Классификация

Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на локализации белка по отношению к липидному бислою. Биохимическая классификация основана на прочности взаимодействия белка с мембраной.

Различные категории политопических белков. Связывание с мембраной за счёт (1) единичной трансмембранной альфа-спирали, (2) множественных трансмембранных альфа-спиралей, (3) бета-складчатой структуры.

Различные категории интегральных монотопических белков. Связывание с мембраной за счёт (1) амфипатической альфа-спирали, параллельной плоскости мембраны, (2) гидрофобной петли, (3) ковалентно соединённого жирнокислотного остатка, (4) электростатического взаимодействия (прямого или кальций -опосредованного).

Топологическая классификация

По отношению к мембране мембранные белки делятся на поли- и монотопические.

  • Политопические, или трансмембранные, белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя. Как правило, трансмембранный фрагмент белка является альфа-спиралью , состоящей из гидрофобных аминокислот (возможно от 1 до 20 таких фрагментов). Только у бактерий , а также в митохондриях и хлоропластах трансмембранные фрагменты могут быть организованы как бета-складчатая структура (от 8 до 22 поворотов полипептидной цепи).
  • Интегральные монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.

Биохимическая классификация

По биохимической классификации мембранные белки делятся на интегральные и периферические .

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентов или неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либо гликозилфосфатидилинозитола , присоединённых к белку в процессе их посттрансляционной модификации .

Ссылки


Wikimedia Foundation . 2010 .

1 . структурные белки обуславливают строение мембраны

2 . рецепторная - участвуют в распознавании и присоединении веществ

3 . антигенная - определяют специфику поверхности мембраны и её взаимодействие с окружающей средой

4 . ферментативная - катализ метаболических процессов, изменение окружающего субстрата

5 . транспортная - образование пор, перенос веществ через мембрану, транспорт электронов

Физико – химические особенности клеточных мемебран

1. Избирательная (дифференциальная) проницаемость – поступление в клетку адекватного её потребностям количества и качества веществ

q Благодаря этому в клетке создаётся и поддерживается соответствующая концентрация ионов и осуществляются осмотические явления)

q Некоторые мембраны пропускают только молекулы растворителя, задерживая все молекулы или ионы растворённого вещества – полупроницаемость мембран

2. Наличие разности электрических потенциалов по обе стороны мембраны (электрического заряда)

3. Находится в постоянном волнообразном колебательном движении

4. Способность к самосборке после разрушающего воздействия определённой интенсивности – регенерация (репарация)

5. Мембраны разных типов клеток существенно различаются по химическому составу, содержанию белка, гликопротеинов и липидов

· Различают два типа мембран: плазматическую (плазмолемму) и внутреннюю (отличаются по химическому составу и свойствам)

Конец работы -

Эта тема принадлежит разделу:

Сущность жизни

Живая материя качественно отличается от неживой огромной сложностью и высокой структурной и функциональной упорядоченностью.. Живая и неживая материя сходны на элементарном химическом уровне т е.. Химические соединения вещества клетки..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Мутационный процесс и резерв наследственной изменчивости
· В генофонде популяций происходит непрерывный мутационный процесс под действием мутагенных факторов · Чаще мутируют рецессивные аллели (кодируют менее устойчивую к действию мутагенных фа

Частота аллелей и генотипов (генетическая структура популяции)
Генетическая структура популяции - соотношение частот аллелей (А и а) и генотипов (АА, Аа, аа)в генофонде популяции Частота аллеля

Цитоплазматическая наследственность
· Имеются данные, необъснимые с точки зрения хромосомной теории наследственности А. Вейсмана и Т. Моргана (т. е. исключительно ядерной локализации генов) · Цитоплазма участвует в ре

Плазмогены митохондрий
· Одна миотохондрия содержит 4 - 5 кольцевых молекул ДНК длинной около 15 000 пар нуклеотидов · Содержит гены: - синтеза т РНК, р РНК и белков рибосом, некоторых ферментов аэро

Плазмиды
· Плазмиды - очень короткие, автономно реплицирующиеся кольцевые фрагменты молекулы ДНК бактерий, обеспечивающие нехромосомную передачу наследственной информации

Изменчивость
Изменчивость - общее свойство всех организмов приобретать структурно - функциональные отличия от своих предков.

