12795 0

Главные отличия женского таза от мужского отчетливо выявляются у взрослых. Главные из них следующие: кости женского таза, по сравнению с мужским, более тонкие и гладкие; женский таз ниже, объемнее и шире, крылья подвздошных костей у женщин развернуты сильнее, вследствие чего поперечные размеры таза женского больше размеров мужского; вход в малый таз женщины более обширен и не суживается книзу воронкообразно, как у мужчин, а наоборот, расширяется; вследствие этого выход из таза женщин шире, чем у мужчин; угол, образованный нижними ветвями лонных костей таза женщин, более тупой (90-100 градусов), чем у мужчин (70-75 градусов). Таким образом, таз взрослой женщины по сравнению с мужским более объемный и широкий, и в то же время менее глубок.

Все соединения тазовых костей неподвижные или слабо подвижные, во время беременности размягчаются, а к концу беременности они становятся настолько растяжимыми, что кости таза в известной степени становятся как бы подвижными по отношению друг к другу; наиболее это выражено в крестцово-копчиковом сочленении.

Особо важное значение при родах играет тазовое дно женского таза, которое включается в родовой канал и способствует рождению плода.

Верхняя апертура малого таза - или вход в полость таза ограничен пограничной линией, мысом крестца. Подлобковый угол, седалищные бугры, крестцово-бугорковые связки, верхушка крестца и копчик — отграничивают нижнюю апертуру таза (или вход в полость таза). Плоскости входа и выхода, а также так называемой «широкой части таза» имеют особое значение в акушерской практике, они оцениваются прямым и поперечным, правым и левым косыми размерами.

Прямой размер входа — между верхним краем симфиза и мысом равняется 11 см; косой размер — от лобково-гребенного возвышения до крестцово-подвздошного сочленения — 12 см; прямой размер выхода между лобковым углом и копчиком — 9,5 см; поперечный между седалищными буграми — 11 см; поперечные и прямые размеры полости таза на 1-3 см больше размеров входа; линия, соединяющая середину прямых размеров и полости таза, является его осью (проводной линией в акушерстве). Плоскость входа наклонена кпереди и с горизонтальной плоскостью образует угол в 54-55 градусов (угол наклона).

Нижняя стенка находится в выходе таза и относится к слоям промежности, глубокие мышцы которой образуют диафрагму таза и мочеполовую диафрагму: мышца, поднимающая задний проход, глубокая поперечная мышца промежности; через первую из них проходит задний проход, через вторую - мочеиспускательный канал и влагалище.

Прямая кишка

В женском тазу кпереди от прямой кишки располагаются матка и влагалище. В брюшинном этаже малого таза между прямой кишкой и маткой находится самый низкий участок полости таза — прямокишечно-маточное углубление (excavatio rectouterina), где могут располагаться петли тонкой кишки. В подбрюшинном этаже прямая кишка прилежит к влагалищу. Брюшинно-промежностный апоневроз, или septim rectovaginale, разделяет прямую кишку и влагалище. Лимфатические сосуды прямой кишки образуют связи с лимфатическими сосудами матки и влагалища.

Мочевой пузырь и мочеточники

В женском тазу мочевой пузырь лежит в полости малого таза глубже, чем у мужчин. Спереди он прилегает к симфизу и фиксируется к нему лобково-пузырными связками. Дно пузыря расположено на мочеполовой диафрагме. Сзади к мочевому пузырю прилежит матка и в подбрюшинном пространстве влагалище. Лимфатические сосуды мочевого пузыря у женщин образуют прямые связи с лимфатическими сосудами матки и влагалища в основании широкой связки матки и в региональных подвздошных лимфатических узлах.

В полости женского таза фасции мочевого пузыря имеют сходные соотношения с фасциями шейки матки и влагалища, здесь наиболее выраженным является фронтально расположенный брюшинно-промежностный апоневроз (Денонвилье) между задней стенкой влагалища и прямой кишкой.

Мочеточники в женском тазу, как и в мужском, располагаются под брюшиной и окружены парауретральной клетчаткой, имеют свой собственный фасциальной футляр. В полости малого таза мочеточники сеачала лежат на боковой стенке таза, на передней поверхности внутренней подвздошной артерии, кпереди от a uterina, затем в толще основания широких связок матки. Здесь мочеточники пересекают еще раз a. uterina, располагаясь под ней и на 1,5-2 см от внутреннего зева шейки матки. Далее мочеточник на небольшом протяжении прилежит к передней стенке влагалища и под острым углом впадает в мочевой пузырь.

B. Д. Иванова, А.В. Колсанов, С.С. Чаплыгин, P.P. Юнусов, А.А. Дубинин, И.А. Бардовский, C. Н. Ларионова

Денатурация белков в технологиях продукции общественного питания должна восприниматься с нескольких позиций. Во-первых, это фактор, который обеспечивает реализацию понятия кулинарная готовность. Во-вторых, фактор, который разрешает или полностью прекратить ферментативную деятельность, или уменьшить ее скорость. В-третьих, фактор, который обеспечивает соблюдение такого важного показателя, как микробиологическая безвредность. В-четвертых, фактор потери белками своих функциональных свойств и своей видовой специфичности. И далее, с денатурацией белковых веществ связаны формирования консистенции, возникновения формы, изменение цвета и др.

