Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим . Эта дополнительная величина в уравнении называется параметр . На самом деле с каждым параметрическим уравнением может быть написано множество уравнений. Мы рассмотрим модуль параметрического уравнения и решение простых параметрических уравнений.

Задача 1 Решите уравнения в отношении к $x$
A) $x + a = 7$
B) $2x + 8a = 4$
C) $x + a = 2a – x$
D) $ax = 5$
E) $a – x = x + b$
F) $ax = 3a$

Решение :

A) $x + a = 7 \Leftrightarrow x = 7 – a$, то есть решение к данному уравнению найдено.
Для различных значений параметров, решения есть $x = 7 – a$

B) $2x + 8a = 4 \Leftrightarrow 2x = 4 - 8a \Leftrightarrow x = 2 – 4a$

C) $x + a = 2a – x \Leftrightarrow x + x = 2a – a \Leftrightarrow 2x = a \Leftrightarrow x = \frac{a}{2}$

D) $ax = 5$, когда а отличается от 0 мы можем разделить обе части на a и мы получим $x = 5$
Если $a = 0$, мы получим уравнение, такое как $0.x = 5$, и которое не имеет решения;

E) $a – x = x + b \Leftrightarrow a – b = x + x \Leftrightarrow 2x = a – b \Leftrightarrow x = \frac{a-b}{2}$

F) Когда a = 0 уравнение ax = 3a равно 0.x = 0
Поэтому, любое x является решением. Если a отличается от 0, тогда
$ax = 3a \Leftrightarrow x = \frac{3a}{a} \Leftrightarrow x = 3$

Задача 2 Если a является параметром, решите уравнение:
A) $(a + 1)x = 2a + 3$
B) $2a + x = ax + 4$
C) $a^2x – x = a$
D) $a^2x + x = a$

Решение :

A) Если $a + 1$ отлично от 0, то есть.. $a \neq -1$,
тогда $x = \frac{2a+3}{a+1}$;
если $a + 1 = 0$, i.e. $a = - 1$
уравнение принимает вид $0\cdot x = (2)\cdot(-1) + 3 \Leftrightarrow$
$0\cdot x = 1$, что не имеет решения;

B) $2a + x = ax + 4 \Leftrightarrow$
$x – ax = 4 - 2a \Leftrightarrow$
$(1 – a)\cdot x = 2(2 – a)$
Если $(1 – a) \neq 0$, то есть a $\neq 1$; решение будет
$x = \frac{2(2 - a)}{(1 - a)}$;
Если $a = 1$ уравнение примет вид $0\cdot x = 2(2 - 1) \Leftrightarrow$
$0\cdot x = 2$, что не имеет решения

C) $a^2x – x = a \Leftrightarrow$
$x(a^2 -1) = a \Leftrightarrow$
$(a - 1)(a + 1)x = a$
Если $a - 1 \neq 0$ и $a + 1 \neq 0$ то есть $a \neq 1, -1$,
решением есть is $x = \frac{a}{(a - 1)(a + 1)}$
Если $a = 1$ or $a = -1$, уравнение принимает вид is $0\cdot x = \pm 1$, что не имеет решения

D) $a^2x + x = a \Leftrightarrow$
$(a^2 + 1)x = a$
В этом случае $a^2 + 1 \neq 0$ для любого $а$, потому что это есть сумма позитивного числа (1) и одного негативного числа
$(a^2 \geq 0)$ поэтому $x = \frac{a}{a^2 + 1}$

Задача 3 Если a and b являются параметрами, решите уравнения:
A) $ax + b = 0$
B) $ax + 2b = x$
C) $(b - 1)y = 1 – a$
D) $(b^2 + 1)y = a + 2$

Решение :

A) $ax + b = 0 \Leftrightarrow ax = -b$
Если $a \neq 0$, тогда решение есть $x = -\frac{b}{a}$.
Если $a = 0, b \neq 0$, уравнение принимает вид $0\cdot x = -b$ и не имеет решения.
Если $a = 0$ и $b = 0$, уравнение принимает вид $0\cdot x = 0$ и любое $x$ является решением;

B) $ax + 2b = x \Leftrightarrow ax – x = -2b \Leftrightarrow (a - 1)x = -2b$
Если $a - 1 \neq 0$, i.e. $a \neq 1$, решение есть is $x = -\frac{2b}{a-1}$
Если $a - 1 = 0$, то есть $a = 1$, и $b \neq 0$, уравнение принимает вид $0\cdot x = - 2b$ и не имеет решения

C) Если $b - 1 \neq 0$, то есть $b \neq 1$,
решением есть $y = \frac{1-a}{b-1}$
Если $b - 1 = 0$, то есть $b = 1$, но $1 – a \neq 0$,
то есть $a \neq 1$, уравнение принимает вид $0\cdot y = 1 – a$ и не имеет решения.
Если $b = 1$ и $a = 1$ уравнение принимает вид $0\cdot y = 0$ и любое $y$ является решением

D) $b^2 + 1 \neq 0$ для любого $b$(почему?), поэтому
$y = \frac{a+2}{b^2}$ является решением уравнения.

Задача $4$ Для каких значений $x$ следующие выражения имеют равные значения:
A) $5x + a$ и $3ax + 4$
B) $2x - 2$ и $4x + 5a$

Решение :

Чтобы получить одинаковые значения мы должны найти решения уравнений
$5x + a = 3ax + 4$ и $2x – 2 = 4x + 5a$

A) $5x + a = 3ax + 4 \Leftrightarrow$
$5x - 3ax = 4 – a \Leftrightarrow$
$(5 - 3a)x = 4 – a$
Если $5 - 3a \neq 0$, т.e. $a \neq \frac{5}{3}$, решения есть $x = \frac{4-a}{5-3a}$
Если $5 - 3a = 0$, т.e. $a = \frac{5}{3}$, уравнение принимает вид $0\cdot x = 4 – \frac{5}{3} \Leftrightarrow$
$0\cdot x = \frac{7}{3}$, что не имеет решения

B) $2x - 2 = 4x + 5a \Leftrightarrow$
$-2 - 5a = 4x - 2x \Leftrightarrow$
$2x = - 2 - 5a \Leftrightarrow$
$x = -\frac{2+5a}{2}$

Задача 5
A) $|ax + 2| = 4$
B) $|2x + 1| = 3a$
C) $|ax + 2a| = 3$

Решение :

A) $|ax + 2| = 4 \Leftrightarrow ax + 2 = 4$ или $ax + 2 = -4 \Leftrightarrow$
$ax = 2$ или $ax = - 6$
Если $a \neq 0$, уравнения примут вид $x = \frac{2}{a}$ or $x = -\frac{6}{a}$
Если $a = 0$, уравнения не имею решения