Мутационная изменчивость
Мутации - качественные или количественные ДНК клеток организма, приводящие к изменениям их генетического аппарата (генотипа) · Мутационная теория созд

Причины мутаций
Мутагенные факторы (мутагены) - вещества и воздействия, способные индуцировать мутационный эффект (любые факторы внешней и внутренней среды, которые м

Частота мутаций
· Частота мутирования оьтдельных генов широко варьирут и зависит от состояния организма и этапа онтогенеза (обычно растёт с возрастом) . В среднем каждый ген мутирует один раз в 40 тысяч лет

Генные мутации (точковые, истинные)
Причина - изменение химической структуры гена (нарушение последовательности нуклеотидов в ДНК: * генные вставки пары или нескольких нуклеотидов

Хромосомные мутации (хромосомные перестройки, аберрации)
Причины- вызываются значительными изменениями в структуре хромосом (перераспределении наследственного материала хромосом) · Во всех случаях возникают в результате ра

Полиплоидия
Полиплоидия - кратное увеличение числа хромосом в клетке (гаплоидный набор хромосом -n повторяется не 2 раза, а множество раз - до 10 -1

Значение полиплоидии
1. Полиплоидия у растений характеризуется увеличением размеров клеток, вегетативных и генеративных органов - листье, стеблей, цветов, плодов, корнеплодов и проч. , у

Анеуплоидия (гетероплоидия)
Анеуплоидия (гетероплоидия) - изменение числа отдельных хромосом не кратное гаплоидному набору (при этом одна или несколько хромосом из гомологичной пары норма

Соматические мутации
Соматические мутации - мутации, возникающие в соматических клетках организма · Различают генные, хромосомные и геномные соматические мутации

Закон гомологических рядов в наследственной изменчивости
· Открыт Н. И. Вавиловым на основе изучения дикой и культурной флоры пяти континентов 5.Мутационный процесс у генетически близких видов и родов протекает параллельно, в р

Комбинативная изменчивость
Комбинативная изменчивость - изменчивость, возникающая в результате закономерной перекомбинации аллелей в генотипах потомков, вследствие полового размножения

Фенотипическая изменчивость (модификационная или ненаследственная)
Модификационная изменчивость - эволюционно закреплённые приспособительные реакции организма на изменение внешней среды без изменения генотипа

Значение модификационной изменчивости
1. большинство модификаций имеет приспособительное значение и способствует адаптации организма к изменению внешней среды 2. может вызывать негативные изменения -морфозы

Статистические закономерности модификационной изменчивости
· Модификации отдельного признака или свойства, измеряемые количественно, образуют непрерывный ряд (вариационный ряд) ; его нельзя построить по неизмеряемому признаку или признаку, суще

Вариационнвя кривая распределения модификаций в вариционном ряд
V - варианты признака Р - частота встречаемости вариантов признака Мо - мода, или наиболее

Различия в проявлении мутаций и модификаций
Мутационная (генотипическая) изменчивость Модификационная (фенотипическая) изменчивость 1. Связана с изменением гено - и кариотипа

Особенности человека как объекта генетических исследований
1. Невозможен целенапрвленный подбор родительских пар и экспериментальные браки (невозможность экспериментального скрещивания) 2. Медленная смена поколений, происходящая в среднем через

Методы изучения генетики человека
Генеалогический метод · В основе метода лежит составление и анализ родословных (введён в науку в конце XIX в. Ф. Гальтоном) ; суть метода состоит в прослеживании нас

Близнецовый метод
· Метод заключается в изучении закономерностей наследования признаков у одно - и двуяйцевых близнецов (частота рождения близнецов составляет один случай на 84 новорождённых)

Цитогенетический метод
· Заключается в визуальном изучении митотических метафазных хромосом под микроскопом · Основан на методе дифференциального окрашивания хромосом (Т. Касперсон,

Метод дерматоглифики
· Основан на изучении рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп (здесь имеются эпидермальные выступы -гребни,которые образуют сложные узоры) , этот признак наследуе

Популяционно - статистический метод
· Основан на статистической (математической) обработке данных о наследовании в больших группах населения (популяциях - группах, отличающихся по национальности, вероисповеданию, расам, профес

