Коллаборация LIGO-Virgo вместе с астрономами из 70 обсерваторий объявила сегодня о наблюдении слияния двух нейтронных звезд в гравитационном и электромагнитном диапазонах: увидели гамма-всплеск, а также рентгеновское, ультрафиолетовое, видимое, инфракрасное и радио излучение.

Иллюстрация столкновения нейтронных звезд. Узкий выброс по диагонали - поток гамма-лучей. Светящееся облако вокруг звезд - источник видимого света, который наблюдали телескопы после слияния. Credit: NSF/LIGO/Sonoma State University/Aurore Simonnet

Совместное наблюдение гамма-всплеска, гравитационных волн и видимого света позволили определить не только область на небе, где произошло событие, но и галактику NGC 4993, к которой звезды принадлежали.


Определение расположения на небе разными детекторами

Что мы можем сказать о нейтронных звездах?

Астрономы наблюдали короткие всплески гамма-излучения на протяжении многих десятилетий, но не знали точно, как они возникают. Основным предположением было, что этот всплеск происходит в результате слияния нейтронных звезд, и теперь наблюдение гравитационных волн от этого события подтвердило теорию.

Когда нейтронные звезды сталкиваются, основная часть их вещества сливается в один сверхмассивных объект, излучая “огненный шар” из гамма излучения (тот самые короткий гамма-всплеск, зарегистрированный через две секунды после гравитационных волн). После этого возникает так называемая килонова , когда вещество, оставшееся после столкновения нейтронных звезд уносится от места столкновения, излучая свет. Наблюдение за спектром этого излучения позволило определить, что тяжелые элементы, такие как золото, рождаются именно в результате килоновых. Ученые наблюдали после-свечение на протяжении недель после события, собирая данные о процессах, происходивших в звездах, и это явилось первым достоверным наблюдением килоновой.

Нейтронные звезды - это сверхплотные объекты, образующиеся после взрыва сверхновой. Давление в звезде столь высоко, что отдельны атомы не могут существовать, и внутри звезды находится жидкий «суп» из нейтронов, протонов и других частиц. Чтобы описать нейтронную звезду, ученые используют уравнение состояния, связывающее давление и плотность вещества. Существует множество вариантов возможных уравнений состояний, но ученые не знают, какие из них правильные, поэтому гравитационные наблюдения могут помочь разрешить этот вопрос. На данный момент наблюденный сигнал не дает однозначного ответа, но помогают дать интересные оценки на форму звезды (которая зависит от гравитационного притяжения ко второй звезде).

Интересным открытием оказалось, что наблюдавшийся короткий гамма-всплеск является самым близким к Земле, но в то же время слишком тусклым для такого расстояния. Ученые предположили несколько возможных объяснений: возможно, луч гамма-излучения был неравномерной яркости, или мы увидели только самый его край. В любом случае возникает вопрос: ранее астрономы не предполагали, что такие тусклые всплески могут быть расположены так близко, и могли ли они тогда пропустить такие же тусклые всплески, или же неправильно интерпретировать их как более далекие? Совместные наблюдения в гравитационном и электромагнитном диапазоне могут помочь дать ответ, но на данном уровне чувствительности детекторов такие наблюдения будут достаточно редкими - в среднем 0.1-1.4 в год.

Кроме гравитационного и электромагнитного излучения, нейтронные звезды излучают потоки нейтрино в процессе слияния. Детекторы нейтрино также работали над поиском этих потоков от события, но не зафиксировали ничего. В целом, этот результат был ожидаем - как и в случае гамма-всплеска, событие слишком тусклое (или мы наблюдаем его под большим углом), чтобы детекторы могли его увидеть.

Скорость гравитационных волн

Так как гравитационные волны и световой сигнал произошли от одного источника с очень большой вероятностью (5.3 sigma), и первый световой сигнал пришел через 1.7 секунд после гравитационного, мы можем ограничить скорость распространения гравитационных волн с очень большой точностью. Предполагая, что свет и гравитационные волны излучались одновременно, а задержка между сигналами произошла из-за того, что гравитация быстрее, можно получить верхнюю оценку. Нижнюю оценку можно получить из моделей слияния нейтронных звезд: предположить, что свет был испущен через 10 секунд после гравитационных волн (в этот момент уже все процессы точно должны были завершиться) и нагнал гравитационные волны к моменту достижения Земли. Как результат, скорость гравитации равна скорости света с огромной точностью

Для нижней оценки можно использовать и большую задержку между излучением, и даже предположить, что сначала был испущен световой сигнал, что понизит точность пропорционально. Но даже в этом случае оценка получается чрезвычайно точной.