Т. е. в результате денатурации белков продукты или белоксодержащие материалы теряют свои функциональные и нативные свойства вследствие воздействия различных факторов, а также денатурационные процессы влияют на обеспечение высокого уровня качества продукции.

Способность белков к денатурации является важным и присущим исключительно белкам свойством. Под денатурацией понимают потерю белками их природных (физико-химических, биологических) свойств в результате изменения их уникальной структуры под влиянием различных факторов. Многие технологические факторы - высокая или низкая температура, различные излучения, значительные изменения pH, ионной силы, изменение коллоидного равновесия, интенсивное механическое воздействие и другие поверхностные эффекты, ферментация, протеолиз, химические вещества и модификация, влияние времени - вызывают денатурацию белков. При этом нарушаются наиболее чувствительные к воздействию четвертичная, третичная и вторичная структуры белков. Первичная, как правило, не затрагивается. Но под влиянием химических факторов - химической модификации, например, ангидридами кислот, окисления, восстановления, пластеиновой реакции, ферментативной модификации - возможно нарушение и на уровне первичной структуры.

Типичным следствием денатурации простых белков является их комплексообразование с другими белками и органическими соединениями, а для олигомеров - распад на субъединицы. Полипептид- ные цепи при денатурации приобретают иную конфигурацию, которая отличается от единственно возможной, присущей нативной молекуле белка: цепи, как правило, разворачиваются таким образом, что на их поверхности скапливается значительное количество гидрофобных групп, из-за чего ухудшается сродство к воде. Появление на поверхности ранее скрытых конформацией белка радикалов или функциональных групп изменяет физико-химические свойства белков.

Изменяются также биологические свойства, то есть белок не может выполнять свои биологические функции: ферменты инактивируются, гемоглобин теряет способность присоединять и переносить кислород, миофибриллярные белки теряют возможность сокращаться и т. д.

Из общих закономерностей денатурации следует, прежде всего, выделить значительное ухудшение гидрофильности и повышения гидрофобности белков. Как известно, за счет гидрофильных групп, которые размещены на поверхности (-СООН, -ОН, -NH2 и др.), белковые молекулы способны связывать значительное количество воды. Поэтому при значительной гидратированности миоглобина обнаружено, что в середине его третичной структуры находится всего четыре молекулы воды, то есть внутренняя структура и компактность миоглобина обусловлены, в основном, гидрофобным взаимодействием. Как следствие, наблюдается изменение взаимодействия белоксодержащих продуктов с водой, в реальных технологических процессах связанное с перераспределением воды. Так, мясо теплокровных животных и рыбы за счет потери гидрофильное™ белками в процессе термообработки теряет часть своей массы, («уваривается», «ужаривается»), для изделий из муки характерна клейстеризация крахмала в процессе термообработки за счет дегидратации белков клейковины.

Известно, что мясо, рыба, яйца (точнее, их белки), термически не обработанные, способны к дополнительной гидратации за счет гидратации белков. Но после термообработки это свойство утрачивается полностью. Очень наглядно изменение сродства белков к воде проявляется на примере термообработки яиц. Белок (материал) яйца представлен, в основном, белками (протеинами), что позволяет его широко использовать в различных модельных и технологических экспериментах. В нативном состоянии белок имеет очень высокое сродство к воде, а также гидратированным продуктам. Это позволяет использовать яйца во всех группах кулинарных изделий как водосвязывающий или формующий компонент. Поэтому яйца сами по себе можно значительно разводить водой (на 50...60%), молоком, растворами, отварами, что широко используется при изготовлении омлетов, яичных полуфабрикатов.

Благодаря воде, достигается высокое сродство яиц к мясным, рыбным, овощным рубленым массам, муке, панировочным смесям, творогу, сахарному сиропу, а также другим смесям, используемым в технологических процессах. Растворимость белков яиц, а значит, и сродство к воде, гидратированным продуктам после денатурации значительно ухудшается. Потеря в результате денатурации такого важного функционального свойства, как способность к гидратации, значительно уменьшает технологические возможности белков яиц, поэтому после термообработки яйца добавляются к рецептурам не как функциональный, а как пассивный рецептурный компонент.

Каждый белок имеет индивидуальную температуру денатурации, точнее, определенный температурный диапазон, в котором он подвергается денатурационным изменениям. В технологии под температурой денатурации понимается нижний уровень диапазона, при котором начинаются видимые денатурационные изменения. Так, для белков рыбы это - около 30, яиц - 55, белков мяса: миогена - 55...60, миоглобина - 60, глобулина - 50, миоальбумина - 45...47, миозина - 45...50, актина - около 55, актомиозина - 42...48, коллагена - около - 55...60 °С.

