Вопрос 16. Закон распределения Вейбулла

Закон распределения Вейбулла - один из самых распространенных в теории надежности. Этому закону следуют усталостная долговечность изделий, наработка до отказа невосстанавливаемых изделий. С помощью распределения Вейбулла можно описывать разнообразные причины отказов: усталостные, внезапные, постепенные. Закону распределения Вейбулла подчиняются отказы коробок скоростей, буровых лебедок, забойных двигателей, тракторов.

Частота отказов изделия или плотность вероятности времени безотказной работы изделия

Интенсивность отказов

Среднее время безотказной работы

где a, k - параметры закона распределения Вейбулла;

Г(x) - гамма-функция, значения которой приведены в таблицах.

При k = 1 распределение Вейбулла переходит в экспоненциальное;

При k =2,5-3,5 - распределение Вейбулла близко к нормальному.

Вопрос 17. Экспоненциальный (показательный) закон распределения

Экспоненциальный закон распределения является частным случаем закона распределения Вейбулла (k=1). Применим к изделиям, прошедшим предварительную приработку. Это распределение используется также при анализе внезапных отказов буровых насосов, горных машин.


Вероятность безотказной работы изделия на интервале времени от 0 до t

Вероятность отказа изделия на интервале времени от 0 до t

Дифференциальная функция или плотность вероятности экспоненциального распределения

Интенсивность отказов

Математическое ожидание при экспоненциальном распределении

Логарифмически нормальная функция распределения нашла широкое применение при анализе надежности объектов техники, биологии, экономики и др. Например, функцию успешно применяют для описания наработки до отказа подшипников, электронных приборов и других изделий.

Неотрицательные случайные значения некоторого параметра распределены логарифмически нормально, если его логарифм распределен нормально. Плотность распределения для различных значений σ приведена на рис. 4.3.

Рис. 4.3.

Плотность распределения описывается зависимостью

где М х и σ – параметры, оцениваемые по результатам п испытаний до отказа:

(4.4)

Для логарифмически нормального закона распределения функция надежности

(4.5)

Вероятность безотказной работы можно определить по таблицам для нормального распределения (см. табл. П6.1 приложения 6) в зависимости от значения квантиля

Математическое ожидание наработки до отказа

Среднее квадратическое отклонение и коэффициент вариации соответственно будут равны

Если v x 0,3, то полагают, что ν x = σ, при этом ошибка составляет не более 1%.

Часто применяют запись зависимостей для логарифмически нормального закона распределения в десятичных логарифмах. В соответствии с этим законом плотность распределения

Оценки параметров lg x 0 и σ определяют по результатам испытаний:

Математическое ожидание М х, среднее квадратическое отклонение σ x и коэффициент вариации ν x наработки до отказа соответственно равны

Пример 4.6

Определить вероятность безотказной работы редуктора в течение t = 103 ч, если ресурс распределен логарифмически нормально с параметрами lg t 0 = 3,6; σ = 0,3.

Решение

Найдем значение квантиля и определим вероятность безотказной работы:

Ответ: R (t ) = 0,0228.

Распределение Вейбулла

Функция распределения Вейбулла представляет собой двухпараметрическое распределение. Описываемый ею закон является универсальным, так как при соответствующих значениях параметров превращается в нормальное, экспоненциальное и другие виды распределений. Автор данного закона распределения В. Вейбулл использовал его при описании и анализе экспериментально наблюдавшихся разбросов усталостной прочности стали, пределов ее упругости. Закон Вейбулла удовлетворительно описывает наработку до отказа подшипников, элементов электронной аппаратуры, его используют для оценки надежности деталей и узлов машин, в том числе автомобилей, а также для оценки надежности машин в процессе их приработки. Плотность распределения описывается зависимостью

где α – параметр формы кривой распределения; λ – параметр масштаба кривой распределения.

График функции плотности распределения приведен на рис. 4.4.

Рис. 4.4.

Функция распределения Вейбулла

Функция надежности для этого закона распределения

Математическое ожидание случайной величины х равно

где Г(x ) – гамма-функция.