Метод гибридизации соматических клеток
· Основан на размножении соматических клеток органов и тканей вне организма в питательных стерильных средах (клетки чаще всего получают из кожи, костного мозга, крови, эмбрионов, опухолей) и

Метод моделирования
· Теоретическую основу биологического моделирования в генетике даёт закон гомологических рядов наследственной изменчивости Н.И. Вавилова · Для моделирования определённы

Генетика и медицина (медицинская генетика)
· Изучает причины возникновения, диагностические признаки, возможности реабилитации и профилактики наследственных болезней человека (мониторинг генетических аномалий)

Хромосомные болезни
· Причиной является изменение числа (геномные мутации) или структуры хромосом (хромосомные мутации) кариотипа половых клеток родителей (аномалии могут возникать на разн

Полисомии по половым хромосомам
Трисомия - X (синдром Трипло X) ; Кариотип (47 , XXX) · Известны у женщин; частота синдрома 1: 700 (0,1 %) · Н

Наследственные болезни генных мутаций
· Причина - генные (точечные) мутации (изменение нуклеотидного состава гена - вставки, замены, выпадения, переносы одного или нескольких нуклеотидов; точное количество генов у человека неизв

Болезни, контролируемые генами, локализованными на X- илиY-хромосоме
Гемофилия - несвёртываемость крови Гипофосфатемия - потеря организмом фосфора и недостаток кальция, размягчение костей Мышечная дистрофия -нарушения структур

Генотипический уровень профилактики
1. Поиск и применение антимутагенных защитных веществ Антимутагены (протекторы) - соединения, нейтрализующие мутаген до его реакции с молекулой ДНК или снимающие её

Лечение наследственных болезней
1. Симптоматическое и патогенетическое- воздействие на симптомы болезни (генетический дефект сохраняется и передаётся потомству) n диетотер

Взаимодействие генов
Наследственность - совокупность генетических механизмов, обеспечивающих сохранение и предачу структурно-функциональной организации вида в ряду поколений от предков п

Взаимодействие аллельных генов (одной аллельной пары)
· Выделяют пять типов аллельных взаимодействий: 1. Полное доминирование 2. Неполное доминирование 3. Сверхдоминирование 4. Кодоминирова

Комплементарность
Комплементарность - явление взаимодействия нескольких неаллельных доминантных генов, приводящее к возникновению нового признака, отсутствующего у обоих родителей

Полимерия
Полимерия - взаимодействие неаллельных генов, при котором развитие одного признака происходит только под действием нескольких неаллельных доминантных генов (полиген

Плейотропия (множественное действие гена)
Плейотропия - явление влияния одного гена на развитие нескольких признаков · Причина плейотропного влияния гена в действии первичного продукта эт

Основы селекции
Селекция (лат. selektio – отбор) – наука и отрасль с.-х. производства, разрабатывающая теорию и методы создания новых и улучшения существующих сортов растений, пород животны

Одомашнивание как первый этап селекции
· Культурные растения и домашние животные произошли от диких предков; этот процесс называют одомашниванием или доместикацией · Движущая сила доместикации – иску

Центры происхождения и многообразия культурных растений (по Н. И. Вавилову)
Название центра Географическое положение Родина культурных растений

Искусственный отбор (подбор родительских пар)
· Известны два вида искусственного отбора: массовый и индивидуальный Массовый отбор –выделение, сохранение и использование для размножения организмов, обладающих

Гибридизация (скрещивание)
· Позволяет сочетать определённые наследственные признаки в одном организме, а также избавляться от нежелательных свойств · В селекции применяют различные системы скрещивания &n

Родственное скрещивание (инбридинг)
Инбридинг– скрещивание особей, имеющих близкую степень родства: брат – сестра, родители – потомство (у растений наиболее тесная форма инбридинга осуществляется при самоо

Неродственное скрещивание (аутбридинг)
· При скрещивании неродственных особей вредные рецессивные мутации, находящиеся в гомозиготном состоянии переходят в гетерозиготное и не оказывают негативного влияния на жизнеспособность организма

Гетерозис
Гетерозис (гибридная сила) – явление резкого увеличения жизнеспособности и продуктивности гибридов первого поколения при неродственном скрещивании (межпо