Используя те же знания о задержке между сигналами можно значительно повысить точность оценок на лоренц-инвариантность (разности между поведением гравитации и света при преобразовании Лоренца) и принцип эквивалентности .

Ученые измерили постоянную Хаббла и другим образом - по наблюдению параметров реликтового излучения на телескопе Планк , и получили другое значение постоянной Хаббла, не согласующееся с измерениями SHoES. Это различие слишком велико, чтобы быть статистическим, но пока не известны причины расхождений оценок. Поэтому необходимо независимое измерение.


Распределение вероятности для постоянной Хаббла с использованием гравитационных волн (синий). Пунктиром обозначены интервалы 1σ и 2σ (68.3% и 95.4%). Для сравнения показаны интервалы 1σ и 2σ для предыдущих оценок: Планк (зеленый) и SHoES (оранжевый), которые не сходятся друг с другом.

Гравитационные волны в данном случае играют роль стандартных свечей (и называются стандартными сиренами). Наблюдая амплитуду сигнала на Земле и моделируя его амплитуду в источнике, можно оценить, насколько она уменьшилась, и узнать тем самым расстояние до источника - независимо от любых предположений на постоянную Хаббла или предыдущие измерения. Наблюдение светового сигнала позволило определить галактику, где располагалась пара нейтронных звезд, а скорость удаления этой галактики была хорошо известна по предыдущим измерениям. Отношение между скоростью и расстоянием и является постоянной Хаббла. Важно, что такая оценка совершенно независима от предыдущих оценок или космической шкалы расстояний.

Одного измерения оказалось недостаточно, чтобы разрешить загадку различия в оценках Планка и SHoES, но в целом оценка уже хорошо соответствует известным значениям. Учитывая, что предыдущие оценки основываются на статистике, собранной на протяжении многих лет, это очень значительный результат.

Немного о LIGO и глитчах



Верхняя панель показывает глитч в данных LIGO-Livingston, и также явно демонстрирует наличие чирпа. Нижняя панель показывает безразмерную амплитуду колебаний, ”strain" (величина, которой мы описываем величину сигнала в LIGO и Virgo) в момент глитча. Это короткий
(длится всего около 1/4 секунды), но очень сильный сигнал. Подавление уменьшает глитч до уровня оранжевой кривой, которая показывает уровень фонового шума, всегда присутствующего в детекторах LIGO.

Только один из детекторов LIGO увидел сигнал в автоматическом режиме, поскольку на детекторе в Ливингстоне в момент события произошел «глитч». Этим термином называют всплеск шума, похожий на хлопок статики в радиоприемнике. Хотя гравитационно волновой сигнал был очевидно заметен человеческому глазу, автоматика отсекает подобные данные. Поэтому понадобилась очистка сигнала от глитча, прежде чем данные могли быть использованы детектором. Глитчи появляются в детекторах все время - примерно раз в несколько часов. Ученые классифицируют их по форме и длительности и используют эти знания для улучшения детекторов. Вы можете помочь им в этом в проекте GravitySpy , где пользователи ищут и классифицируют глитчи в данных LIGO, чтобы помочь ученым.

Вопросы без ответов



Известные нам черные дыры, нейтронные звезды и их слияния. Есть область средних масс, о существовании компактных объектов с которыми мы ничего не знаем. Credit: LIGO-Virgo/Northwestern/Frank Elavsky

Мы зарегистрировали гравитационные волны от двух компактных объектов, и наблюдение электромагнитного излучения говорит о том, что один из них был нейтронной звездой. Но второй мог быть и черной дырой малой массы, и хотя ранее таких черных дыр никто не видел, теоретически они могут существовать. Из наблюдения GW170817 нельзя определить точно, было ли это столкновение двух нейтронных звезд, хотя это и более вероятно.

Второй любопытный момент: а чем стал этот объект после слияния? Он мог стать либо сверхмассивной нейтронной звездой (самой массивной из известных) или самой легкой из известных черных дыр. К сожалению, данных наблюдения недостаточно, чтобы ответить на этот вопрос.

Заключение

Наблюдение слияния нейтронных звезд в о всех диапазонах - потрясающе богатое на физику событие. Количество данных, полученных учеными только за эти два месяца позволило подготовить несколько десятков публикаций, и гораздо больше будет, когда данные станут общедоступными. Физика нейтронных звезд гораздо богаче и интереснее физики черных дыр - мы можем напрямую проверять физику сверхплотного состояния вещества, а также квантовую механику в условиях сильных гравитационных полей. Эта уникальная возможность может помочь нам наконец найти связь между общей теорией относительности и квантовой физикой, которая до сих пор ускользала от нас.