Наглядным примером того, что денатурация проходит в определенном диапазоне, а не при фиксированной температуре, является изменение коллоидных свойств яиц птицы в процессе термообработки. Несмотря на то, что температурой денатурации белков яиц считается 55 °С, изменение коллоидных свойств проходит в интервале температур 55...95 °С: при температуре 50...55 °С появляется локальное помутнение, при 55...60 °С оно распространяется на весь объем, при 60...65 °С - повышается вязкость; при 65...75 °С - начинается процесс

студнеобразования; при 75...85 °С - образуется гель, сохраняющий форму; при 85...95 °С - растут и достигают максимума упругоэластичные свойства геля.

Рис. 1.4

Белок миоглобин при термообработке переходит в метмиоглобин, т. е. денатурирует, в интервале температур 60...80°С: при температуре 60 °С миоглобин говядины ярко-красный; при 70 - цвет меняется на розовый; в интервале температур 70...80 и выше он приобретает серовато-коричневый цвет, характерный для метмиоглобина. Графически зависимость влияния температуры и времени на денатурацию миоглобина приведены на рис. 1.4. Белок миозин денатурирует в интервале температур 70...80 °С.

Денатурация белка коллагена в технологической практике получила название «сваривание» и сопровождается резким изменением геометрических размеров: фибриллы коллагена сокращаются, а толщина их растет. О ходе денатурации белка свидетельствуют косвенные поверхностные эффекты, такие как изменение коллоидного состояния, повышение вязкости, студнеобразо- вание, расслоение, сокращение.

Очень важное место в технологии занимает изменение коллоидного состояния пищевых продуктов, которая получила название коагуляции. Коагуляция, в зависимости от свойств и концентрации белка, может идти с образованием конечных продуктов с различным агрегатным состоянием. Температурой коагуляции, или температурной гель-точкой, является та наименьшая температура, при которой белок меняет свое коллоидное состояние. Достигая температурной гель-точки, малоконцентрированные по белку системы расслаиваются на две фазы, одна из которых, белковая, агрегирует в виде локальных флокулятов, пленок, а вторая представлена в виде воды. Независимо от вида белка, малоконцентрированные по белку системы через физическую недостаточность в системе белка не способны к гелеобразованию по всей системе, поэтому расслоение и синерезис типичные и объективные этапы денатурации и коагуляции белка. Так ведут себя молоко во время кипячения (образование лактоальбуминових пленок, накипи), яйца, растворенные более чем в 1,6 раза жидкостью (водой, молоком), рубленные мясная и рыбная массы, чрезмерно гидратированные, жидкое тесто для блинов.

Если система высококонцентрированная по белку, то денатурация и вид коагуляции основном зависят от вида белка. Такие белковые системы способны к формообразованию, что реализовано во многих технологических процессах: получение изделий из яиц, рубленых рыбных, мясных изделий, колбасных изделий и др. Однако гелеобразование носит различный характер в зависимости от вида белка. Типично, что когда белок образует с водой коллоидный раствор, то в результате коагуляции он не теряет влагу, удерживая ее за счет иммобилизации. Но в природе таких белков мало - это белки яиц, плазмы крови животных, белки биологической жидкости криля. В технологическом плане они достаточно дефицитны. Условно гели, которые образуются с удержанием влаги, получили название лиогели. Если белки достаточно гидратированы, но концентрированные и образуют с водой дисперсию, то, как правило, коагулируя при денатурации, они образуют гели, сохраняющие форму, но характеризуются интенсивным синерезисом. Эти гели условно называются коагелями. Коагели получаются из дисперсии белков мяса, рыбы. Аналогично ведут себя и белки муки, но их объективная потеря влаги скрывается клейстеризацией крахмала.

Образование гелей второго рода при коагуляции и сопутствующие этому процессы - это ключевое технологическое задание: большинство пищевых продуктов формируется благодаря этому процессу. Реализуя способность белка к гелеобразованию, а также регулируя этот процесс, удается управлять качеством конечных продуктов. Так, смешиванием белков, способных образовывать лиогели, с белками, способными образовывать коагели, удается снизить синергетические процессы.

Введением сахарозы и других простых сахаров или растворимых декстринов удается повысить температуру коагуляции белков, т. е. температурно их стабилизировать. Это широко используется в технологии сладких блюд и соусов с использованием яиц. Напротив, использование высоких концентраций соли, спирта и других дегидраторов эту температуру снижает.

Иногда коагуляционные процессы используется для выделения белков. На этом основывается получения сыра, казеина. Соосаждение белков при коагуляции получило название копреципитации, а конечные продукты - копреципитаты. Наиболее важное место копреципитация занимала в технологии извлечения сывороточных белков из молока. Известны яично-молочные копреципитаты и некоторые другие.