Индуцированный (искусственный) мутагенез
· Частота с спектр мутаций резко повышается при воздействии мутагенов (ионизирующих излучений, химических веществ, экстремальных условий внешней среды и т. д.) · Примене

Межлинейная гибридизация у растений
· Заключается в скрещивании чистых (инбредных) линий, полученных в результате длительного принудительного самоопыления перекрёстноопыляющихся растений с целью получения максим

Вегетативное размножение соматических мутаций у растений
· Метод основан на выделении и отборе полезных соматических мутаций по хозяйственным признакам у лучших старых сортов (возможен только в селекции растений)

Методы селекционно-генетической работы И. В. Мичурина
1. Систематически отдалённая гибридизация а) межвидовая: Вишня владимирская х черешня Винклера = вишня Краса севера (зимостойкость) б) межродовая

Полиплоидия
· Полиплоидия – явление кратного основному числу (n) увеличения числа хромосом в соматических клетках организма (механизм образования полиплоидов и

Клеточная инженерия
· Культивирование отдельных клеток или тканей на искусственных стерильных питательных средах, содержащих аминокислоты, гормоны, минеральные соли и другие питательные компоненты (

Хромосомная инженерия
· Метод основывается на возможности замены или добавлении новых отдельных хромосом у растений · Возможно уменьшение или увеличение числа хромосом в любой гомологичной паре – анеуплоидия

Селекция животных
· Имеет ряд особенностей по сравнению с селекцией растений, объективно затрудняющих её проведение 1. Характерно в основном только половое размножение (отсутствие вегетати

Одомашнивание
· Началось около 10 – 5 тыс. назад в эпоху неолита (ослабило действие стабилизирующего естественного отбора, что привело к увеличению наследственной изменчивости и повышению эффективности отбора

Скрещивание (гибридизация)
· Существуют два метода скрещивания: родственное (инбридинг) и неродственное (аутбридинг) · При подборе пары учитывают родословные каждого производителя (племенные книги, учи

Неродственно скрещивание (аутбридинг)
· Может быть внутрипородное и межпорордное, межвидовое или межродовое (систематически отдалённая гибридизация) · Сопровождается эффектом гетерозиса гибридов F1

Проверка племенных качеств производителей по потомству
· Существуют хозяйственные признаки, проявляющиеся только у самок (яйценоскость, молочность) · Самцы участвуют в формировани этих признаков у дочерей (необходимо проверять самцов на ц

Селекция микроорганизмов
· Микроорганизмы (прокариоты – бактерии, синезелёные водоросли; эукариоты – одноклеточные водоросли, грибы, простейшие) – широко используются в промышленности, сельском хозяйстве, медици

Этапы селекции микроорганизмов
I. Поиски природных штаммов, способных к синтезу необходимых человеку продуктов II.Выделение чистого природного штамма (происходит в процессе многократного пересеивания п

Задачи биотехноглгии
1. Получение кормового и пищевого белка из дешового природного сырья и отходов промышленности (основа решения продовольственной проблемы) 2. Получение достаточного количесства

Продукция микробиологического синтеза
q Кормовой и пищевой белок q Ферменты (широко применяются в пищевой, спиртовой, пивоваренной, винодельческой, мясной, рыбной, кожевенной, текстильной и др. пр

Этапы технологического процесса микробиологического синтеза
I этап – получение чистой культуры микроорганизмов, содержащей лишь организмы одного вида или штамма · Каждый вид хранится в отдельной пробирке и поступает на производство и

Генная (генетическая) инженерия
Генная инженерия – это область молекулярной биологии и биотехнологии, занимающаяся созданием и клонированием новых генетических структур (рекомбинантных ДНК) и организмов с заданными н

Стадии получение рекомбинантных (гибридных) молекул ДНК
1. Получение исходного генетического материала – гена, кодирующего интересующий белок(признак) · Необходимый ген может быть получен двумя способами: искусственный синтез или выд

Достижения генной инженерии
· Введение генов эукариот в бактерии используется для микробиологического синтеза биологически активных веществ, которые в природе синтезируются только клетками высших организмов · Синтез

Проблемы и перспективы генной инженерии
· Изучение молекулярных основ наследственных заболеваний и разработка новых методов их лечения, изыскание методов исправления повреждений отдельных генов · Повышение сопротивляемости орга