Это открытие еще раз показывает, насколько в современной физике важна совместная работа многих коллабораций из тысяч людей.

Reddit AMA

Традиционно на Reddit ученые из LIGO отвечают на вопросы пользователей, очень рекомендую!
Происходит это будет с 18 часов по Москве 17 и 18 октября. Ссылка на событие будет ко времени начала.
  • общая теория относительности
  • телескоп хаббл
  • телескоп планк
  • Добавить метки

    Российские ученые в составе коллабораций LIGO и Virgo впервые зарегистрировали гравитационные волны от слияния двух нейтронных звезд. Это первое космическое событие, наблюдаемое как в гравитационных, так и в электромагнитных волнах. Открытие представлено сегодня на пресс-конференциях в Вашингтоне и Москве. Результаты также будут опубликованы в журнале Physical Review Letters.

    Спустя две недели после присуждения Нобелевской премии по физике за открытие гравитационных волн троим исследователям из США, коллаборации LIGO (Laser Interferometric Gravitational Wave Observatory, США) и Virgo (аналогичная обсерватория в Италии) объявили о том, что впервые зафиксировали гравитационные волны от слияния двух нейтронных звезд, причем это явление наблюдали на лазерных интерферометрах, регистрирующих гравитационные волны, с помощью космических обсерваторий («Интеграл», Fermi) и наземных телескопов, регистрирующих электромагнитное излучение. В сумме это явление наблюдали около 70 наземных и космических обсерваторий по всему миру, в числе которых сеть роботов-телескопов МАСТЕР (МГУ имени М.В. Ломоносова).

    «Первая прямая регистрация гравитационных волн от сталкивающихся черных дыр обсерваторией LIGO состоялась около двух лет тому назад. Было открыто новое окно во Вселенную. Уже сегодня мы видим, какие беспрецедентные возможности создает для исследователей этот новый канал получения информации в сочетании с традиционной астрономией», - говорит профессор физического факультета МГУ Валерий Митрофанов.

    17 августа оба детектора LIGO зарегистрировали гравитационный сигнал, названный GW170817. Информация, предоставленная третьим детектором Virgo, позволила значительно улучшить локализацию космического события. Почти в то же время (примерно через две секунды после гравитационных волн) космический гамма-телескоп NASA Fermi и Международная орбитальная обсерватория гамма-лучей (INTErnational Gamma-Ray Astrophysics Laboratory/INTEGRAL) «Интеграл» обнаружили всплески гамма-лучей. В последующие дни было зарегистрировано электромагнитное излучение и в других диапазонах, включая рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиоволны.

    Сигналы детекторов LIGO показали, что зарегистрированные гравитационные волны излучались двумя астрофизическими объектами, вращающимися друг относительно друга и расположенными на относительно близком расстоянии, около 130 миллионов световых лет, от Земли. Оказалось, что объекты были менее массивными, чем ранее обнаруженные LIGO и Virgo двойные черные дыры. Согласно вычислениям, их массы находились в диапазоне от 1,1 до 1,6 массы Солнца, что попадает в область масс нейтронных звезд, самых маленьких и самых плотных среди звезд. Их типичный радиус составляет всего 10-20 километров.

    Получив координаты, обсерватории уже через несколько часов смогли начать поиск в области неба, где предположительно произошло событие. Новую светлую точку, напоминающую новую звезду, обнаружили оптические телескопы. В конечном итоге около 70 обсерваторий на Земле и в космосе наблюдали это событие в различных диапазонах длин волн. В последующие дни после столкновения было зарегистрировано электромагнитное излучение в рентгеновском, ультрафиолетовом, оптическом, инфракрасном и радиоволновом диапазонах.

    «Впервые, в отличие от "одиноких" слияний черных дыр, зарегистрировано "компанейское" событие не только гравитационными детекторами, но еще и оптическими и нейтринными телескопами. Это первый такой хоровод наблюдений вокруг одного события», - рассказал профессор физического факультета МГУ имени М.В. Ломоносова Сергей Вятчанин.

    Теоретики предсказали, что в результате слияния образуется «килоновая». Это явление, при котором оставшийся от столкновения нейтронных звезд материал ярко светится и выбрасывается из области столкновения далеко в космос. При этом возникают процессы, в результате которых создаются тяжелые элементы, такие как свинец и золото. Наблюдение послесвечения слияния нейтронных звезд позволяет получать дополнительную информацию о различных стадиях этого слияния, о взаимодействии образовавшегося объекта с окружающей средой и о процессах, которые производят самые тяжелые элементы во Вселенной.