Регулированием свойств белков достигается также устойчивость к агрегации. Как правило, удаление pH белоксодержащей системы от изоэлектрической точки повышает устойчивость к агрегации, и наоборот, сближение pH системы с изоэлектрической точкой белков снижает температуру коагуляции. Так, глобулин рыбы, имеющий изоэлектрическую точки при pH 6,0, в слабокислой среде (pH 6,5) денатурирует при 50 °С, в нейтральной (pH 7,0) - при 80. Миофибриллярные белки рыбы и криля, а также соевые белки, модифицированные янтарным ангидридом в интервале пищевых величин pH, коагулируют при температуре в среднем на 20...35 °С выше, чем ^модифицированные.

Степень гидратации в значительной мере влияет на денатурацион- ные изменения белка. Вода в определенной степени повышает подвижность белковых цепей и реакционную активность гидрофильных и гидрофобных групп. Поэтому более гидратированные белки денатурируют быстрее, чем сухие. Белки с удаленной влагой, т. е. высушенные, характеризуются широким интервалом термостабильности, в том числе в отношении температур, близких к 100 °С.

Замораживание в реальных белковых системах, которыми являются большинство пищевых продуктов, проходит неравномерно. Сначала замерзают жидкости с меньшей концентрацией растворенных сухих веществ, что сдвигает коллоидное равновесие. Двухфазные белковые системы, то есть белковые гели второго рода, к которым относятся все рыбо- и мясопродукты, замерзают таким образом, что межтканевые жидкости замерзают первыми. Вымораживание растворителя приводит к повышению концентрации сухих веществ, следствием чего является высаливание белков, т. е. их частичная денатурация. Замораживание, по сути дела, выполняет роль водоотводящего агента. За счет этого замороженные гидратированные белки по свойствам отличаются от нативных. Вещества, которые понижают температуру замерзания, получили название криопротекторов, к которым следует отнести сахарозу, соль, глицерин. Глубина денатурации замороженных белковых продуктов повышается с увеличением сроков хранения.

В денатурации белков значительную роль играют другие компоненты биологической системы, в том числе липиды, углеводы. Благодаря сложному строению и достаточно высокой реакционной способности функциональных групп белков, они легко с ними комплексуют с образованием соединений, которые значительно видоизменяют свойства белков. Как правило, следствием этого является значительное снижение функциональных возможностей белков.

Взаимодействие с липидами идет несколькими путями. Во-первых, это взаимодействие может быть за счет адсорбции белковых молекул на бимолекулярном слое липидов. Взаимодействие может сопровождаться изменением структуры белковых молекул, то есть их денатурацией.

Второй вид взаимодействия между белками и липидами которое идет за счет включения белка в состав поверхности бимолекулярного слоя, вызывает частичное изменение на уровне четвертичной и третичной структур белка. Следствием этого является изменение функциональных возможностей белка.

Третий вид взаимодействия белков и липидов заключается в том, что за счет липидов на поверхности мембраны белок полностью меняет четвертичную, третичную, вторичную структуры. При этом полипеп- тидные цепи находятся среди полярных групп липидов, постоянно меняя свою форму. Белки ориентированы гидрофильными и гидрофобными участками к воде и жиру. Белки теряют свою функциональную и технологическую роль, в том числе и ферментную.

Липиды, которые имеют полярные группы, способные связываться с белком электростатическими силами. Так, фосфолипиды взаимодействуют с белком своими фосфатидными группами и четвертичными атомами азота (фосфатидилхолины, фосфатидилэтаноламины), свободные жирные кислоты - своими карбоксильными группами. Эти липиды проявляют сродство к аминокислотам, которые имеют группы: -ОН; =NH; -NH 2 ; =S. Также возможно взаимодействие за счет сополимеризации.

Взаимодействие между белком и липидом возможно под влиянием различных технологических факторов, например тепла, влаги.

Прочность связи жирных кислот с белком повышается с ростом их ненасыщенности. Двойные связи жирных кислот повышают способность к окислению сульфгидрильных и пептидных связей с возникновением дисульфидных (-S-S-) и азотных (-CO-N-N-CO-) мостиков.

Особый характер имеет взаимодействие белков с окисленными липидами. При окислении липидов в присутствии белков возникает комплекс, который стабилизируется за счет воды.

Белковые вещества пищевых продуктов, как коллоиды, могут «стареть» с течением времени, изменяя при этом свойства продукта в целом. Поэтому долгосрочное хранение пищевых продуктов в предприятиях общественного питания и пищеперерабатывающего комплекса в результате денатурации белков, как правило, приводит к ухудшению технологических свойств сырья. Поэтому кулинарная продукция, которая получается из замороженных мяса, рыбы, птицы, существенно по показателям отличается от аналогичной но полученной из свежего сырья.

Вообще денатурация, как явление и как процесс, вызывает очень большую заинтересованность специалистов и ученых, поскольку, с одной стороны, представляет значительную проблему, с другой - лежит в основе приготовления пищи.