Для непрерывных значений х

Для целочисленных значений х гамма-функцию вычисляют по формуле

также верны формулы

Дисперсия случайной величины равна

Широкое применение при анализе и расчетах надежности изделий закона распределения Вейбулла объясняется тем, что этот закон, обобщая экспоненциальное распределение, содержит дополнительный параметр α.

Подбирая нужным образом параметры а и λ, можно получить лучшее соответствие расчетных значений опытным данным по сравнению с экспоненциальным законом, который является однопараметрическим (параметр λ).

Так, для изделий, у которых имеются скрытые дефекты, но которые длительное время не используются (а значит, медленнее стареют), опасность отказа имеет наибольшее значение в начальный период, а потом быстро падает. Функция надежности для такого изделия хорошо описывается законом Вейбулла с параметром α < 1.

Наоборот, если изделие хорошо контролируется при изготовлении и почти не имеет скрытых дефектов, но подвергается быстрому старению, то функция надежности описывается законом Вейбулла с параметром α > 1. При α = 3,3 распределение Вейбулла близко к нормальному.

Распределение Вейбулла

Двухпараметрическое распределение Вейбулла является более гибким, чем экспоненциальное, которое может рассматриваться как частный случай первого. Плотность распределения Вейбулла

При 1/t0 = и m = 1 уравнение (8) превращается в плотность экспоненциального распределения. Величина 1/t0 определяет масштаб, а m - асимметрию (форму) распределения.

После интегрирования (8) от 0 до t получаем функцию распределения F(t), равную Q(t) :

Следовательно,

Отношение плотности (8) и вероятности (10) даёт интенсивность отказов

Основные графики распределения Вейбулла показаны на рис.4.

Двухпараметрическое распределение Вейбулла обладает исключительной гибкостью при аппроксимации эмпирических распределений и поэтому широко применяется в практических приложениях теории надёжности. Оно используется при описании законов надежности, как на участке приработки, так и при анализе процессов старения и износа.

Средняя наработка на отказ при распределении Вейбулла определяется из условия и равна


Рис.3.4. Графики распределения Вейбулла

где - гамма - функция;

Нормальное распределение

Двухпараметрическое нормальное (гауссово) распределение исключительно широко применяется в практических задачах теории надёжности. Параметрами этого распределения является - математическое ожидание случайной величины и - среднеквадратическое отклонение. Плотность нормального распределения определяется зависимостью

Функция распределения F(x) (рис.3.5) при нормальном законе определяется интегралом от плотности f(x) с пределами интегрирования от - до + .

Случайная величина t как и во всех задачах надёжности имеет смысл наработки объекта и поэтому определена на положительной полуоси чисел, а нормальный закон, как уже отмечалось, определён на всей числовой оси от - до + . В связи с этим в теории надёжности рассматривают усечённый нормальный закон, плотность которого определяется путём умножения (3.13) на постоянный множитель

где, a, b - левая и правая границы усечённого распределения.

F(a),F(b) - значения функций распределения нормального закона на левой и правой границах усечения.

Смысл постоянного множителя с становится ясным при рассмотрении графика плотности нормального распределения, представленного на рис.6.


Рис.5.

Известно, что площадь под кривой плотности распределения всегда должна быть равна единице, то есть в данном случае. Как показано на рис.6 для обеспечения этого условия кривую плотности усечённого нормального закона приходится сдвигать вверх и вправо путём умножения исходной плотности нормального закона на постоянный множитель. Соответственно будут меняться основные параметры: математическое ожидание и среднеквадратическое отклонение. Расчёты показывают, что при отношении / < 0.5 (коэффициент вариации) постоянный множитель c для усечённо- нормального закона близок к единице. Поэтому во многих практических задачах теории надёжности пользуются параметрами нормального закона распределения случайной наработки объекта до отказа. При этом математическое ожидание отождествляют со средней наработкой до отказа Т0.

Рис.6.

Вероятность безотказной работы при нормальном распределении равна

Вероятность отказа рассчитывается по формуле (при с 1)

Интенсивность отказов определяется отношением плотности к вероятности безотказной работы

Интегралы в выражениях (14)…(16) не выражаются через элементарные функции. Обычно они представляются через интеграл вероятности от параметра

для которого составлены таблицы.