B) Если $a Если $a > 0$, это эквивалентно $2x + 1 = 3a$
или $2x + 1 = -3a \Leftrightarrow 2x = 3a - 1 \Leftrightarrow x = \frac{3a-1}{2}$ or
$2x = -3a - 1 \Leftrightarrow x = \frac{3a-1}{2} = -\frac{3a-1}{2}$

C) $|ax + 2a| = 3 \Leftrightarrow ax + 2a = 3$ или $ax + 2a = - 3$,
и мы находим $ax = 3 - 2a$ или $ax = -3 - 2a$
Если a = 0, тогда нет решений, если $a \neq 0$
решениями есть: $x = \frac{3-2a}{a}$ и $x = -\frac{3+2a}{a}$

Задача 6 Решите уравнение $2 – x = 2b – 2ax$, где a и b являются действительными параметрами. Найдите, для каких значениях a уравнение имеет в качестве решения натуральное число, если $b = 7$

Решение :

Представим данное уравнение в следующем виде: $(2a - 1)x = 2(b - 1)$
Возможны следующие варианты:
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, уравнение имеет единственное решение
$x = \frac{2(b-1)}{2a-1}$
Если $a = \frac{1}{2}$ и $b = 1$, уравнение получает вид $0\cdot x = 0$ и любое $x$ является решением
Если $a = \frac{1}{2}$ и $b \neq 1$, мы получаем $0\cdot x = 2(b - 1)$, где $2(b - 1) \neq 0$
В этом случае уравнение не имеет решения.
Если $b = 7$ и $a \neq \frac{1}{2}$ является единственным решением
$x = \frac{2(7-1)}{2a-1} = \frac{12}{2a-1}$
Если a целое число, тогда $2a - 1$ также есть целым числом и решением есть
$x = \frac{12}{2a-1}$ является натуральным числом когда
$2a - 1$ есть положительным делителем для числа $12$.
Чтобы a было целым числом, делитель числа $12$ должен быть нечетным. Но только $1$ и $3$ являются положительными нечетными числами, на которые делится12
Поэтому $2a - 1 = 3 \Leftrightarrow a = 2$ или $2a - 1 = 1 \Leftrightarrow$
$a = 1 a = 2$ или $2a - 1 = 1 \Leftrightarrow a = 1$

Задача 7 Решите уравнение $|ax - 2 – a| = 4$, где a является параметром. Найдите, для каких значениях а корнями уравнения являются целые отрицательные числа.

Решение :

Из определения модуля мы получаем
$|ax - 2 – x| = 4 \Leftrightarrow ax - 2 – x = 4$ или $ax - 2 – x = - 4$
Из первого равенства мы получаем $x(a - 1) - 2 = 4 \Leftrightarrow$
$(a - 1)x = 4 + 2 \Leftrightarrow (a - 1)x = 6$
Из второго равенства мы получаем $(a - 1)x = -2$
Если $a - 1 = 0$, т.e. $a = 1$, последнее уравнение не имеет решения.
Если $a \neq 1$ мы находим, что $x = \frac{6}{a-1}$ или $x = -\frac{2}{a-1}$
Чтобы эти корни были целыми отрицательными числами, должно выполняться следующее:
Для первого равенство $a - 1$ должно быть отрицательным делителем 6, и для второго - положительным делителям 2
Тогда $a - 1 = -1; -2; -3; - 6$ или $a - 1 = 1; 2$
Мы получаем $a - 1 = -1 \Leftrightarrow a = 0; a - 1 = -2 \Leftrightarrow$
$a = -1; a - 1 = -3 \Leftrightarrow a = -2; a - 1 = -6 \Leftrightarrow a = -5$
или $a - 1 = 1 \Leftrightarrow a = 2; a - 1 = 2 \Leftrightarrow a = 3$
Тогда $a = -5; -2; -1; 0; 2; 3$ являются решениями задачи.

Задача 8 Решите уравнение:
A) $3ax – a = 1 – x$, где a это параметр;
B) $2ax + b = 2 + x$, где a и b являются параметрами

Решение :

A) $3ax + x = 1 + a \Leftrightarrow (3a + 1)x = 1 + a$.
Если $3a + 1 \neq 0$, т.e. $a \neq -11 /3 /3$ , решение есть
$x = \frac{1+a}{3a+1}$
Если $a = -\frac{1}{3}$ уравнение принимает вид $0\cdot x = \frac{1.1}{3}$, что не имеет решения.

B) $2ax – x = 2 – b \Leftrightarrow (2a - 1)x = 2 – b$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}, x = \frac{2-b}{2a-1}$ является решением.
Если $a = \frac{1}{2}$ уравнение принимает вид $0.x = 2 – b$
Тогда, если $b = 2$, любое x является решением, если $b \neq 2$, уравнение не имеет решения.

Задача 9 Дано уравнение $6(kx - 6) + 24 = 5kx$ , где к - целое число. Найдите, для каких значений k уравнение:
A) имеет корень $-\frac{4}{3}$
B) не имеет решения;
C) имеет корень как натуральное число.

Решение :

Перепишем уравнение в виде $6kx - 36 + 24 = 5kx \Leftrightarrow kx = 12$

A) Если $x = -\frac{4}{3}$, для k мы получим уравнение $-\frac{4}{3k} = 12 \Leftrightarrow k = - 9$

B) Уравнение $kx = 12$ не имеет решения, когда $k = 0$

C) Когда $k \neq 0$ является корнем $x = \frac{12}{k}$ и это натуральное число, если k есть целым положительным числом, на которое делится 12, т.e. $k = 1, 2, 3, 4, 6, 12$

Задача 10 Решите уравнение:
A) $2ax + 1 = x + a$, где a является параметром;
B) $2ax + 1 = x + b$, где a и b являются параметрами.

Решение :

A) $2ax + 1 = x + a \Leftrightarrow 2ax – x = a - 1 \Leftrightarrow$
$(2a - 1)x = a - 1$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, единственным решением уравнения является
$x = \frac{a-1}{2a-1}$
Если $2a - 1 = 0$, т.e. $a = \frac{1}{2}$, уравнение принимает вид
$0.x = \frac{1}{2}- 1 \Leftrightarrow 0.x = -\frac{1}{2}$, что не имеет решения

B) $2ax + 1 = x + b \Leftrightarrow$
$2ax – x = b - 1 \Leftrightarrow$
$(2a - 1)x = b - 1$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, решением является
$x = \frac{b-1}{2a-1}$
Если $a = \frac{1}{2}$, уравнения эквивалентно $0.x = b - 1$
Если b = 1 любое x является решением, если $b \neq 1$ тогда нет решения.