    «В процессе слияния зафиксировано образование тяжелых элементов. Поэтому можно говорить даже о галактической фабрике по производству тяжелых элементов, в том числе золота, ведь именно этот металл больше всего интересует землян. Ученые начинают предлагать модели, которые объяснили бы наблюдаемые параметры этого слияния», - отметил Вятчанин.

    До того как мы наблюдали это событие, у нас было два способа оценки частоты слияний нейтронных дыр: измерения двойных нейтронных звезд в нашей галактике (как от пульсаров) и наши теоретические модели образования звезд, сверхновых и их останков. Все это дает нам оценку - порядка 100 таких слияний происходит ежегодно в пределах кубического гигапарсека космоса.

    Наблюдение нового события обеспечило нам первую наблюдаемую оценку частоты сияний, и она в десять раз больше ожидаемого. Мы думали, что нам понадобится LIGO, достигшая предела чувствительность (сейчас она на полпути), чтобы увидеть хоть что-то, а затем еще и три дополнительных детектора для точного определения места. А нам удалось не только рано увидеть его, но и локализовать с первой же попытки. Итак, вопрос: нам просто повезло увидеть это событие или же частота таковых действительно намного выше, чем мы думали? Если выше, в чем тогда ошибочны наши теоретические модели? В следующем году LIGO уйдет на модернизацию, и у теоретиков будет немного времени пораскинуть мозгами.

    Что заставляет вещество выбрасываться в процессе слияния в таком количестве?

    Наши лучшие теоретические модели предсказывали, что слияния звезд вроде этого будет сопровождаться ярким световым сигналом в ультрафиолетовой и оптической частях спектра в течение дня, а затем будет тускнеть и исчезать. Но вместо этого сияние продержалось два дня, прежде чем начало тускнеть, и у нас, конечно, появились вопросы. Яркое свечение, которое продержалось так долго, свидетельствует о том, что ветра в диске вокруг звезд выбросили 30-40 масс Юпитера в виде вещества. По нашим данным, вещества должно было быть меньше вдвое или даже в восемь раз.

    Что же такого необычного в этих выбросах? Чтобы смоделировать такое слияние, нужно включить много разной физики:

    • гидродинамику
    • магнитные поля
    • уравнение состояния материи при ядерных плотностях
    • взаимодействия с нейтрино

    …и многое другое. Различные коды моделируют эти компоненты с разными уровнями сложности, и мы не знаем наверняка, какой из компонентов несет ответственность за эти ветры и выбросы. Найти нужный - проблема для теоретиков, и нам приходится мириться с тем, что мы впервые измерили слияние нейтронных звезд… и получили сюрприз.

    В последние моменты слияния две нейтронных звезды не только испускают , но и катастрофический взрыв, который эхом прокатывается по всему электромагнитному спектру. И если продуктом будет нейтронная звезда, черная дыра или нечто экзотическое среднее, переходное состояние нам пока неизвестно

    Произвело ли это слияние сверхмассивную нейтронную звезду?

    Чтобы получить достаточно потерянной массы от слияния нейтронных звезд, нужно, чтобы продукт этого слияния сгенерировал достаточно энергии соответствующего типа, чтобы сдуть эту массу с окружающего звезды диска. Основываясь на наблюдаемом гравитационно-волновом сигнале, мы можем сказать, что это слияние создало объект массой 2,74 солнечных, что значительно превышает максимум солнечной массы, который может быть у невращающейся нейтронной звезды. То есть, если ядерная материя ведет себя так, как от нее ожидаем, слияние двух нейтронных звезд должно было привести к появлению черной дыры.

    Нейтронная звезда - одно из самых плотных собраний вещества во Вселенной, однако у ее массы есть верхний предел. Превысьте его - и нейтронная звезда снова коллапсирует с образованием черной дыры

    Если бы ядро этого объекта после слияния немедленно сжалось до черной дыры, никакого выброса бы не было. Если бы вместо этого оно стало сверхмассивной нейтронной звездой, то должно было бы вращаться чрезвычайно быстро, поскольку большой угловой момент увеличил бы максимальный предел массы на 10-15%. Проблема в том, что если бы мы получили так быстро вращающуюся сверхмассивную нейтронную звезду, она должна была бы стать магнетаром с чрезвычайно мощным магнитным полем, в квадриллион раз более мощным, чем поля на поверхности Земли. Но магнетары быстро перестают вращаться и должны коллапсировать в черную дыру через 50 миллисекунд; наши же наблюдения за магнитными полями, вязкостью и нагревом, которые выбросили массу, показывают, что объект существовал сотни миллисекунд.