С учётом (17) вероятность безотказной работы при нормальном законе определяется по формуле

Рассмотрим распределение Вейбулла, вычислим его математическое ожидание, дисперсию, медиану. С помощью функции MS EXCEL ВЕЙБУЛЛ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел и произведем оценку параметров распределения.

Распределение Вейбулла (англ. Weibull distribution ) зависит от 2-х параметров: α (альфа)>0 (определяет форму распределения) и b (бета)>0 (определяет масштаб). этого распределения задается следующей формулой:

Если параметр альфа = 1, то распределение Вейбулла превращается в . Параметр бета на практике обычно принимается >=1.

Функция распределения задается следующей формулой:

Примечание : Для удобства написания формул в файле примера для параметров распределения альфа и бета созданы соответствующие .

В файле примера также построены графики плотности вероятности и функции распределения с отмеченными значениями среднего , и .

Генерация случайных чисел и оценка параметров

Используем обратную функцию распределения (или p - quantile , см. статью про ), которая для распределения Вейбулла может быть выражена в явном виде с использованием элементарных функций:

С помощью этой функции можно сгенерировать значения случайной величины, имеющей распределение Вейбулла . Для этого нужно использовать формулу MS EXCEL:

Бета*(-LN(СЛЧИС()))^(1/альфа)

Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Теперь имея массив случайных чисел, сгенерированных с заданными параметрами распределения альфа и бета (пусть их будет 200), оценим параметры распределения.

Оценку параметров альфа и бета можно сделать с помощью линейной регрессии. Для этого необходимо привести функцию распределения Вейбулла к виду обычной прямой, задаваемой уравнением Y=aX+b. Для этого сделаем следующие преобразования:

Сравнивая выражение

с уравнением прямой Y=ax+b получим, что:

  • Y соответствует левая часть выражения,
  • X – соответствует ln(x),
  • параметр распределения бета соответствует коэффициенту a , отвечающего за наклон прямой к оси абсцисс.
  • выражение –бета*ln(альфа) соответствует коэффициенту b (ордината точки пересечения с осью Oy).

По сути, мы практически построили (probability plot) для распределения Вейбулла : если ln(x), отложенные по оси Ох, лягут приблизительно вдоль прямой, то это будет означать, что значения выборки взяты из распределения Вейбулла. Осталось модифицировать ось Оу с помощью формулы =LN(-LN(1-Ui)), где Ui=(i-0,5)/200, а i=1; 2; ...; 200.

Заметим, что -LN(1-Ui) – это обратная функция распределения с параметрами альфа=1 и бета=1. Второй логарифм нам потребовался, т.к. по оси абсцисс отложены не сами x, а ln(x).

Примечание : Т.к. форма распределения Вейбулла существенно зависит от его параметров, то вместо альфа=1 и бета=1 для обратной функции лучше использовать точечные оценки этих параметров , полученные на основании выборки . О том как вычислить оценку параметров альфа и бета см. ниже.

В файле примера на листе Генерация построен соответствующий Вероятностный график .

С помощью функции НАКЛОН() вычислим наклон получившейся кривой (коэффициент прямой а, англ. slope ), который служит оценкой параметра бета .

Функция ОТРЕЗОК() вернет ординату точки пересечения с Оу (коэффициент прямой b ). Выражение =EXP(-b/бета) служит оценкой параметра альфа .

Также можно сравнить плотности вероятностей модельного распределения и распределения с параметрами, полученными в результате оценки.

Как видно из диаграммы выше, совпадение также достаточно хорошее.

СОВЕТ : Т.к. генерирование случайных чисел происходит с помощью функции СЛЧИС() , то нажимая клавишу F9 , можно каждый раз получать новую выборку и, соответственно, новую оценку параметров.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

4. Случайные величины и их распределения

Распределения Вейбулла - Гнеденко

Экспоненциальные распределения - частный случай т. н. распределений Вейбулла - Гнеденко. Они названы по фамилиям инженера В. Вейбулла, введшего эти распределения в практику анализа результатов усталостных испытаний, и математика Б.В.Гнеденко (1912-1995), получившего такие распределения в качестве предельных при изучении максимального из результатов испытаний. Пусть Х - случайная величина, характеризующая длительность функционирования изделия, сложной системы, элемента (т.е. ресурс, наработку до предельного состояния и т.п.), длительность функционирования предприятия или жизни живого существа и т.д. Важную роль играет интенсивность отказа

где F (x ) и f (x ) - функция распределения и плотность случайной величины Х .