Задача 11 Дано уравнение $3(ax - 4) + 4 = 2ax$, где параметром является целым числом. Найдите, для каких значений a уравнение в качестве корней имеет:
А) $\left(-\frac{2}{3}\right)$
B) целое число
C) натуральное число

Решение :

A) Если $x = -\frac{2}{3}$ есть решением уравнения, тогда должно быть истинным
$3\left + 4 = 2a\left(-\frac{2}{3}\right) \Leftrightarrow$
$-2a - 12 + 4 = -\frac{4a}{3} \Leftrightarrow$
$\frac{4a}{3} - 2a = 8 \Leftrightarrow \frac{4a-6a}{3} = 8 \Leftrightarrow$
$-\frac{2a}{3} = 8 \Leftrightarrow a = -12$

B) $3(ax - 4) + 4 = 2ax \Leftrightarrow 3ax - 2ax = 12 - 4 \Leftrightarrow ax = 8$
Если $a \neq 0$ решением является $x = \frac{8}{a}$, это целое число, если а является делимым числа $8$.
Поэтому; $±2; ±4; ±8$
Если $a=0$, уравнение не имеет решения

C) Чтобы получить натуральное (целое положительное) число для этого решения $x=\frac{8}{a}$ число должно равняться: $a=1, 2, 4, 8$

Задача 12 Дано уравнение $2 – x = 2b – 2ax$, где $a$ и $b$ - параметры. Найдите, для каких значений a уравнение имеет решения в виде натурального числа, если $b = 7$

Решение :

В уравнение мы подставляем $b = 7$ и получаем $2 – x = 2.7 - 2ax \Leftrightarrow$
$2ax – x = 14 – 2 \Leftrightarrow (2a - 1)x = 12$
Если $2a -1 \neq 0$, т.e. $a \neq \frac{1}{2}$, уравнение примет вид
$x = \frac{12}{2a-1}$ и это будет натуральное число, если знаменатель $2a - 1$ есть положительным делимым $12$ и кроме того, чтобы оно было целым числом, необходимо, чтобы $2a - 1$ было нечетным числом.
Поэтому $2a - 1$ может быть $1$ или $3$
Из $2a - 1 = 1 \Leftrightarrow 2a = 2 \Leftrightarrow a = 1$ и $2a - 1 = 3$
$\Leftrightarrow 2a = 4 \Leftrightarrow a = 2$

Задача 13 Дана функция $f(x) = (3a - 1)x - 2a + 1$, где a - параметр. Найдите, для каких значений a график функции:
А) пересекает ось абсцисс;
B) пересекает ось абсцисс

Решение :

Чтобы график функции пересёк ось абсцисс, необходимо, чтобы
$(3a - 1)\cdot x -2a + 1 = 0$ имело решения и не имело решения для непересечения оси абсцисс.
С уравнения мы получаем $(3a - 1)x = 2a - 1$
Если $3a - 1 \neq 0$, т.e. $a \neq \frac{1}{3}$, уравнение имеет решения
$x = \frac{2a-1}{3a-1}$, поэтому график функции пересекает ось абсцисс.
Если $a = \frac{1}{3}$, мы получаем $0.x = \frac{2}{3} - 1 \Leftrightarrow 0.x = -\frac{1}{3}$, что не имеет решения.
Поэтому, если $a = \frac{1}{3}$, график функций не пересекает ось абсцисс.

Задача 14 Решите параметрическое уравнение:
A) $|x -2| = a$
B) $|ax -1| = 3$
C) $|ax - 1| = a - 2$

Решение :

A) Если $a 0$ мы получаем:
$|x - 2| = a \Leftrightarrow x - 2 = a$ или $x - 2 = -a$
Из $x - 2 = a \Rightarrow x = a + 2$, и из
$x - 2 = -a \Rightarrow x = 2 – a$
Если $a = 0$, тогда $x - 2 = 0$ или $x = 2$

B) $|ax - 1| = 3 \Leftrightarrow ax - 1 = 3$ или $ax - 1 = -3$
откуда $ax = 4$ или $ax = - 2$
Если $a \neq 0$ решения: $x = \frac{4}{a}$ or $x = -\frac{2}{a}$
Если $a = 0$, здесь нет решения

C) Если $a - 2 Если $a - 2 > 0$, т.e. $a > 2$ мы получаем
$|ax - 1| = a - 2 \Leftrightarrow ax - 1 = a - 2$ или $ax - 1 = 2 – а$
Итак, мы получаем $ax = a - 1$ или $ax = 3 – a$
Потому что $a > 2, a \neq 0$, therefore
$x = \frac{a-1}{a}$ или $x = \frac{3-a}{a}$.
Если $a = 2$, уравнения эквивалентно
$2x - 1 = 0 \Leftrightarrow 2x = 1 \Leftrightarrow x = \frac{1}{2}$

Задача 15 Найдите, для каких значений параметра m (a), два уравнения эквивалентны:
A) $\frac{x+m}{2} = 1 – m$ и $(-x - 1) ^2 - 1 = x^2$
B) $\frac{x+m}{2} = 1 – m$ и $\frac{x-m}{3} = 1 - 2m$
C) $|3 – x| + x^2 -5x + 3 = 0$ и $ax + 2a = 1 + x$, если $x > 3$

Решение :

A) Решим второе уравнение. Запишем его в виде:
$(-x - 1)^2 - 1 = x^2 \Leftrightarrow$
$[(-1)(x + 1) ]^2 - 1 = x^2 \Leftrightarrow$
$x^2 + 2x + 1 - 1 = x^2 \Leftrightarrow$
$2x = 0 \Leftrightarrow x = 0$
Для первого мы получим
$\frac{x+m}{2} = 1 – m \Leftrightarrow x + m = 2 - 2m \Leftrightarrow x = 2 - 3m$
Эти два уравнения эквивалентны, если они имеют одинаковые корни, т.e.
$2 - 3m = 0 \Leftrightarrow$ $m = \frac{2}{3}$

B) Для первого уравнения решением есть $х = 2 - 3m$ и для второго мы получим
$x – m = 3 - 6m \Leftrightarrow$ $x = 3 – 5m$
Они имеют одинаковые корни, когда
$2 - 3m = 3 - 5m \Leftrightarrow 5m - 3m = 3 - 2 \Leftrightarrow 2m = 1 \Leftrightarrow m = \frac{1}{2}$