    Что-то здесь не так. Либо у нас быстро вращающаяся нейтронная звезда, которая по какой-то причине не является магнетаром, либо у нас будут выбросы на сотни миллисекунд, и наша физика не дает нам ответ. При этом, пусть даже ненадолго, скорее всего, у нас была сверхмассивная нейтронная звезда, а за ней и черная дыра. Если оба варианта верны, мы имеем дело с самой массивной нейтронной звездой и самой маломассивной черной дырой за всю историю наблюдений!

    Если эти нейтронные звезды были бы более массивными, было бы слияние невидимым?

    Существует предел тому, насколько массивными могут быть нейтронные звезды, и если добавлять и добавлять массы, получится аккурат черная дыра. Этот предел в 2,5 солнечных масс для невращающихся нейтронных звезд означает, что если общая масса слияния будет ниже, вы почти наверняка останетесь с нейтронной звездой после слияния, что приведет к сильным и долгим ультрафиолетовым и оптическим сигналам, которые мы видели в данном случае. С другой стороны, если подняться выше 2,9 солнечных масс, сразу после слияния сформируется черная дыра, вполне вероятно - без ультрафиолетовых и оптических сопровождений.

    Так или иначе, наше самое первое слияние нейтронных звезд оказалось именно в середине этого диапазона, когда может появиться сверхмассивная нейтронная звезда, создающая выбросы и оптические и ультрафиолетовые сигналы на протяжении короткого времени. Образуются ли магнетары при менее массивных слияниях? А более массивные - сразу приходят к черным дырам и остаются невидимыми на этих длинах волн? Насколько редкие или распространенные три этих категории слияния: обычные нейтронные звезды, сверхмассивные нейтронные звезды и черные дыры? Через год LIGO и Virgo займутся поисками ответов на эти вопросы, а у теоретиков будет как раз год, чтобы привести свои модели в соответствие с прогнозами.

    Что приводит к тому, что гамма-лучевые всплески такие яркие во многих направлениях, а не в конусе?

    Этот вопрос весьма сложный. С одной стороны, открытие подтвердило то, что давно подозревали, но никак не могли доказать: что сливающиеся нейтронные звезды действительно производят гамма-лучевые всплески. Но мы всегда считали, что гамма-лучевые всплески испускают гамма-лучи только в узкой конусообразной форме, 10-15 градусов в диаметре. Теперь же мы знаем, из положения слияния и величины гравитационных волн, что гамма-лучевые всплески уходят на 30 градусов от нашей линии визирования, но мы при этом наблюдаем мощный гамма-лучевой сигнал.

    Природа гамма-лучевых всплесков должна измениться. Задача теоретиков состоит в том, чтобы объяснить, почему физика этих объектов настолько отличается от предсказанной нашими моделями.

    Отдельной строкой: насколько непрозрачны/прозрачны тяжелые элементы?

    Когда дело доходит до самых тяжелых элементов в периодической таблице, мы знаем, что они произведены по большей части не сверхновыми, а именно слияниями черных дыр. Но чтобы получить спектры тяжелых элементов с расстояния в 100 миллионов световых лет, нужно понимать их прозрачность. Сюда входит понимание атомных физических переходов электронов на орбиталях атома в астрономической обстановке. Впервые у нас есть среда для проверки того, как астрономия пересекается с атомной физикой, и последующие наблюдения слияний должны позволить нам ответить на вопрос о непрозрачности и прозрачности в том числе.

    Вполне возможно, что слияние нейтронных звезд происходит постоянно, а когда LIGO достигнет запланированного уровня чувствительности, мы будем находить десятки слияний в год. Также возможно, что это событие было крайне редким и нам повезет видеть лишь по одному за год даже после обновления установок. Следующие десять лет физики-теоретики потратят на поиск ответов на выше описанные вопросы.

    Будущее астрономии лежит перед нами. Гравитационные волны - это новый, совершенно независимый способ исследования неба, и сопоставляя небо с гравитационными волнами с традиционными астрономическими картами, мы готовы ответить на вопросы, которые не осмеливались задать еще неделю назад.

    ESO/L. Calçada/M. Kornmesser

    Ученые впервые в истории зафиксировали гравитационные волны от слияния двух нейтронных звезд - сверхплотных объектов массой с наше Солнце и размером с Москву. Возникшие затем гамма-всплеск и вспышку килоновой наблюдали около 70 наземных и космических обсерваторий - они смогли увидеть предсказанный теоретиками процесс синтеза тяжелых элементов, в том числе золота и платины, и подтвердить правоту гипотез о природе загадочных коротких гамма-всплесков, сообщают пресс-служба коллаборации LIGO/Virgo, Европейской Южной обсерватории и обсерватории Лос-Кумбрес. Результаты наблюдений могут пролить свет на и во Вселенной.