Денатурация способствует комплексообразованию. Так, экспериментально доказано, что комплексообразование между окисленными липидами и казеином в присутствии влаги при комнатной температуре возникает уже через 10... 15 минут. Очень активные комплексообразо- ватели - полярные липиды.

Широко известна в технологии реакция сахароаминной конденсации, которая лежит в основе термической денатурации и деструкции белков. Результатом реакции является значительное изменение функциональных и технологических свойств белков, а также органолептических показателей пищевой системы - цвета, вкуса, консистенции.

Как уже отмечалось выше, денатурация играет ключевую роль в технологии продукции общественного питания. Очень важно сознательно оперировать такими понятиями, как факторы денатурации, стабильность белковой системы, степень денатурации, которые, с одной стороны, предопределяют параметры технологического процесса, а с другой - характеризуют состояние белковой системы, ее функциональные возможности и технологические показатели. К денатурации следует относиться не только как к следствию технологического процесса, а также как к показателю, который обусловливает этот процесс. Из-за того, что белковые вещества в технологических процессах следует рассматривать не как пассивные вещества, а как активные функциональные компоненты, очень важна информация о нативнисти белковых веществ и степени их денатурации. Действительно, кроме биологической ценности, технологическая ценность белков в первую очередь оценивается их функциональными показателями, такими как сродство к воде и степень гидратации, способность растворяться, быть стабильными в растворе и обусловливать определенные структурно-механические свойства, выполнять роль поверхностно-активного вещества - быть эмульгатором, стабилизатором, пенообразователем, снижать поверхностное натяжение воды, быть термолабильным или термостабильным структурообразователем и др. Все эти показатели обусловлены свойствами нативных, неденатури- рованных белков. Поэтому такое понятие, как степень денатурации, оцениваемое по реальным технологическим показателям, например по эмульгирующим или пенообразующим способностям, в отношении нативного белка играет очень большую роль в организации технологического процесса, выборе концентраций веществ, гидромодуля, температурных параметров и др. Все это одновременно должно быть сопряжено с такими нормативными показателями, которые характеризуют показатели стабильности белковых систем, например: растворимость (сухое молоко, яичный порошок), гидратация (высушенные мясо, рыба, пассерованная в различных режимах мука, тесто, образованное при контролируемом заваривании), показатели взаимозаменяемости продуктов (яичный порошок - на яйца свежие, молоко сухое - на молоко свежее и др.).

Нужно одновременно оценивать и физиологическую роль денатурации. Потеря белком в процессе денатурации своей биохимической индивидуальности в целом облегчает переваривание готовых продуктов. Поэтому усвоение денатурированных белков, как правило, проходит более эффективно, чем нативных. Это также касается инактивации белков-ингибиторов, например в семенах масличных культур. Эти белки выполняют в растениях защитную функцию, но в значительной мере влияют на пищеварение человека, существенно уменьшая функцию трипсина и химотрипсина. Денатурация, как технологический фактор, значительно снижает влияние этих белков. Но известно, что усвоение зависит от степени денатурации. Так, белково-углеводные комплексы, образующиеся при реакции меланоидинообразования в отношении белка оцениваются как денатурация, усваиваются хуже рецептурных компонентов. А продукты более глубоких стадий меланоидинообразования способны в определенной степени негативно влиять на пищеварение.

Денатурация белков. Под влиянием физических (температура, ультразвук, ионизирующая радиация и т.п.), химических (минеральные и органические кислоты, щелочи, органические растворители, тяжелые металлы,

алкалоиды, детергенты, некоторые амиды, например, мочевина и др.). Факторов происходят глубокие изменения в молекуле белка, связанные с нарушением четвертичной, третичной и вторичной структур, что приводит в свою очередь изменение физико-химических и биологических свойств белка, т.е. денатурацию. При денатурации белка имеет место разрыв цементирующих белковую молекулу вторичных связей (водородных, дисульфидных, электростатических, ван-дер-ваальсовых и др..). Это приводит к изменению пространственной структуры; глобула белка раскручивается, на ее поверхности увеличивается количество гидрофобных групп, то есть уменьшаются гидрофильные свойства белка. Он становится более гидрофобным, теряет способность растворяться в обычных для него растворителях и избавляется от своих биологических функций (ферментов, гормонов и др.). После денатурации изменяется большинство физико-химических свойств белка: уменьшается растворимость, увеличивается количество БН-и других групп, усиливается вязкость, появляется больше хиральных атомов углерода, изменяются оптические свойства и константа седиментации. В структуре белка существенно уменьшается количество а-спиралей и ß-структур, уменьшается количество внутримолекулярных водородных связей и увеличивается количество этих связей между белком и водой. При денатурации белка высвобождаются реактивные группы, которые в его нативной-м состоянии были не совсем доступны (сульфгидрильные, фенольные, гидроксильные, имидазольным и др.)., Что вызывает изменение ИЭТ белков. Чаще всего она смещается в сторону щелочных значений рН. Денатурация белков сопровождается ростом оптической активности. Преобразование компактной молекулы в беспорядочный клубок, которое имеет место при денатурации, приводит к тому, что большинство пептидных связей становятся доступными для действия протеолитических ферментов (трипсина, химотрипсина и др.).. В связи с этим протеолиз таких белков происходит с большей скоростью, чем нативных белков.