C) Так как $x > 3, 3 – x $|3 – x| = -(3 – x) = x - 3$
Первое уравнение будет выглядеть так: $x - 3 + x^2 – 5x + 3 = 0 \Leftrightarrow$
$x^2 - 4x – 0 \Leftrightarrow x(x - 4) = 0 \Leftrightarrow$
$x = 0$ или $x = 4$
С условием, что $х> 3$, поэтому только $x = 4$ есть решением. Для второго уравнения мы получаем
$ax – x = 1 - 2a \Leftrightarrow (a - 1)x = 1 - 2a$
Если $a - 1 = 0$, здесь нет решения (Почему?), если $a - 1 \neq 0$, i.e. $a \neq 1$, решением есть
$x = \frac{1-2a}{a-1}$ Эти два уравнения будут равны, если $4 = \frac{1-2a}{a-1} \Leftrightarrow$ $4(a - 1) = 1 - 2a \Leftrightarrow 4a + 2a = 1 + 4 \Leftrightarrow 6a = 5 \Leftrightarrow a = \frac{5}{6}$

Одним из подпунктов темы «Уравнение прямой на плоскости» является вопрос составления параметрических уравнений прямой на плоскости в прямоугольной системе координат. В статье ниже рассматривается принцип составления подобных уравнений при определенных известных данных. Покажем, как от параметрических уравнений переходить к уравнениям иного вида; разберем решение типовых задач.

Конкретная прямая может быть определена, если задать точку, которая принадлежит этой прямой, и направляющий вектор прямой.

Допустим, нам задана прямоугольная система координат O x y . А также заданы прямая а с указанием лежащей на ней точки М 1 (x 1 , y 1) и направляющий вектор заданной прямой a → = (a x , a y) . Дадим описание заданной прямой a , используя уравнения.

Используем произвольную точку М (x , y) и получим вектор М 1 М → ; вычислим его координаты по координатам точек начала и конца: M 1 M → = (x - x 1 , y - y 1) . Опишем полученное: прямая задана множеством точек М (x , y) , проходит через точку М 1 (x 1 , y 1) и имеет направляющий вектор a → = (a x , a y) . Указанное множество задает прямую только тогда, когда векторы M 1 M → = (x - x 1 , y - y 1) и a → = (a x , a y) являются коллинеарными.

Существует необходимое и достаточное условие коллинеарности векторов, которое в данном случае для векторов M 1 M → = (x - x 1 , y - y 1) и a → = (a x , a y) возможно записать в виде уравнения:

M 1 M → = λ · a → , где λ – некоторое действительное число.

Определение 1

Уравнение M 1 M → = λ · a → называют векторно-параметрическим уравнением прямой.

В координатной форме оно имеет вид:

M 1 M → = λ · a → ⇔ x - x 1 = λ · a x y - y 1 = λ · a y ⇔ x = x 1 + a x · λ y = y 1 + a y · λ

Уравнения полученной системы x = x 1 + a x · λ y = y 1 + a y · λ носят название параметрических уравнений прямой на плоскости в прямоугольной системе координат. Суть названия в следующем: координаты всех точек прямой возможно определить по параметрическим уравнениям на плоскости вида x = x 1 + a x · λ y = y 1 + a y · λ при переборе всех действительных значений параметра λ

Согласно вышесказанному, параметрические уравнения прямой на плоскости x = x 1 + a x · λ y = y 1 + a y · λ определяют прямую линию, которая задана в прямоугольной системе координат, проходит через точку М 1 (x 1 , y 1) и имеет направляющий вектор a → = (a x , a y) . Следовательно, если заданы координаты некоторой точки прямой и координаты ее направляющего вектора, то возможно сразу записать параметрические уравнения заданной прямой.

Пример 1

Необходимо составить параметрические уравнения прямой на плоскости в прямоугольной системе координат, если заданы принадлежащая ей точка М 1 (2 , 3) и ее направляющий вектор a → = (3 , 1) .

Решение

На основе исходных данных получим: x 1 = 2 , y 1 = 3 , a x = 3 , a y = 1 . Параметрические уравнения будут иметь вид:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 2 + 3 · λ y = 3 + 1 · λ ⇔ x = 2 + 3 · λ y = 3 + λ

Наглядно проиллюстрируем:

Ответ: x = 2 + 3 · λ y = 3 + λ

Необходимо отметить: если вектор a → = (a x , a y) служит направляющим вектором прямой а, а точки М 1 (x 1 , y 1) и М 2 (x 2 , y 2) принадлежат этой прямой, то ее возможно определить, задав параметрическими уравнениями вида: x = x 1 + a x · λ y = y 1 + a y · λ , а также и таким вариантом: x = x 2 + a x · λ y = y 2 + a y · λ .

К примеру, нам заданы направляющий вектор прямой a → = (2 , - 1) , а также точки М 1 (1 , - 2) и М 2 (3 , - 3) , принадлежащие этой прямой. Тогда прямую определяют параметрические уравнения: x = 1 + 2 · λ y = - 2 - λ или x = 3 + 2 · λ y = - 3 - λ .

Следует обратить внимание и на такой факт: если a → = (a x , a y) - направляющий вектор прямой a , то ее направляющим векторомбудет и любой из векторов μ · a → = (μ · a x , μ · a y) , где μ ϵ R , μ ≠ 0 .

Таким образом, прямая а на плоскости в прямоугольной системе координат может быть определена параметрическими уравнениями: x = x 1 + μ · a x · λ y = y 1 + μ · a y · λ при любом значении μ , отличном от нуля.

Допустим, прямая а задана параметрическими уравнениями x = 3 + 2 · λ y = - 2 - 5 · λ . Тогда a → = (2 , - 5) - направляющий векторэтой прямой. А также любой из векторов μ · a → = (μ · 2 , μ · - 5) = 2 μ , - 5 μ , μ ∈ R , μ ≠ 0 станет направляющим вектором для заданной прямой. Для наглядности рассмотрим конкретный вектор - 2 · a → = (- 4 , 10) , ему соответствует значение μ = - 2 . В таком случае заданную прямую можно также определить параметрическими уравнениями x = 3 - 4 · λ y = - 2 + 10 · λ .

Переход от параметрических уравнений прямой на плоскости к прочим уравнениям заданной прямой и обратно

В решении некоторых задач применение параметрических уравнений является не самым оптимальным вариантом, тогда возникает необходимость перевода параметрических уравнений прямой в уравнения прямой другого вида. Рассмотрим, как же это сделать.

Параметрическим уравнениям прямой вида x = x 1 + a x · λ y = y 1 + a y · λ будет соответствовать каноническое уравнение прямой на плоскости x - x 1 a x = y - y 1 a y .

Разрешим каждое из параметрических уравнений относительно параметра λ , приравняем правые части полученных равенств и получим каноническое уравнение заданной прямой:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x - x 1 a x λ = y - y 1 a y ⇔ x - x 1 a x = y - y 1 a y

При этом не должно смущать, если a x или a y будут равны нулю.