Хромосомная инженерия у растений
· Заключается в возможности биотехнологической замены отдельных хромосом в гаметах растений или добавления новых · В клетках каждого диплоидного организма имеются пары гомологичных хромосо

Метод культуры клеток и тканей
· Метод представляет собой выращивание отдельных клеток, кусочков тканей или органов вне организма в искусственных условиях на строго стерильных питательных средах с постоянными физико-химическими

Клониальное микроразмножение растений
· Культивирование клеток растений относительно несложно, среды просты и дёшевы, а культура клеток неприхотлива · Метод культуры клеток растений состоит в том, что отдельная клетка или т

Гибридизация соматических клеток (соматическая гибридизация) у растений
· Протопласты растительных клеток без жёстких клеточных стенок могут сливаться друг с другом, образуя гибридную клетку, обладающую признаками обоих родителей · Даёт возможность получать

Клеточная инженерия у животных
Метод гормональной суперовуляции и трансплантации эмбрионов · Выделение от лучших коров десятков яйцеклеток в год способом гормональной индуктивной полиовуляции (вызывается

Гибридизация соматических клеток у животных
· Соматические клетки содержат весь объём генетической информации · Соматические клетки для культивирования и последующей гибридизации у человека получают из кожи, ко

Получение моноклониальных антител
· В ответ на введение антигена (бактерии, вирусы, эритроциты и др.) органимизм продуцирует с помощью В – лимфоцитов специфические антитела, которые представляют собой белки, называемые имм

Экологическая биотехнология
· Очистка воды путё создания очистных сооружений, работающих с использованием биологических методов q Окисление сточных вод на биологических фильтрах q Утилизация органических и

Биоэнергетика
Биоэнергетика – направление биотехнологии, связанное с получением энергии из биомассы при помощи микроорганизмов · Одним из эффективных методов получения энергии из биом

Биоконверсия
Биоконверсия – это превращение веществ, образовавшихся в результате обмена веществ, в структурно родственные соединения под действием микроорганизмов · Целью биоконверсии я

Инженерная энзимология
Инженерная энзимология – область биотехнологии, использующая ферменты в производстве заданных веществ · Центральным методом инженерной энзимологии является иммобилиза

Биогеотехнология
Биогеотехнология – использование геохимической деятельности микроорганизмов в горнодобывающей промышленности (рудной, нефтяной, угольной) · С помощью микроо

Границы биосферы
· Определяются комплексом факторов; к общим условиям существования живых организмов относятся: 1. наличие жидкой воды 2. наличие ряда биогенных элементов (макро- и микроэлемент

Свойства живого вещества
1. Содержат огромный запас энергии, способной производить работу 2. Скорость протекания химических реакции в живом веществе в миллионы раз быстрее обычных благодаря участию ферментов

Функции живого вещества
· Выполнятся живой материей в процессе осуществления жизнедеятельности и биохимических превращений веществ в реакциях метаболизма 1. Энергетическая – трансформация и усвоение живым

Биомасса суши
· Континентальная часть биосферы – суша занимает 29% (148 млн км2) · Неоднородность суши выражается наличием широтной зональности и высотной зональностью

Биомасса почвы
· Почва – смесь разложившихся органических и выветренных минеральных веществ; минеральный состав почвы включает кремнезём (до 50%) , глинозём (до 25%) , оксид железа, магния, калия, фосфора

Биомасса Мирового океана
· Площадь Мирового океана (гидросфера Земли) занимает 72,2% всей поверхности Земли · Вода обладает особыми свойствами, важными для жизни организмов – высокую теплоёмкость и теплопроводн

Биологический (биотический, биогенный, биогеохимический цикл) круговорот веществ
Биотический круговорот веществ – непрерывное, планетарное, относительно циклическое, неравномерное во времени и пространстве закономерное распределение веществ

Биогеохимические циклы отдельных химических элементов
· Биогенные элементы циркулируют в биосфере, т. е. совершают замкнутые биогеохимичесик циклы, которые функционируют под действием биологических (жизнедеятельность) и геологичес

Круговорот азота
· Источник N2 – молекулярный, газообразный, атмосферный азот (не усваивается большинством живых организмов, т. к. химически инертен; растения способны усваивать лишь связанный с ки