При денатурации в большинстве случаев первичная структура не нарушается, поэтому после раскрутки полипептидной цепи (стадия нити) он может снова стихийно скручиваться, образуя «случайный клубок», т.е. переходит к хаотическому состоянию (рис. 18). При этом наблюдается агрегация белковых частиц и выпадение их в осадок.

Полная денатурация белка в большинстве случаев необратима, в отличие от оборотной, при которой изменения в молекуле белка незначительные, и белок при определенных условиях снова приобретает свои нативных свойств (процесс ренатурации). Например, такое происходит во время осаждения белков органическими растворителями - спиртом или ацетоном, если проводить его при низкой температуре, а затем быстро удалить осадитель. Процесс денатурации белков широко используется в клинике, фармации и биохимических исследованиях для осаждения белка в биологическом материале с целью дальнейшего определения в нем небелковые-вых и низкомолекулярных соединений, для установления наличия белка и его количественного определения, для обеззараживания кожи и слизистых покровов, для свя Связывание солей тяжелых металлов при лечении отравлений солями ртути, свинца, меди и т.п. или для профилактики таких отравлений на предприятии.

Процесс денатурации белков имеет место во время приема фармпрепаратов танина и Танальбин, на чем основывается их вяжущее и противовоспалительное действие. Вяжущее действие танина обусловлено его способностью осаждать белки с образованием плотных альбуминаты, которые защищают от раздражения чувствительные нервные окончания тканей. При этом уменьшаются болевые ощущения и происходит непосредственное уплотнение клеточных мембран, уменьшает проявление воспалительной реакции. Препарат танальбин-продукт взаимодействия танина с белком казеином - в отличие от танина не оказывает вяжущего действия на слизистую оболочку рта и желудка. Только после поступления в кишечник он расщепляется, выделяя свободный танин. Применяется как вяжущее средство при острых и хронических заболеваниях кишечника, особенно у детей.

Денатурация белка - это процесс, который связан с нарушением вторичной, третичной, четвертичной структур молекулы под воздействием разных факторов.

Особенности процесса

Он сопровождается разворачиванием полипептидной связи, которая в растворе изначально представлена в виде беспорядочного клубка.

Процесс денатурации белка сопровождается утрачиванием гидратной оболочки, выпадением белка в осадок, утрачиванием им нативных свойств.

Среди основных факторов, которые провоцируют процесс денатурации, выделим физические параметры: давление, температуру, механическое действие, ионизирующее и ультразвуковое излучение.

Денатурация белка происходит под воздействием органических растворителей, минеральных кислот, щелочей, солей тяжелых металлов, алкалоидов.

Виды

В биологии выделяют два варианта денатурации:

  • Обратимая денатурация белка (ренатурация) предполагает процесс, в котором денатурированный белок после устранения всех денатурирующих веществ восстанавливается в исходную структуру. В этом случае в полном объеме возвращается биологическая активность.
  • Необратимая денатурация предполагает полное разрушение молекулы, даже после удаления из раствора денатурирующих реагентов физиологичная активность не возвращается.

Особенности денатурированных белков

После того как произошла денатурация белка, он получает определенные свойства:

  1. В сравнении с нативной белковой молекулой увеличивается количество функциональных либо реактивных групп в молекуле.
  2. Уменьшается растворимость и процесс осаждения белков, чему способствует потеря водной оболочки. Происходит разворачивание структуры, появляются гидрофобные радикалы, наблюдается нейтрализация зарядов полярных фрагментов.
  3. Меняется конфигурация белковой молекулы.
  4. Утрачивается биологическая активность, причиной этого будет нарушение нативной структуры.

Последствия

После денатурации происходит переход нативной компактной структуры в рыхлую развернутую форму, упрощается проникновение к пептидным связям ферментов, необходимых для разрушения.

Конформация белковых молекул определяется возникновением достаточного количества связей между разными участками определенной полипептидной цепочки.

Белки, состоящие из достаточного количества атомов, которые находятся в непрерывном хаотичном движении, способствует определенным перемещениям частей полипептидной цепи, что вызывает нарушение общей структуры белков, снижение его физиологических функций.

Белки имеют конформационную лабильность, то есть предрасположенность к незначительным изменениям конформации, происходящим в результате обрыва одних и образования других связей.

Денатурация белка приводит к изменениям его химических свойств, способности вступать во взаимодействие с другими веществами. Наблюдается изменение пространственной структуры и участка, непосредственно контактирующего с иной молекулой, и всей конформацией в целом. Наблюдаемые конформационные изменения имеют значение для функционирования белков в живой клетке.