Пример 2

Необходимо осуществить переход от параметрических уравнений прямой x = 3 y = - 2 - 4 · λ к каноническому уравнению.

Решение

Запишем заданные параметрические уравнения в следующем виде: x = 3 + 0 · λ y = - 2 - 4 · λ

Выразим параметр λ в каждом из уравнений: x = 3 + 0 · λ y = - 2 - 4 · λ ⇔ λ = x - 3 0 λ = y + 2 - 4

Приравняем правые части системы уравнений и получим требуемое каноническое уравнение прямой на плоскости:

x - 3 0 = y + 2 - 4

Ответ: x - 3 0 = y + 2 - 4

В случае, когда необходимо записать уравнение прямой вида A x + B y + C = 0 , при этом заданы параметрические уравнения прямой на плоскости, необходимо сначала осуществить переход к каноническому уравнению, а затем к общему уравнению прямой. Запишем всю последовательность действий:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x - x 1 a x λ = y - y 1 a y ⇔ x - x 1 a x = y - y 1 a y ⇔ ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ A x + B y + C = 0

Пример 3

Необходимо записать общее уравнение прямой, если заданы определяющие ее параметрические уравнения: x = - 1 + 2 · λ y = - 3 · λ

Решение

Для начала осуществим переход к каноническому уравнению:

x = - 1 + 2 · λ y = - 3 · λ ⇔ λ = x + 1 2 λ = y - 3 ⇔ x + 1 2 = y - 3

Полученная пропорция идентична равенству - 3 · (x + 1) = 2 · y . Раскроем скобки и получим общее уравнение прямой: - 3 · x + 1 = 2 · y ⇔ 3 x + 2 y + 3 = 0 .

Ответ: 3 x + 2 y + 3 = 0

Следуя вышеуказанной логике действий, для получения уравнения прямой с угловым коэффициентом, уравнения прямой в отрезках или нормального уравнения прямой необходимо получить общее уравнение прямой, а от него осуществлять дальнейший переход.

Теперь рассмотрим обратное действие: запись параметрических уравнений прямой при другом заданном виде уравнений этой прямой.

Самый простой переход: от канонического уравнения к параметрическим. Пусть задано каноническое уравнение вида: x - x 1 a x = y - y 1 a y . Каждое из отношений этого равенства примем равным параметру λ:

x - x 1 a x = y - y 1 a y = λ ⇔ λ = x - x 1 a x λ = y - y 1 a y

Разрешим полученные уравнения относительно переменных x и y:

x = x 1 + a x · λ y = y 1 + a y · λ

Пример 4

Необходимо записать параметрические уравнения прямой, если известно каноническое уравнение прямой на плоскости: x - 2 5 = y - 2 2

Решение

Приравняем части известного уравнения к параметру λ: x - 2 5 = y - 2 2 = λ . Из полученного равенства получим параметрические уравнения прямой: x - 2 5 = y - 2 2 = λ ⇔ λ = x - 2 5 λ = y - 2 5 ⇔ x = 2 + 5 · λ y = 2 + 2 · λ

Ответ: x = 2 + 5 · λ y = 2 + 2 · λ

Когда необходимо осуществить переход к параметрическим уравнениям от заданного общего уравнения прямой, уравнения прямой с угловым коэффициентом или уравнения прямой в отрезках, необходимо исходное уравнение привести к каноническому, а после осуществлять переход к параметрическим уравнениям.

Пример 5

Необходимо записать параметрические уравнения прямой при известном общем уравнении этой прямой: 4 x - 3 y - 3 = 0 .

Решение

Заданное общее уравнение преобразуем в уравнение канонического вида:

4 x - 3 y - 3 = 0 ⇔ 4 x = 3 y + 3 ⇔ ⇔ 4 x = 3 y + 1 3 ⇔ x 3 = y + 1 3 4

Приравняем обе части равенства к параметру λ и получим требуемые параметрические уравнения прямой:

x 3 = y + 1 3 4 = λ ⇔ x 3 = λ y + 1 3 4 = λ ⇔ x = 3 · λ y = - 1 3 + 4 · λ

Ответ: x = 3 · λ y = - 1 3 + 4 · λ

Примеры и задачи с параметрическими уравнениями прямой на плоскости

Рассмотрим чаще всего встречаемые типы задач с использованием параметрических уравнений прямой на плоскости в прямоугольной системе координат.

  1. В задачах первого типа заданы координаты точек, принадлежащих или нет прямой, описанной параметрическими уравнениями.

Решение таких задач опирается на следующий факт: числа (x , y) , определяемые из параметрических уравнений x = x 1 + a x · λ y = y 1 + a y · λ при некотором действительном значении λ , являются координатами точки, принадлежащей прямой, которая описывается этими параметрическими уравнениями.

Пример 6

Необходимо определить координаты точки, которая лежит на прямой, заданной параметрическими уравнениями x = 2 - 1 6 · λ y = - 1 + 2 · λ при λ = 3 .

Решение

Подставим в заданные параметрические уравнения известное значение λ = 3 и осуществим вычисление искомых координат: x = 2 - 1 6 · 3 y = - 1 + 2 · 3 ⇔ x = 1 1 2 y = 5

Ответ: 1 1 2 , 5

Также возможна следующая задача: пусть задана некоторая точка M 0 (x 0 , y 0) на плоскости в прямоугольной системе координат и нужно определить, принадлежит ли эта точка прямой, описываемой параметрическими уравнениями x = x 1 + a x · λ y = y 1 + a y · λ .

Чтобы решить подобную задачу, необходимо подставить координаты заданной точки в известные параметрические уравнения прямой. Если будет определено, что возможно такое значение параметра λ = λ 0 , при котором будут верными оба параметрических уравнения, тогда заданная точка является принадлежащей заданной прямой.

Пример 7

Заданы точки М 0 (4 , - 2) и N 0 (- 2 , 1) . Необходимо определить, являются ли они принадлежащими прямой, определенной параметрическими уравнениями x = 2 · λ y = - 1 - 1 2 · λ .

Решение

Подставим координаты точки М 0 (4 , - 2) в заданные параметрические уравнения:

4 = 2 · λ - 2 = - 1 - 1 2 · λ ⇔ λ = 2 λ = 2 ⇔ λ = 2

Делаем вывод, что точка М 0 принадлежит заданной прямой, т.к. соответствует значению λ = 2 .

2 = 2 · λ 1 = - 1 - 1 2 · λ ⇔ λ = - 1 λ = - 4

Очевидно, что не существует такого параметра λ , которому будет соответствовать точка N 0 . Другими словами, заданная прямая не проходит через точку N 0 (- 2 , 1) .