Круговорот углерода
· Главный источник углерода – углекислый газ атмосферы и воды · Круговорот углерода осуществляется благодаря процессам фотосинтеза и клеточного дыхания · Круговорот начинается с ф

Круговорот воды
· Осуществляется за счёт солнечной энергии · Регулируется со стороны живых организмов: 1. поглощение и испарение растениями 2. фотолиз в процессе фотосинтеза (разложени

Круговорот серы
· Сера- биогенный элемент живой материи; содержится в белках в составе аминокислот (до 2,5%) , входит в состав витаминов, гликозидов, коферментов, имеется в растительных эфирных маслах

Поток энергии в биосфере
· Источник энергии в биосфере – непрерывное электромагнитное излучение солнца и радиоактивная энергия q 42% солнечной энергии отражается от облаков, атмосферой пыли и поверхности Земли в

Возникновение и эволюция биосферы
· Живая материя, а вместе с ней и биосфера появилась на Земле вследствие возникновения жизни в процессе химической эволюции около 3,5 млрд лет назад, приведшей к образованию органических веществ

Ноосфера
Ноосфера (букв. сфера разума) – высшая стадия развития биосферы, связанная с возникновением и и становлением в ней цивилизованного человечества, когда его разум

Признаки современной ноосферы
1. Возрастающее количество извлекаемых материалов литосферы – рост разработок месторождений полезных ископаемых (сейчас оно превышает 100млрд тонн в год) 2. Массовое потр

Влияние человека на биосферу
· Современное состояние ноосферы характеризуется всё возрастающей перспективой экологического кризиса, многие аспекты которой уже проявляются в полной мере, создавая реальную угрозу сущест

Производство энергии
q Строительство ГЭС и создание водохранилищ вызывает затопление больших территорий и переселение людей, поднятие уровня грунтовых вод, эрозию и заболачивание почвы, оползни, потерю пахотных зем

Производство пищи. Истощение и загрязнение почвы, сокращение площади плодородных почв
q Пахотные земли занимают 10% поверхности Земли (1,2 млрд. га) q Причина – чрезмерная эксплуатация, несовершенство с\х производства: водная и ветровая эрозия и образование оврагов, в

Сокращение природного биологического разнообразия
q Хозяйственная деятельность человека в природе сопровождается изменением численности видов животных и растений, вымиранию целых таксонов, снижению разнообразия живого q В настоящее врем

Кислотные осадки
q Увеличение кислотности дождей, снега, туманов вследствие выброса в атмосферу окислов серы и азота от горения топлива q Кислые осадки снижают урожай, губят естественную растительность

Пути решения экологических проблем
· Человек в дальнейшем будет эксплуатировать ресурсы биосферы во всё более возрастающих масштабах, поскольку эта эксплуатация – непременное и главное условие самого существования ч

Рациональное потребление и управление природными ресурсами
q Максимально полное и комплексное извлечение из месторождений всех полезных ископаемых (из-за несовершенства технологии добычи из месторождений нефти извлекается лишь 30-50% запасов q Рек

Экологическая стратегия развития сельского хозяйства
q Стратегическое направление - повышение урожайности для обеспечения продовольствием растущего населения без увеличения посевных площадей q Повышение урожайности с\х культур без негативны

Свойства живой материи
1. Единство элементарного химического состава (98% приходится на углерод, водород, кислород и азот) 2. Единство биохимического состава – все живые органи

Гипотезы происхождения жизни на Земле
· Существую две альтернативные концепции о возможности происхождения жизни на Земле: q абиогенез – возникновение живых организмов из веществ неорганической природы

Стадии развития Земли (химические предпосылки возникновения жизни)
1. Звездная стадия истории Земли q Геологическая история Земли началась более 6 морд. лет назад, когда Земля представляла собой раскалённый свыше 1000

Возникновение процесса самовоспроизведения молекул (биогенного матричного синтеза биополимеров)
1. Произошло вследствие взаимодействия коацерватов с нуклеиновыми кислотами 2. Все необходимые компоненты процесса биогенного матричного синтеза: - ферменты - белки - пр

Предпосылки возникновения эволюционной теории Ч. Дарвина
Социально-экономические предпосылки 1. В первой половине XIX в. Англия стала одной из самых развитых в хозяйственном отношении стран мира с высоким уровне