Механизм разрушения

Процесс денатурации белка предполагает разрушение химических (водородных, дисульфидных, электростатических) связей, стабилизирующих высшие уровни организации молекулы белка. В результате этого меняется пространственная структура белка. Во многих ситуациях не наблюдается разрушения его первичной структуры. Это дает возможность после раскручивания полипептидной цепи стихийно скручиваться протеину, создавая «случайный клубок». В подобной ситуации наблюдается переход к беспорядочному состоянию, имеющему существенные отличия от нативной конформации.

Заключение

Температура денатурации белков превышает 56 градусов Цельсия. Типичными признаками прохождения необратимой денатурации белковых молекул считаются снижение растворимости и гидрофильности молекул, повышение оптической активности, понижение стойкости белковых растворов, увеличение вязкости.

Денатурация вызывает агрегацию частиц, они могут выпадать в осадок. Если на белок действует денатурирующий агент на протяжении незначительного временного промежутка, высока вероятность восстановления нативной белковой структуры. Данные процессы широко используют при переработке продуктов питания, консервировании, изготовлении обуви, одежды, во время сушки фруктов и овощей. Денатурацию используют в ветеринарии, медицине, клинике, фармации, при проведении биохимических исследований, связанных с осаждением в биологическом материале протеина. Далее проводится идентификация в исследуемом растворе небелковых и низкомолекулярных инстанций, в результате чего можно установить количественное содержание веществ. В настоящее время ищут способы защиты белковых молекул от разрушения.

Важное свойство белков - их способность к денатурации. Этим понятием обозначают явления, связанные с необратимым изменением вторичной, третичной и четвертичной структур белка под воздействием нагревания, кислот, щелочей, УФ-лучей , ионизирующей радиации, ультразвука и др. Иными словами, денатурация - это необратимое нарушение нативной пространственной конфигурации белковой молекулы, сопровождающееся существенными изменениями биологических и физико-химических свойств белков.

Поскольку в образовании вторичной и третичной структур частично участвуют относительно слабые связи, физическое состояние белка в значительной степени зависит от температуры, , присутствия солей и других факторов. Нагревание, например, вызывает распрямление полипептидной цепи белковой молекулы; некоторые химические реагенты разрывают водородные связи. Изменение pH также обусловливает разрыв связей, при этом проявляется электростатическая неустойчивость.

Белки под влиянием различных физических и химических факторов теряют свои первоначальные (нативные) свойства. Внешне это выражается в их свертывании и выпадении в осадок. Примером такого явления может служить свертывание альбумина молока при кипячении. Негидролитическое необратимое нарушение нативной структуры белка и называется денатурацией. При этом рвутся в основном водородные связи, изменяется пространственная структура белка, однако разрыва ковалентных связей в белковой молекуле не происходит.

Денатурация приводит к развертыванию молекулы белка, и он переходит в более или менее разупорядоченное состояние (в нем уже нет ни спиралей, ни слоев, ни других каких-либо видов регулярной укладки цепи). В денатурированном состоянии амидные группы пептидной цепи образуют водородные связи с окружающими их молекулами воды; таких водородных связей значительно больше, чем внутримолекулярных.

Взбивание яичного белка, сливок превращает их в пену, состоящую из пузырьков воздуха, окруженных тонкими белковыми пленками, образование которых сопровождается развертыванием полипептидных цепей в результате разрыва связей при механическом воздействии. Таким образом, при образовании пленок происходит частичная или полная денатурация белка. Такой вид денатурации называется поверхностной денатурацией белка.

Для кулинарных процессов особое значение имеет тепловая денатурация белков. Механизм тепловой денатурации белков можно рассмотреть на примере глобулярных белков.

В нативном белке пептидные группы экранированы внешней гидратной оболочкой или находятся внутри белковой глобулы и таким образом защищены от внешних воздействий. При денатурации белок теряет гидратную оболочку, что облегчает доступ пищеварительным ферментам желудочно-кишечного тракта к функциональным группам. Белок переваривается быстрее.

Кроме того, иногда ингибиторная функция белка исчезает после денатурации. Так, некоторые белки яйца отрицательно влияют на процесс пищеварения: авидин в кишечнике связывает биотин (витамин Н), который участвует в регуляции нервной системы и нервно-рефлекторной деятельности; овомукоид угнетает действие трипсина (фермента поджелудочной железы). Именно поэтому белки сырого яйца не только плохо перевариваются, но и частично всасываются в непереваренном виде, что может вызвать аллергию, уменьшить усвояемость других компонентов пищи и ухудшить всасывание соединений кальция. При денатурации эти белки утрачивают свои антиферментные свойства.

При денатурации белок теряет гидратную оболочку, в результате чего многие функциональные группы и пептидные связи белковой молекулы оказываются на поверхности и белок становится более реакционноспособным.