Ответ: точка М 0 принадлежит заданной прямой; точка N 0 не принадлежит заданной прямой.

  1. В задачах второго типа требуется составить параметрические уравнения прямой на плоскости в прямоугольной системе координат. Самый простой пример такой задачи (при известных координатах точки прямой и направляющего вектора) был рассмотрен выше. Теперь разберем примеры, в которых сначала нужно найти координаты направляющего вектора, а потом записать параметрические уравнения.
Пример 8

Задана точка M 1 1 2 , 2 3 . Необходимо составить параметрические уравнения прямой, проходящей через эту точку и параллельной прямой x 2 = y - 3 - 1 .

Решение

По условию задачи прямая, уравнение которой нам предстоит опередить, параллельна прямой x 2 = y - 3 - 1 . Тогда в качестве направляющего вектора прямой, проходящей через заданную точку, возможно использовать направляющий вектор прямой x 2 = y - 3 - 1 , который запишем в виде: a → = (2 , - 1) . Теперь известны все необходимые данные для того, чтобы составить искомые параметрические уравнения:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 1 2 + 2 · λ y = 2 3 + (- 1) · λ ⇔ x = 1 2 + x · λ y = 2 3 - λ

Ответ: x = 1 2 + x · λ y = 2 3 - λ .

Пример 9

Задана точка М 1 (0 , - 7) . Необходимо записать параметрические уравнения прямой, проходящей через эту точку перпендикулярно прямой 3 x – 2 y – 5 = 0 .

Решение

В качестве направляющего вектора прямой, уравнение которой надо составить, возможно взять нормальный вектор прямой 3 x – 2 y – 5 = 0 . Его координаты (3 , - 2) . Запишем требуемые параметрические уравнения прямой:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 0 + 3 · λ y = - 7 + (- 2) · λ ⇔ x = 3 · λ y = - 7 - 2 · λ

Ответ: x = 3 · λ y = - 7 - 2 · λ

  1. В задачах третьего типа требуется осуществить переход от параметрических уравнений заданной прямой к прочим видам уравнений, которые ее определяют. Решение подобных примеров мы рассматривали выше, приведем еще один.
Пример 10

Дана прямая на плоскости в прямоугольной системе координат, определяемая параметрическими уравнениями x = 1 - 3 4 · λ y = - 1 + λ . Необходимо найти координаты какого-либо нормального вектора этой прямой.

Решение

Чтобы определить искомые координаты нормального вектора, осуществим переход от параметрических уравнений к общему уравнению:

x = 1 - 3 4 · λ y = - 1 + λ ⇔ λ = x - 1 - 3 4 λ = y + 1 1 ⇔ x - 1 - 3 4 = y + 1 1 ⇔ ⇔ 1 · x - 1 = - 3 4 · y + 1 ⇔ x + 3 4 y - 1 4 = 0

Коэффициенты переменных x и y дают нам требуемые координаты нормального вектора. Таким образом, нормальный вектор прямой x = 1 - 3 4 · λ y = - 1 + λ имеет координаты 1 , 3 4 .

Ответ: 1 , 3 4 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В данной статье мы рассмотрим параметрическое уравнение прямой на плоскости. Приведем примеры построения параметрического уравнения прямой, если известны две точки этой прямой или если известна одна точка и направляющий вектор этой прямой. Представим методы преобразования уравнения в параметрическом виде в канонический и общий виды.

Параметрическое уравнение прямой L на плоскости представляется следующей формулой:

(1)

где x 1 , y 1 координаты некоторой точки M 1 на прямой L . Вектор q ={m , p } является направляющим вектором прямой L , t − некоторый параметр.

Отметим что при записи уравнения прямой в параметрическом виде, направляющий вектор прямой не должен быть нулевым вектором, т.е хотя бы один координат направляющего вектора q должен быть отличным от нуля.

Для построения прямой на плоскости в декартовой прямоугольной системе координат, заданной параметрическим уравнением (1), достаточно задать параметру t две разные значения, вычислить x и y и провести через эти точки прямую линию. При t =0 имеем точку M 1 (x 1 , y 1) при t =1, получим точку M 2 (x 1 +m , y 1 +p ).

Для составления параметрического уравнения прямой на плоскости L достаточно иметь точку на прямой L и направляющий вектор прямой или две точки, принадлежащие прямой L . В первом случае, для построения параметрического уравнения прямой нужно координаты точки и направляющего вектора вставить в уравнение (1). Во втором случае сначала нужно найти направляющий вектор прямой q ={m , p }, вычисляя разности соответствующих координатов точек M 1 и M 2: m =x 2 −x 1 , p =y 2 −y 1 (Рис.1). Далее, аналогично первому случаю, подставить координаты одной из точек (не имеет значение какой именно) и направляющего вектора q прямой в (1).

Пример 1. Прямая проходит через точку M =(3,−1) и имеет направляющий вектор q ={−3, 5}. Построить параметрическое уравнение прямой.

Решение. Для построения параметрического уравнения прямой, подставим координаты точки и направляющего вектора в уравнение (1):

Упростим полученное уравнение:

Из выражений (3), можем записать каноническое уравнение прямой на плоскости:

Привести данное уравнение прямой к каноническому виду.

Решение: Выразим параметр t через переменные x и y :

(5)

Из выражений (5), можем записать.

Пусть l - некоторая прямая пространства. Как и в планиметрии, любой вектор

а =/= 0, коллинеарный прямой l , называется направляющим вектором этой прямой.

Положение прямой в пространстве полностью определяется заданием направляющего вектора и точки, принадлежащей прямой.

Пусть прямая l с направляющим вектором а проходит через точку M 0 , а М - произвольная точка пространства. Очевидно, что точка М (рис. 197) принадлежит прямой l тогда и только тогда, когда вектор \(\overrightarrow{M_0 M}\) коллинеарен вектору а , т. е.

\(\overrightarrow{M_0 M}\) = ta , t \(\in \) R . (1)

Если точки М и M 0 заданы своими радиус-векторами r и r 0 (рис. 198) относительно некоторой точки О пространства, то \(\overrightarrow{M_0 M}\) = r - r 0 , и уравнение (1) принимает вид

r = r 0 + ta , t \(\in \) R . (2)

Уравнения (1) и (2) называются векторно-параметрическими уравнениями прямой. Переменная t в векторно-параметрических уравнениях прямой называется параметром .

Пусть точка M 0 прямой l и направляющий вектор а заданы своими координатами:

M 0 (х 0 ; у 0 , z 0), а = (а 1 ; а 2 ; а 3).