· Изложены в книге Ч. Дарвина « О происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь » , которая вышла

Изменчивость
Обоснование изменяемости видов · Для обоснования положения об изменчивости живых существ Ч. Дарвин воспользовался распространёнными

Коррелятивная (соотносительная) изменчивость
· Изменение структуры или функции одной части организма обуславливает согласованное изменение другой или других, поскольку организм - целостная система, отдельные части которой тесно связаны межд

Основные положения эволюционного учения Ч. Дарвина
1. Все виды живых существ, населяющих Землю, никогда и никем не были созданы, а возникли естественным путём 2. Возникнув естественным путём, виды медленно и постепенно

Развитие представлений о виде
· Аристотель- пользовался понятием вида при описании животных, которое не имело научного содержания и использовалось как логическое понятие · Д. Рэй

Критерии вида (признаки идентификации видовой принадлежности)
· Значение критериев вида в науке и практике – определение видовой принадлежности особей (видовая идентификация) I. Морфологический – сходство морфологических наследс

Виды популяций
1. Панмиктические - состоят из особей, размножающихся половым путём, перекрёстно оплодотворяющихся. 2. Клониальные- из особей, размножающихся только бе

Мутационный процесс
· Спонтанные изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно на протяжении всего периода существования жизни под действием мут

Изоляция
Изоляция - прекращение потока генов из популяции в популяцию (ограничение обмена генетической информацией между популяциями) · Значение изоляции как фа

Первичная изоляция
· Не связана прямо с действием естественного отбора, является следствием внешних факторов · Приводит к резкому снижению или прекращению миграции особей из других попул

Экологическая изоляция
· Возникает на основе экологических отличий существования разных популяций (разные популяции занимают различные экологические ниши) v Например, форели озера Севан р

Вторичная изоляция (биологическая, репродуктивная)
· Имеет решающее значение в формировании репродуктивной изоляции · Возникает вследствие внутривидовых различий организмов · Возникла в результате эволюции · Имеет два изо

Миграции
Миграции - перемещение особей (семян, пыльцы, спор) и свойственных им аллелей между популяциями, ведущее к изменению частот аллелей и генотипов в их генофондах · Общее с

Популяционные волны
Популяционные волны (« волны жизни ») - периодические и непериодические резкие колебания численности особей популяции под действием естественных причин (С. С.

Значение популяционных волн
1. Приводит к ненаправленному и резкому изменению частот аллелей и генотипов в генофонде популяций (случайное выживание особей в период зимовки может увеличить концентрацию данной мутации в 1000 р

Дрейф генов (генетико-автоматические процессы)
Дрейф генов (генетико-автоматические процессы) - случайное ненаправленное, не обусловленное действием естественного отбора, изменение частот аллелей и генотипов в м

Результат дрейфа генов (для малых популяций)
1. Обуславливает утрату (р =0) или фиксацию (р=1) аллелей в гомозоготном состоянии у всех членов популяции вне связи с их адаптивной ценностью - гомозиготизация особей

Естественный отбор - направляющий фактор эволюции
Естественный отбор – процесс преимущественного (селективного, выборочного) выживания и размножения наиболее приспособленных особей и не выживания или не размножения

Борьба за существование Формы естественного отбора
Движущий отбор (Описан Ч. Дарвином, современное учение развито Д. Симпсоном, англ.) Движущий отбор - отбор в

Стабилизирующий отбор
· Теорию стабилизирующего отбора разработал русский акад. И. И. Шмаьгаузен (1946) Стабилизирующиё отбор - отбор, действующий в стабильных

Другие формы естественного отбора
Индивидуальный отбор -избирательное выживание и размножение отдельных особей, обладающих преимуществом в борьбе за существование и элиминация других

Основные особенности естественного и искусственного отбора
Естественный отбор Искусственный отбор 1. Возник с возникновением жизни на Земле (около 3млрд лет назад) 1. Возник в не

Общие признаки естественного и искусственного отбора
1. Исходный (элементарный) материал - индивидуальные признаки организма (наследственные изменения - мутации) 2. Осуществляются по фенотипу 3. Элементарная структура - популяци

Борьба за существование - важнейший фактор эволюции
Борьба за существование - комплекс взаимоотношений организма с абиотическими (физические условия жизни) и биотическими (отношения с другими живыми организмами) фак