    Утром 17 августа 2017 года (в 8:41 по времени Восточного побережья США, когда в Москве было 15:41) автоматические системы на одном из двух детекторов гравитационно-волновой обсерватории LIGO зарегистрировали приход гравитационной волны из космоса. Сигнал получил обозначение GW170817, это был уже пятый случай фиксации гравитационных волн с 2015 года, с момента, когда они были впервые зарегистрированы. Всего за три дня до этого обсерватория LIGO впервые « » гравитационную волну вместе с европейским проектом Virgo.

    Однако в этот раз уже через две секунды после гравитационного события космический телескоп Fermi зафиксировал вспышку гамма-излучения на южном небе. Почти в этот же момент вспышку увидела европейско-российская космическая обсерватория INTEGRAL.

    Автоматические системы анализа данных обсерватории LIGO пришли к выводу, что случайное совпадение этих двух событий крайне маловероятно. В ходе поиска дополнительной информации было обнаружено, что гравитационную волну увидел и второй детектор LIGO, но не зафиксировала европейская гравитационная обсерватория Virgo. Астрономы всего мира были подняты «по тревоге» - охоту на источник гравитационных волн и гамма-всплеска начали множество обсерваторий, в том числе Европейская Южная обсерватория и космический телескоп Hubble.


    Изменение яркости и цвета килоновой после взрыва

    Задача была непростой - комбинированные данные LIGO/Virgo, Fermi и INTEGRAL позволили очертить область площадью в 35 квадратных градусов - это примерная площадь нескольких сотен лунных дисков. Только через 11 часов небольшой телескоп Swope с метровым зеркалом, находящейся в Чили, сделал первый снимок предполагаемого источника - он выглядел как очень яркая звезда рядом с эллиптической галактикой NGC 4993 в созвездии Гидры. В течение последующих пяти дней яркость источника упала в 20 раз, а цвет постепенно смещался от синего к красному. Все это время за объектом наблюдали множество телескопов в диапазонах от рентгеновского до инфракрасного, пока в сентябре галактика не оказалась слишком близко к Солнцу, и стала недоступна для наблюдений.

    Ученые пришли к выводу, что источник вспышки находился в галактике NGC 4993 на расстоянии около 130 миллионов световых лет от Земли. Это невероятно близко, до сих пор гравитационные волны приходили к нам с расстояний в миллиарды световых лет. Благодаря этой близости мы и смогли их услышать. Источником волны было слияние двух объектов с массами в диапазоне от 1,1 до 1,6 масс Солнца - это могли быть только нейтронные звезды.


    Фотография источника гравитационных волн - NGC 4993, в центре различима вспышка

    VLT/VIMOS. VLT/MUSE, MPG/ESO

    Сам всплеск «звучал» очень долго - около 100 секунд, слияния черных дыр давали всплески длительностью в доли секунды. Пара нейтронных звезд вращалась вокруг общего центра масс, постепенно теряя энергию в виде гравитационных волн и сближаясь. Когда расстояние между ними сократилось до 300 километров, гравитационные волны стали достаточно мощными, чтобы попасть в зону чувствительности гравитационных детекторов LIGO/Virgo. В момент слияния двух нейтронных звезд в один компактный объект (нейтронную звезду или черную дыру) происходит мощная вспышка гамма-излучения.

    Такие гамма-вспышки астрономы называют короткими гамма-всплесками, гамма-телескопы фиксируют их примерно раз в неделю. Если природа длинных гамма-всплесков более понятна (их источники - вспышки сверхновых), то единства мнений насчет источников коротких всплесков не было. Существовала гипотеза, что их порождают слияния нейтронных звезд.


    Теперь ученые смогли впервые подтвердить эту гипотезу, поскольку благодаря гравитационным волнам мы знаем массу слившихся компонентов, что доказывает что это именно нейтронные звезды.

    «Десятилетия мы подозревали, что короткие гамма-всплески порождают слияния нейтронных звезд. Теперь, благодаря данным LIGO и Virgo об этом событии у нас есть ответ. Гравитационные волны говорят нам, что слившиеся объекты имели массы, соответствующие нейтронным звездам, а гамма-вспышка говорит, что эти объекты вряд ли могли быть черными дырами, поскольку столкновение черных дыр не должно порождать излучение», - говорит Джули МакЭнери, сотрудник проекта Fermi Центра космических полетов NASA имени Годдарда.

    Кроме того, астрономы впервые получили однозначное подтверждение существования килоновых (или «макроновых») вспышек, которые примерно в 1000 раз мощнее вспышек обычных новых. Теоретики предсказывали, что килоновые могут возникать при слиянии нейтронных звезд или нейтронной звезды и черной дыры.

