физике. М. “ВАКО” 2006г.

Итоговый тест

1. Закончите предложение.

1) монокристаллы;

2) поликристаллы.

а) одиночные кристаллы;

1) крупинка соли;

3) крупинка сахара;

4) кусочек сахара-рафинада

в) аморфное состояние.

1) кристаллические тела;

2) аморфные тела.

Итоговый тест

1. Закончите предложение.

«Зависимость физических свойств от направления внутри кристалла называется …»

2. Вставьте пропущенные слова.

«Твердые тела подразделяются на … и … »

3. Найдите соответствие между твердыми телами и кристаллами.

1) монокристаллы;

2) поликристаллы.

а) одиночные кристаллы;

б) большое число маленьких кристалликов.

4. Найдите соответствие между веществом и его состоянием.

1) крупинка соли;

3) крупинка сахара;

4) кусочек сахара-рафинада

а) поликристаллическое состояние;

б) монокристаллическое состояние;

в) аморфное состояние.

5. Найдите соответствие между телами и температурой плавления.

1) кристаллические тела;

2) аморфные тела.

а) определенной температуры плавления нет;

б) температуры плавления постоянная.

Если кристаллические решетки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решетки. Сами расстояния между частицами называются параметрами решетки. Параметры решетки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Источники

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.
  • Курс общей физики, книга 3, И. В. Савельев: Астрель, 2001, ISBN 5-17-004585-9
  • Кристаллы / М. П. Шаскольская , 208 с ил. 20 см, 2-е изд., испр. М. Наука 1985

См. также

Ссылки

  • Кристаллы минералов , Формы природного растворения кристаллов
  • Единственный с своём роде завод, производящий Кристаллы

Wikimedia Foundation . 2010 .

Смотреть что такое "Кристаллические тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… …

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Основная механическая величина, определяющая величину ускорения, сообщаемого телу данной силой. М. тел прямо пропорциональны силам, сообщающим им равные ускорения и обратно пропорциональны ускорениям, сообщаемыми им равными силами. Поэтому связь… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    Под этим названием известны соединения, которые можно рассматривать, как дигидроароматические углеводороды, в которых обе метиленные группы (СН2) замещены группами СО, т. е., следовательно, с этой точки зрения X. являются… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как капельных, так и упругих, т. е. газов. Малейшая сила приводит в движение часть жидкого тела и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной егочасти без нарушения связи целого. Такое движение составляетхарактеристику жидкостей, как капельных, так и упругих, т.е. газов.Малейшая Сила приводит в движение часть жидкого тела и вызывает … Энциклопедия Брокгауза и Ефрона

    - (хим.). Буквально гетерогенные системы значит разнородные, а гомогенные однородные системы; при этом, однако, есть ряд подразумеваемых допущений, почему вопрос заслуживает более подробного рассмотрения. Материя (Le Chatelier, An. d. m. , 9, 131… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Комплект таблиц. Физика. 10 класс (16 таблиц) , . Учебный альбом из 16 листов. Артикул - 5-8591-016. Физические величины и фундаментальные константы. Строение атома. Кинематика вращательного движения. Кинематика колебательного движения.…
  • Пробужденная аура. Развитие вашей внутренней энергии , Кала Эмброуз. Человечество вступает в новую эру - мы эволюционируем в сверхмогущественных созданий света. Наши энергетические тела переходят в новые кристаллические структурывнутри и вокруг нашей ауры.…

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.

Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.

Твердые те-ла в течение длительного вре-мени сохраняют свою форму и нужно приложить значительное усилие, чтобы изменить их объем.

В определении твердых тел мы, как пра-вило, связываем их свойства с внешними признаками — сохранением формы и объема. Тем не менее, между собой твердые тела различаются еще и внутренним строением. Одни из них имеют кристаллическое строе-ние — микрочастицы (атомы, ионы, моле-кулы), из которых они состоят, упорядоченно размещаются на значительных расстояниях, то есть сохраняют дальний порядок. Такие твердые тела называют кристаллическими. К ним относятся металлы, поваренная соль, са-хар, алмаз, графит, кварц и т. п.

Другие тела не имеют определенным об-разом упорядоченного размещения атомов, ионов или молекул и по своему внутрен-нему строению больше напоминают жид-кости, поскольку характеризуются ближним порядком размещения микрочастиц. Такие тела называют аморфными. Это — воск, стек-ло, различные смолы, пластмассы и т.п.

Кристаллические и аморфные тела можно различить визуаль-но: на изломе аморфные тела образуют поверхность непра-вильной формы, а кристаллы имеют плоские грани и ступенчатую поверхность.

Аморфное состояние довольно неустой-чивое, и со временем аморфные тела могут стать кристаллическими. Например, на са-харных леденцах, аморфных по своим свой-ствам, после продолжительного хранения образуются кристаллики сахара. Так же при определенных условиях кристаллические тела могут становиться аморфными. На-пример, быстрое остывание некоторых ме-таллов ведет к образованию их аморфного (стекловидного) состояния.

Аморфные тела имеют одинаковые свой-ства по различным направлениям межмолекулярных связей. Поэтому говорят, что они изотропны . С повышением температуры они «становятся мягче» и проявляют текучесть, однако не имеют, как кристаллические тела, фиксированной температуры плавления.

Слово «изотропный» происходит от гр. isos — ровный, одинако-вый; tropos — направление.

Кристаллические тела характеризуются определенным внутренним порядком разме-щения атомов и молекул, образующих раз-нообразные пространственные решетки, ко-торые называются кристаллическими. В зависимости от их формы разные моно-кристаллы вещества образовывают опреде-ленные геометрические формы. Так, моно-кристалл поваренной соли имеет форму ку-ба, лед — шестигранной призмы, алмаз — правильного шестигранника (рис. 3.12). Как правило, они незначительные по размеру, но в природе встречаются и большие мо-нокристаллы, например найдена глыба квар-ца высотой в рост человека.