Тогда, если (х; у; z ) - координаты произвольной точки М прямой l , то

\(\overrightarrow{M_0 M} \) = (х - х 0 ; у - у 0 ; z - z 0)

и векторное уравнение (1) равносильно следующим трем уравнениям:

х - х 0 = 1 , у - у 0 = 2 , z - z 0 = 3

$$ \begin{cases} x = x_0 + ta_1 \\ y = y_0 + ta_2 \\ z = z_0 + ta_3, \;\;t\in R\end{cases} (3)$$

Уравнения (3) называются параметрическими уравнениями прямой в пространстве.

Задача 1. Написать параметрические уравнения прямой, проходящей через точку

M 0 (-3; 2; 4) и имеющей направляющий вектор а = (2; -5; 3).

В данном случае х 0 = -3, у 0 = 2, z 0 = 4; а 1 = 2; а 2 = -5; а 3 = 3. Подставив эти значения в формулы (3), получим параметрические уравнения данной прямой

$$ \begin{cases} x = -3 - 2t \\ y = 2 - 5t \\ z = 4 + 3t, \;\;t\in R\end{cases} $$

Исключим параметр t из уравнений (3). Это можно сделать, так как а =/= 0, и поэтому одна из координат вектора а заведомо отлична от нуля.

Пусть сначала все координаты отличны от нуля. Тогда

$$ t=\frac{x-x_0}{a_1},\;\;t=\frac{y-y_0}{a_2},\;\;t=\frac{z-z_0}{a_3} $$

и, следовательно,

$$ \frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3} \;\; (4)$$

Эти уравнения называются каноническими уравнениями прямой .

Заметим, что уравнения (4) образуют систему двух уравнений с тремя переменными х, у и z.

Если в уравнениях (3) одна из координат вектора а , например а 1 равна нулю, то, исключив параметр t , снова получим систему двух уравнений с тремя переменными х, у и z :

\(x=x_0, \;\; \frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

Эти уравнения также называются каноническими уравнениями прямой. Для единообразия их также условно записывают в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

считая, что если знаменатель равен нулю, то равен нулю и соответствующий числитель. Эти уравнения являются уравнениями прямой, проходящей через точку M 0 (х 0 ; у 0 , z 0) параллельно координатной плоскости yOz , так как этой плоскости параллелен ее направляющий вектор (0; а 2 ; а 3).

Наконец, если в уравнениях (3) две координаты вектора а , например а 1 и а 2 равны нулю, то эти уравнения принимают вид

х = х 0 , y = у 0 , z = z 0 + ta 3 , t \(\in \) R .

Это уравнения прямой, проходящей через точку M 0 (х 0 ; у 0 ; z 0) параллельно оси Oz . Для такой прямой х = х 0 , y = у 0 , a z - любое число. И в этом случае для единообразия уравнения прямой можно записывать (с той же оговоркой) в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{0}=\frac{z-z_0}{a_3}\)

Таким образом, для любой прямой пространства можно написать канонические уравнения (4), и, наоборот, любое уравнение вида (4) при условии, что хотя бы один из коэффициентов а 1 , а 2 , а 3 не равен нулю, задает некоторую прямую пространства.

Задача 2. Написать канонические уравнения прямой, проходящей через точку M 0 (- 1; 1, 7) параллельно вектору а = (1; 2; 3).

Уравнения (4) в данном случае записываются слeдующим образом:

\(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-7}{3}\)

Выведем уравнения прямой, проходящей через две данные точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2). Очевидно, что за направляющий вектор этой прямой можно взять вектор a = (х 2 - х 1 ; у 2 - у 1 ; z 2 - z 1), а за точку М 0 , через которую проходит прямая, например, точку M 1 . Тогда уравнения (4) запишутся так:

\(\frac{x-x_1}{x_2 - x_1}=\frac{y-y_1}{y_2 - y_1}=\frac{z-z_1}{z_2 - z_1}\) (5)

Это и есть уравнения прямой, проходящей через две точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2).

Задача 3. Написать уравнения прямой, проходящей через точки M 1 (-4; 1; -3) и M 2 (-5; 0; 3).

В данном случае х 1 = -4, у 1 = 1, z 1 = -3, х 2 = -5, у 2 = 0, z 2 = 3. Подставив эти значения в формулы (5), получим

\(\frac{x+4}{-1}=\frac{y-1}{-1}=\frac{z+3}{6}\)

Задача 4. Написать уравнения прямой, проходящей через точки M 1 (3; -2; 1) и

M 2 (5; -2; 1 / 2).

После подстановки координат точек M 1 и M 2 в уравнения (5) получим

\(\frac{x-3}{2}=\frac{y+2}{0}=\frac{z-1}{-\frac{1}{2}}\)

Приравнивая в канонических уравнениях прямой каждую из дробей некоторому параметру t :

Получим уравнения выражающие текущие координаты каждой точки прямой через параметр t .

таким образом параметрические уравнения прямой имеют вид:

Уравнения прямой проходящей через две заданные точки.

Пусть заданы две точки М 1 (x 1 ,y 1 ,z 1) и М 2 (x 2 ,y 2 ,z 2) . Уравнения прямой, проходящей через две заданные точки получаются так же, как аналогичное такое уравнение на плоскости. Поэтому сразу приведём вид этого уравнения.

Прямая на пересечении двух плоскостей. Общее уравнение прямой в пространстве.

Если рассмотреть две не параллельные плоскости, то их пересечением будет прямая.

Если нормальные вектора и неколенеарны.

Ниже при рассмотрении примеров мы покажем способ преобразования таких уравнений прямой к каноническим уравнениям.

5.4 Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых.

Углом между двумя прямыми в пространстве будем называть любой из углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть две прямые заданны своими каноническими уравнениями.

За угол между двумя прямыми примем угол между направляющими векторами.

и

Условие перпендикулярности двух прямых сводится к условию перпендикулярности их направляющих векторов и , то есть к равенству нулю скалярного произведения: или в координатной форме: .

Условие параллельности двух прямых сводится к условию параллельности их направляющих векторов и

5.5 Взаимное расположение прямой и плоскости.

Пусть заданы уравнения прямой:

и плоскости . Углом между прямой и плоскостью будем называть любой из двух смежных углов, образованных прямой и ее проекцией на плоскость (Рис 5.5).


Рис 5.5

В случае перпендикулярности прямой к плоскости направляющий вектор прямой и нормальный вектор к плоскости коллинеарны. Таким образом, условие перпендикулярности прямой и плоскости сводится к условию коллинеарности векторов



В случае параллельности прямой и плоскости их указанные выше вектора взаимно перпендикулярны. Поэтому условие параллельности прямой и плоскости сводится к условию перпендикулярности векторов ; т.е. их скалярное произведение равно нулю или в координатной форме: .