    При этом запускается процесс синтеза тяжелых элементов, основанный на захвате ядрами нейтронов (r-процесс), в результате которого во Вселенной появились многие из тяжелых элементов, таких как золото, платина или уран.

    По подсчетам ученых, при одном взрыве килоновой может возникнуть огромное количество золота - до десяти масс Луны . До сих пор лишь единожды наблюдалось событие, которое .

    Теперь же астрономы смогли впервые наблюдать не только рождение килоновой, но и продукты ее «работы». Спектры, полученные при помощи телескопов Hubble и VLT (Very Large Telescope), показали наличие цезия, теллура, золота, платины и других тяжелых элементов, образованных при слиянии нейтронных звезд.

    «Пока данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных обсерваториями LIGO и Virgo, и замечательное достижение ESO, которой удалось получить такие наблюдения килоновой», - говорит Стефано Ковино (Stefano Covino), первый автор одной из статей в Nature Astronomy .

    У ученых пока нет ответа на вопрос о том, что осталось после слияния нейтронных звезд - это может быть как черная дыра, так и новая нейтронная звезда, кроме того, не вполне ясно, почему гамма-всплеск оказался относительно слабым.

    Гравитационные волны - волны колебаний геометрии пространства-времени, существование которых было предсказано общей теорией относительности. Впервые об их достоверном обнаружении коллаборация LIGO в феврале 2016 года - спустя 100 лет после предсказаний Эйнштейна. Подробнее о том, что такое гравитационные волны и как они могут помочь исследовать Вселенную можно прочитать в наших специальных материалах - « » и ».

    Александр Войтюк


    Сегодня на нескольких одновременных пресс-конференциях ученые из гравитационных обсерваторий LIGO и Virgo, а также из других научных учреждений мира сообщили, что в августе этого года им впервые удалось зарегистрировать гравитационные волны, порожденные слиянием двух нейтронных звезд. Ранее гравитационные волны отмечались физиками четырежды, но во всех случаях они были порождены слиянием двух черных дыр, а не нейтронных звезд.


    © ESO/L. Calçada/M. Kornmesser

    Более того, также впервые в истории событие, вызвавшее гравитационные волны, было отмечено не только гравитационными детекторами-интерферометрами, но и наблюдалось космическими и наземными телескопами в различных диапазонах (рентгеновском, ультрафиолетовом, видимом, инфракрасном и радиодиапазоне). Открытие не только позволит совершить следующий шаг в исследовании гравитационных волн и гравитации, но также даст значительный прогресс для изучения нейтронных звезд. В частности оно подтверждает гипотезу синтезе тяжелых элементов в процессе слияния нейтронных звезд и о природе гамма-всплесков. Открытие описывается в целом ряде статье, публикуемых в журнала Nature, Nature Astronomy, Physical Review Letters и Astrophysical Journal Letters.

    Гравитационные волны порождает любой объект, обладающий массой и движущийся с неравномерным ускорением, но достаточно сильные волны, которые можно обнаружить при помощи устройств, сделанных человеком, рождаются в ходе взаимодействия объектов очень большой массы: черных дыр, компонентов двойных звезд, нейтронных звезд. Нынешняя волна, получившая обозначение GW170817, была зарегистрирована обоими детекторами гравитационной обсерватории LIGO в США и детектором Virgo в Италии 17 августа этого года.

    Наличие трех детекторов, расположенных в разных точках Земли, позволяет ученым приблизительно определить положение источника волн. Спустя две секунды после того, как гравитационные обсерватории зафиксировали волну GW170817, в том районе, где должен располагаться ее источник была отмечена гамма-вспышка. Это сделали космические гамма-телескопы Fermi (Fermi Гамма-ray Space Telescope) и INTEGRAL (INTErnational Гамма Ray Astrophysics Laboratory),. После этого многие наземные и космические обсерватории начали искать возможный источник этих событий. Площадь района поиска, определенная по данным гравитационных обсерватории и гамма-телескопов была довольно велика, составляя около 35 квадратных градусов, на таком участке неба уместилось бы несколько сотен полных лунных дисков, а число звезд, расположенных на нем, составляет несколько миллионов. Но найти источник гравитационной волны и гамма-всплеска все-таки удалось.

    Первым это сделал через одиннадцать часов после гамма-всплеска телескоп-рефлектор Swope, работающий в обсерватории Лас-Кампанас в Чили. После этого сразу несколько крупных телескопов прервали утвержденные ранее программы своих наблюдений и переключились на наблюдение небольшой галактики NGC 4993 в созвездии Гидры, на расстоянии 40 парсек от Солнечной системы (около 130 миллионов световых лет). Это событие вызвало первые слухи об открытии, но официально ученые ничего не подтверждали вплоть до сегодняшних пресс-конференций.