В естественных условиях большинство кристаллических тел состоит из маленьких монокристаллов, которые в беспорядке сро-слись. Их называют поликристаллами. При-мером такого поликристалла является сне-жинка, приобретающая различные формы, однако крылышки ее всегда имеют шести-угольное направление. Материал с сайта

Монокристаллы отличаются анизотропией свойств, то есть их зависимостью от на-правления ориентации кристаллических гра-ней. Например, такой естественный мине-рал, как слюда, легко расслаивается на пла-стинки под действием силы вдоль одной плоскости, но проявляет значительную проч-ность в перпендикулярном направлении. По-ликристаллы — изотропны по своим свой-ствам. Это обусловливается хаотичностью ориентации монокристаллов, из которых они состоят.

Слово «анизотропный» в пере-воде с греческого означает «не-одинаковый по направлению».

Много кристаллических тел, одинаковых по своему химическому составу, имеют раз-личные физические свойства. Такое явление называется полиморфизмом. Например, по химической природе алмаз и графит — это углерод в двух разных модификациях. Они имеют различные по форме кристалличес-кие решетки, и потому силы взаимодействия между атомами в них разные. Этим объяс-няется, в частности, их разная твердость: графит — мягкий, алмаз — твердый минерал.

В лабораторных условиях по-лучают около десяти модифи-каций льда, хотя в природе су-ществует лишь одна.

На этой странице материал по темам:

  • Какие свойства присущи кристаллическим телам

  • Кристалические тела краткий доклад

  • Каким образом визуально можно отличить кристаллические от аморфного

  • Тверды телафизика кратко

  • Кристаллические аморфные тела кратко

Вопросы по этому материалу:

Кристаллическими называют тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными - в которых атомы и молекулы расположены беспорядочно. С энергетической стороны имеет место принципиальное различие между кристаллическими и аморфными телами, состоящее в том, что процесс плавления и затвердевания кристаллических тел сопровождается определенным тепловым эффектом. У аморфных же тел этого теплового эффекта нет.

Характерные свойства кристаллических веществ:

а) однородность строения (однородностью кристалла назовём одинаковость узора взаимного расположения атомов во всех частях его объема);

б) анизотропия (в изотропных телах все свойства — теплопроводность, электропроводность, твёрдость царапания и т.д. — одинаковы в любом направлении, а в анизотропных телах все свойства неодинаковы в непараллельных направлениях, т.е., например, в одном направлении электрический ток проходит быстрее, в другом — медленнее);

в) симметричность.

Различие в строении кристаллических и аморфных веществ определяет и различие в их свойствах. Так, аморфные вещества, обладая большим запасом свободной энергии, химически более активны, чем кристаллические вещества такого же состава.

Стекло или стеклообразным сплавом называют неорганический или органический продукт плавления, охлажденный до твердого состояния без кристаллизации. Другими словами, стекло - это переохлажденная жидкость.

В аморфных и стеклообразных сплавах при отсутствии дальнего порядка сохраняется ближний порядок - группировки атомных частиц, отражающих химический состав вещества. Такие группировки принято называть структурными единицами. Характерным свойством стеклообразных материалов является их прозрачность в различных областях спектра. Существуют разные разновидности стекол.

Оксидные стекла (например, оконное стекло) получены на основе Na 2 O СаО 6SiО 2 + силикаты калия, свинца (хрусталь) + оксид бора (термостойкое химическое стекло), прозрачны в видимой области спектра. Непрозрачны для ультрафиолетовых лучей.

Халькогенидные стекла (на основе халькогенов - серы, селена, теллура), прозрачные в видимой и ИК-областях спектра. Из них изготавливают приборы ночного видения, ключевые элементы памяти, используют для записи информации (в аппаратах для ксерокопирования), в голографии, для передачи изображения на дальние расстояния и в космическом пространстве, используют в качестве волноводов - волоконно-оптический кабель, термометров сопротивления для атомных реакторов.

Фторцирконатные стекла изготавливают на основе фторидов гафния, циркония с добавками других фторидов, имеют большой диапазон прозрачности - от УФ до ближней ИК области спектра.


Фосфатные стекла изготавливают на основе ортофосфата кальция - прозрачны в видимой и УФ-областях спектра (темные стекла на автомобилях).

Фуллерены - это "химически стабильные замкнутые поверхностные структуры углерода, в которых атомы углерода расположены в вершинах правильных шестиугольников или пятиугольников, регулярным образом покрывающих поверхность сферы или сфероида".

Химическая термодинамика - наука, изучающая условия устойчивости систем и законы. В химической термодинамике изучается применение законов термодинамики к химическим и физико-химическим явлениям.

В ней рассматриваются главным образом:

1) тепловые балансы процессов, включая тепловые эффекты физических и химических процессов;

2) фазовые равновесия для индивидуальных веществ и смесей;

3) химическое равновесие.

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моль вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции: С(тв) + 2H 2 (г) = CH 4 (г) + 74.9 кДж/моль.

Реакции, при которых теплота выделяется (энтальпия уменьшается), называются экзотермическими . Реакции, при которых теплота поглощается (энтальпия растет), называются эндотермическими . Обычно экзотермическими являются те реакции, при которых продукты обладают более прочными химическими связями, чем исходные вещества, а эндотермические — наоборот.

уравнения химических реакций с указанием теплового эффекта называют термохимическими уравнениями. Помимо теплового эффекта, в термохимических уравнениях часто указывается также фазовое состояние и полиморфная модификация веществ.

Если имеется несколько реакций, итоговый тепловой эффект рассчитывают по