В результате тепловой денатурации белка происходит агрегирование белковых молекул. Поскольку гидратная оболочка вокруг молекулы белка нарушается, отдельные молекулы белка соединяются между собой в более крупные частицы и уже не могут держаться в растворе. Начинается процесс свертывания белков, в результате которого образуются новые молекулярные связи.

Взаимодействие денатурированных молекул белка в растворах и гелях протекает по-разному. В слабоконцентрированных белковых растворах при тепловой денатурации агрегация молекул белка происходит путем образования межмолекулярных связей как прочных, например дисульфидных, так и слабых (но многочисленных) - водородных. В результате образуются крупные частицы. Дальнейшая агрегация частиц приводит к расслоению коллоидной системы, образованию хлопьев белка, выпадающих в осадок или всплывающих на поверхность жидкости, часто с образованием пены (например, выпадение в осадок хлопьев денатурированного лактоальбумина при кипячении молока; образование хлопьев и пены из денатурирующих белков на поверхности мясных и рыбных бульонов). Концентрация белков в таких растворах не превышает 1 %.

В более концентрированных белковых растворах при денатурации белков образуется сплошной гель, удерживающий всю воду, содержащуюся в коллоидной системе. В результате агрегации денатурированных молекул белка образуется структурированная белковая система. Денатурация белков в концентрированных растворах с образованием сплошного геля происходит при тепловой обработке мяса, рыбы (белки саркоплазмы), куриных яиц и разных смесей на их основе. Точные концентрации белков, при которых их растворы в результате нагревания образуют сплошной гель, неизвестны. Учитывая, что способность к гелеобразованию у белков зависит от конфигурации (асимметрии) молекул и характера образующихся при этом межмолекулярных связей, надо полагать, что для разных белков указанные концентрации различны.

Например, для приготовления омлетов к яичному меланжу добавляют 38...75 % молока. Нижние пределы относятся к омлетам жареным, верхние — к вареным на пару. Для приготовления омлетов из яичного белка, используемых в диетическом питании, молоко добавляют в количестве 40 % независимо от способа тепловой обработки, так как в белке яйца концентрация белков значительно ниже, чем в желтке.

Некоторые белки, представляющие собой более или менее обводненные гели, при денатурации уплотняются, в результате чего происходит их дегидратация с отделением жидкости в окружающую среду. Белковый гель, подвергшийся нагреванию, как правило, характеризуется меньшим объемом, массой, пластичностью, повышенной механической прочностью и большей упругостью по сравнению с исходным гелем нативных белков. Подобные изменения белков наблюдаются при тепловой обработке мяса, рыбы (белки миофибрилл), варке круп, бобовых, макаронных изделий, выпечке изделий из теста.

Гелями и студнями называются твердообразные нетекучие структурированные системы, образовавшиеся в результате действия молекулярных сил сцепления между коллоидными частицами или макромолекулами полимеров. Ячейки пространственных сеток гелей и студней обычно заполнены растворителем.

Таким образом, гели представляют собой коллоидные системы или растворы высокомолекулярных соединений (ВМС), утратившие текучесть из-за возникновения в них определенных внутренних структур в виде пространственного сетчатого каркаса, ячейки которого заполнены дисперсионной средой. Поскольку заключенная в ячейках дисперсионная среда при этом теряет свою подвижность, ее называют иммобилизированной.

Гели весьма широко распространены в природе: к ним относятся многие строительные материалы (бетоны, цементы, глинистые суспензии), грунты, некоторые минералы (агат, опал), различные пищевые продукты (мука, тесто, хлеб, желе, мармелад, студень), желатин, каучук, ткани живых организмов и многие другие материалы живой и неживой природы.

В зависимости от концентрации дисперсионной среды гели принято подразделять на лиогели, коагели и ксерогели (аэрогели).

Богатые жидкостью гели, содержащие мало сухого вещества (до 1-2 %), называют диогелями. К типичным диогелям относятся кисель, студень (холодец), простокваша, растворы мыл и др.

Студенистые осадки, получаемые в процессе коагуляции некоторых гидрофобных золей, а также хлопьевидные осадки, образующиеся при высаливании растворов ВМС, называются коагелями. Содержание сухого вещества в коагелях достигает 80 %. Однако очень бедные жидкостью хлопья и микрокристаллические порошки, образующиеся при коагуляции типичных гидрофобных коллоидов (гидрозолей золота, серебра, платины, сульфидов) к коагелям не относятся.

Бедные жидкостью или совсем сухие гели называются ксерогелями. Примерами ксерогелей могут служить сухой листовой желатин, столярный клей в плитках, крахмал, каучук. К сложным ксерогелям относят многие пищевые продукты (муку, сухари, печенье). Высокопористые ксерогели называют также аэрогелями, поскольку в них дисперсионной средой служит воздух. К аэрогелям относят многие сорбенты (силикагель), твердые катализаторы химических реакций.

В зависимости от природы дисперсной фазы и по способности к набуханию принято различать гели хрупкие и эластичные. Эластичные гели мы будем называть студнями.