Опишем типичное поведение интенсивности отказа. Весь интервал времени можно разбить на три периода. На первом из них функция λ(х) имеет высокие значения и явную тенденцию к убыванию (чаще всего она монотонно убывает). Это можно объяснить наличием в рассматриваемой партии единиц продукции с явными и скрытыми дефектами, которые приводят к относительно быстрому выходу из строя этих единиц продукции. Первый период называют "периодом приработки" (или "обкатки"). Именно на него обычно распространяется гарантийный срок.

Затем наступает период нормальной эксплуатации, характеризующийся приблизительно постоянной и сравнительно низкой интенсивностью отказов. Природа отказов в этот период носит внезапный характер (аварии, ошибки эксплуатационных работников и т.п.) и не зависит от длительности эксплуатации единицы продукции.

Наконец, последний период эксплуатации - период старения и износа. Природа отказов в этот период - в необратимых физико-механических и химических изменениях материалов, приводящих к прогрессирующему ухудшению качества единицы продукции и окончательному выходу ее из строя.

Каждому периоду соответствует свой вид функции λ(х) . Рассмотрим класс степенных зависимостей

λ(х) = λ 0 bx b -1 , (12)

где λ 0 > 0 и b > 0 - некоторые числовые параметры. Значения b < 1, b = 0 и b > 1 отвечают виду интенсивности отказов в периоды приработки, нормальной эксплуатации и старения соответственно.

Соотношение (11) при заданной интенсивности отказа λ(х) - дифференциальное уравнение относительно функции F (x ). Из теории дифференциальных уравнений следует, что

(13)

Подставив (12) в (13), получим, что

(14)

Распределение, задаваемое формулой (14) называется распределением Вейбулла - Гнеденко. Поскольку

то из формулы (14) следует, что величина а , задаваемая формулой (15), является масштабным параметром. Иногда вводят и параметр сдвига, т.е. функциями распределения Вейбулла - Гнеденко называют F (x - c ), где F (x ) задается формулой (14) при некоторых λ 0 и b .

Плотность распределения Вейбулла - Гнеденко имеет вид

(16)

где a > 0 - параметр масштаба, b > 0 - параметр формы, с - параметр сдвига. При этом параметр а из формулы (16) связан с параметром λ 0 из формулы (14) соотношением, указанным в формуле (15).

Экспоненциальное распределение - весьма частный случай распределения Вейбулла - Гнеденко, соответствующий значению параметра формы b = 1.

Распределение Вейбулла - Гнеденко применяется также при построении вероятностных моделей ситуаций, в которых поведение объекта определяется "наиболее слабым звеном". Подразумевается аналогия с цепью, сохранность которой определяется тем ее звеном, которое имеет наименьшую прочность. Другими словами, пусть X 1 , X 2 ,…, X n - независимые одинаково распределенные случайные величины,

X(1) = min (X 1 , X 2 ,…, X n ), X(n) = max (X 1 , X 2 ,…, X n ).

В ряде прикладных задач большую роль играют X (1) и X (n ) , в частности, при исследовании максимально возможных значений ("рекордов") тех или иных значений, например, страховых выплат или потерь из-за коммерческих рисков, при изучении пределов упругости и выносливости стали, ряда характеристик надежности и т.п. Показано, что при больших n распределения X (1) и X (n ) , как правило, хорошо описываются распределениями Вейбулла - Гнеденко. Основополагающий вклад в изучение распределений X (1) и X (n ) внес советский математик Б.В.Гнеденко. Использованию полученных результатов в экономике, менеджменте, технике и других областях посвящены труды В. Вейбулла, Э. Гумбеля, В.Б. Невзорова, Э.М. Кудлаева и многих иных специалистов.

Предыдущая