Ниже рассмотрены примеры решения задач, связанных с темой главы 5.

Пример 1:

Составить уравнение плоскости, проходящей через точку А (1,2,4) перпендикулярную прямой, заданной уравнением:

Решение:

Воспользуемся уравнением плоскости проходящей через заданную точку перпендикулярную заданному вектору.

А(х-х 0)+В(у-у 0)+С(z-z 0)=0

В качестве точки возьмём точку А (1,2,4), через которую проходит по условию плоскость.

Зная канонические уравнения прямой, мы знаем вектор, параллельный прямой .

В силу того, что по условию прямая перпендикулярна искомой плоскости, направляющий вектор может быть взят в качестве нормального вектора плоскости.

Таким образом уравнение плоскости получим в виде:

2(х-1)+1(у-2)+4(z-4)=0

2х+у+4z-16=0

2х+у+4z-20=0

Пример 2:

Найти на плоскости 4х-7у+5z-20=0 такую точку Р, для которой ОР составляет с осями координат одинаковые углы.

Решение:

Сделаем схематический чертёж. (Рис. 5.6)


у

Рис 5.6

Пуст точка Р имеет координаты . Так как вектор составляет одинаковые углы с осями координат, то направляющие косинусы этого вектора равны между собой

Найдём проекции вектора :

тогда легко находятся направляющие косинусы этого вектора.

Из равенства направляющих косинусов следует равенство:

х р =у р =z р

так как точка Р лежит на плоскости, то подстановка координат этой точки в уравнение плоскости обращает его в тождество.

4х р -7х р +5х р -20=0

2х р =20

х р =10

Соответственно: у р =10; z р =10.

Таким образом искомая точка Р имеет координаты Р(10;10;10)

Пример 3:

Даны две точки А (2,-1,-2) и В (8,-7,5). Найти уравнение плоскости, проходящей через точку В, перпендикулярную отрезку АВ.

Решение:

Для решения задачи воспользуемся уравнением плоскости, проходящей через заданную точку перпендикулярную заданному вектору.

А(х-х 0)+В(у-у 0)+C(z-z 0)=0

В качестве точки используем точку В (8,-7,5), а в качестве вектора, перпендикулярного плоскости вектор . Найдём проекции вектора :

тогда уравнение плоскости получим в виде:

6(х-8)-6(у+7)+7(z-5)=0

6х-48-6у-42+7z-35=0

6х-6у+7z-35=0

6х-6у+7z-125=0

Пример 4:

Найти уравнение плоскости, параллельной оси ОY и проходящей через точки К(1,-5,1) и М(3,2,-2).

Решение:

Так как плоскость параллельна оси ОY, то воспользуемся неполным уравнением плоскости.

Ax+Cz+D=0

В силу того, что точки К и М лежат на плоскости, получим два условия.

Выразим из этих условий коэффициенты А и С через D.

Подставим найденные коэффициенты в неполное уравнение плоскости:

так как , то сокращаем D:

Пример 5:

Найти уравнение плоскости проходящей через три точки М(7,6,7), К(5,10,5), R(-1,8,9)

Решение:

Воспользуемся уравнением плоскости проходящей через 3 заданные точки.

подставляя координаты точек М,К,R как первой, второй и третьей получим:

раскроем определитель по 1 ой строке.

Пример 6:

Найти уравнение плоскости, проходящей через точки М 1 (8,-3,1); М 2 (4,7,2) и перпендикулярно плоскости 3х+5у-7z-21=0

Решение:

Сделаем схематический чертёж (Рис 5.7)


Рис 5.7

Обозначим заданную плоскость Р 2 а искомую плоскость Р 2. . Из уравнения заданной плоскости Р 1 определяем проекции вектора , перпендикулярного плоскости Р 1.

Вектор путём параллельного переноса может быть перемещён в плоскость Р 2 , так как по условию задачи плоскость Р 2 перпендикулярна плоскости Р 1 , а это значит вектор параллелен плоскости Р 2.

Найдём проекции вектора лежащего в плоскости Р 2:

теперь мы имеем два вектора и , лежащих в плоскости Р 2 . очевидно вектор , равный векторному произведению векторов и будет перпендикулярен плоскости Р 2 , т. к. он перпендикулярен и , поэтому его нормального вектора плоскости Р 2.

Векторы и заданы своими проекциями поэтому:

Далее, используем уравнение плоскости, проходящей через заданную точку перпендикулярную вектору. В качестве точки можно взять любую из точек М 1 или М 2 , например М 1 (8,-3,1); В качестве нормального вектора к плоскости Р 2 берём .

74(х-8)+25(у+3)+50(z-1)=0

3(х-8)+(у-3)+2(z-1)=0

3х-24+у+3+27-2=0

3х+у+2z-23=0

Пример 7:

Прямая задана пересечением двух плоскостей. Найти канонические уравнения прямой.


Решение:

Имеем уравнение в виде:

Надо найти точку (х 0 ,у 0 ,z 0 ), через которую проходит прямая и направляющий вектор .

Выберем произвольно одну из координат. Например, z=1 , тогда получим систему двух уравнений с двумя неизвестными:

Таким образом, мы нашли точку лежащую на искомой прямой (2,0,1).

В качестве направляющего вектора искомой прямой возьмём векторное произведения векторов и , являющихся нормальными векторами т.к. , а значит параллельно искомой прямой.

Таким образом, направляющий вектор прямой имеет проекции . Используя уравнение прямой проходящий через заданную точку параллельно заданному вектору:

Итак искомое каноническое уравнение имеет вид:

Пример 8:

Найти координаты точки пересечения прямой и плоскости 2x+3y+3z-8=0

Решение:

Запишем заданное уравнение прямой в параметрическом виде.

х=3t-2; y=-t+2; z=2t-1

каждой точке прямой соответствует единственное значение параметра t . Для нахождения параметра t соответствующего точке пересечения прямой и плоскости подставим в уравнение плоскости выражение х, у, z через параметр t.

2(3t-2)+(-t+2)+3(2t-1)-8=0

6t-4-3t+6+6t-3-8=0

t=1

тогда координаты искомой точки

искомая точка пересечения имеет координаты (1;1;1).

Пример 9:

Найти уравнение плоскости проходящей через параллельные прямые.

Сделаем схематический чертёж (Рис 5.9)


Рис 5.9

Из заданных уравнений прямых и определяем проекции направляющих векторов этих прямых . Найдём проекции вектора , лежащего в плоскости Р, а точки и берём из канонических уравнений прямых М 1 (1,-1,2) и М 2 (0,1,-2).