    Действительно, источником волн и гамма-излучения стала звезда, расположенная рядом с галактикой NGC 4993. За этой звездой в течение нескольких недель следили телескопы Pan-STARRS и Subaru на Гавайских островах, Очень Большой Телескоп Европйеской Южной обсерватории (VLT ESO), Телескоп Новой Технологии (NTT), VLT Survey Telescope (VST), 2,2-метровый телескоп MPG/ESO , решетка телескопов ALMA (Atacama Large Millimeter/submillimeter Array) – всего в наблюдениях участвовали около семидесяти обсерваторий со всего мира, а также космический телескоп Хаббла. «Редко случается, чтобы ученому выпадало быть свидетелем начала новой эры в науке, – приводит пресс-релиз ESO слова астронома Елена Пиан (Elena Pian) из Астрофизического института Италии INAF. – Это – один из таких случаев!». Времени у астрономов было немного, так как галактика NGC 4993 была доступна для наблюдений только в вечернее время в августе, в сентябре она оказалась на небе слишком близко к Солнцу и стала ненаблюдаемой.

    Наблюдавшаяся звезда первоначально была очень яркой, но за первые пять дней наблюдений ее яркость снизилась в двадцать раз. Расположена эта звезда на том же расстоянии от нас, что и галактика NGC 4993 – 130 миллионов световых лет. Это означает, что гравитационная волна GW170817 возникла на рекордно близком к нам расстоянии. Расчеты показали, что источником гравитационной волны стало слияние объектов, массы которых равны от 1,1 до 1,6 масс Солнца, а значит, это не могли быть черные дыры. Так нейтронные звезды стали единственным возможным объяснением.


    Составное изображение NGC 4993
    и килоновой по данным многих инструментов ESO
    © ESO

    Порождение гравитационных волн нейтронными звездами происходит по тому же сценарию, что и при слиянии черных дыр, только порождаемые нейтронными звездами волны слабее. Вращаясь вокруг общего центра тяжести в двойной системе, две нейтронные звезды теряют энергию, излучая гравитационные волны. Поэтому они постепенно сближаются, пока не сольются в одну нейтронную звезду (есть вероятность, что при слиянии может возникнуть и черная дыра). Слияние двух нейтронных звезд сопровождается вспышкой значительно большей яркости, чем обычная новая звезда. Астрономы предлагают для нее название «килоновая» . Часть массы двух звезд при слиянии преобразуется в энергию гравитационных волн, которые и были в этот раз замечены земными учеными.

    Хотя килоновые звезды были предсказаны более 30 лет назад, нынешний случай – первое обнаружение подобной звезды. Ее характеристики, определенные в результате наблюдений, хорошо соответствуют сделанным ранее предсказаниям. В результате слияния двух нейтронных звезд и взрыва килоновой происходит выброс радиоактивных тяжелых химических элементов, разлетающихся со скоростью в одну пятую скорости света. В течение нескольких дней – быстрее, чем при любом другом звездном взрыве – цвет килоновой меняется от ярко-голубого к красному. «Когда на наших мониторах появился спектр объекта, я понял, что это самое необычное транзиентное явление, которое я когда-либо видел, – говорит Стивен Смартт (Stephen Smartt), выполнявший наблюдения на телескопе ESO NTT. – Я никогда не наблюдал ничего подобного. Наши данные, так же, как и данные других исследовательских групп, ясно показывают, что это была не сверхновая и не переменная звезда фона, а что-то совершенно необычное».

    Спектры излучения звезды показывают присутствие цезия и теллура, выброшенных в пространство при слиянии нейтронных звезд. Это наблюдение подтвердила сформулированную ранее астрофизиками теорию r-нуклеосинтеза (r-процесс, быстрый процесс захвата нейтронов) в недрах сверхплотных звездных объектов. Химические элементы, образовавшиеся при слиянии нейтронных звезд, после взрыва килоновой рассеялись в космосе.

    Подтвердилась и еще одна теория астрономов, согласно которой короткие гамма-всплески возникают при слиянии нейтронных звезд. Эта мысль высказывалась давно, но только объединение данных от гравитационных обсерваторий LIGO и Virgo с наблюдениями астрономов позволило окончательно убедиться в ее правильности.

    «Пока что данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных установками LIGO–VIRGO, и замечательное достижение ESO, которой удалось получить такие наблюдения килоновой», – рассказывает астроном Стефано Ковино (Stefano Covino).