Интенсивность размножения
v Одна особь аскариды производит в сутки 200 тыс. яиц; серая крыса даёт 5 помётов в год по 8 крысят, которые становятся половозрелыми в трёхмесячном возрасте; потомство одной дафнии за лето дост

Межвидовая борьба за существование
· Происходит между особями популяций разных видов · Менее острая, чем внутривидовая, но её напряжённость увеличивается, если разные виды занимают сходные экологические ниши и обладают с

Борьба с неблагоприятными абиотическими факторами окружающей среды
· Наблюдается во всех случаях, когда особи популяции оказываются в экстремальных физических условиях (излишнее тепло, засуха, суровая зима, избыточная влажность, неплодородные почвы, суровые

Основные открытия в области биологии после создания СТЭ
1. Открытие иерархических структур ДНК и белка, в том числе вторичной структуры ДНК - двойной спирали и её нуклеопротеидной природы 2. Расшифровка генетического кода (его триплетнос

Признаки органов эндокринной системы
1. Обладают относительно небольшими размерами (доли или несколько грамм) 2. Анатомически не связаны между собой 3. Синтезируют гормоны 4. Имеют обильную сеть кровеносны

Характеристика (признаки) гормонов
1. Образуются в железах внутренней секреции (нейрогормоны могут синтезироваться в нейросекреторных клетках) 2. Высокая биологическая активность – способность быстро и сильно изменять инт

Химическая природа гормонов
1. Пептиды и простые белки (инсулин, соматотропин, тропные гормоны аденогипофиза, кальцитонин, глюкагон, вазопрессин, окситоцин, гормоны гипоталамуса) 2. Сложные белки – тиреотропин, лют

Гормоны средней (промежуточной) доли
Меланотропный гормон(меланотропин) – обмен пигментов (меланина) в покровных тканях Гормоны задней доли (нейрогипофиза) – окситрцин, вазопрессин

Гормоны щитовидной железы (тироксин, трийодтиронин)
В состав гормонов щитовидной железы непременно входит йод и амнокислота тирозин (ежедневно в составе гормонов выделяется 0,3 мг. йода, следовательно человек должен ежедневно с пищей и водой получа

Гипофункция щитовидной железы (гипотериоз)
Причиной гипотерозов является хронический дефицит йода в пище и воде Недостаток секреции гормонов компенсируется за счёт разрастания ткани железы и значительное увеличение её объёма

Гормоны коркового слоя (минералкортикоиды, глюкокортикоиды, половые гормоны)
Корковый слой образован из эпителиальной ткани и состоит из трёх зон: клубочковой, пучковой и сетчатой, имеющих разную морфологию и функции. Гормоны относится к стероидам – кортикостероиды

Гормоны мозгового слоя надпочечников (адреналин, норадреналин)
- Мозговой слой состоит из особых хромаффинных клеток, окрашивающихся в жёлтый цвет, (эти же клетки расположены в аорте, месте разветвления сонной артерии и в симпатических узлах; все они составл

Гормоны поджелудочной железы (инсулин, глюкагон, соматостатин)
Инсулин (секретируется бета-клетками(инсулоцитами), является простейшим белком) Функции: 1. Регуляция углеводного обмена (единственный сахаропониж

Тестостерон
Функции: 1. Развитие вторичных половых признаков (пропорции тела, мускулатура, рост бороды, волос на теле, психические особенности мужчины и др.) 2. Рост и развитие органов размножения

Яичники
1. Парные органы (размеры около 4 см. , масса 6-8 гр.), расположенные в малом тазу, по обеим сторонам матки 2. Состоят из большого числа (300 -400 тыс.) т. н. фолликулов – структу

Эстрадиол
Функции: 1. Развитие женских половых органов: яйцеводов, матки, влагалища, молочных желёз 2.Формирование вторичных половых признаков женского пола (телосложение, фигура, отложение жира, в

Железы внутренней секреции (эндокринная система) и их гормоны
Эндокринные железы Гормоны Функции Гипофиз: - передняя доля: аденогипофиз - средняя доля - задня

Рефлекс. Рефлекторная дуга
Рефлекс – ответная реакция организма на раздражение (изменение) внешней и внутренней среды, осуществляющуюся с участием нервной системы (основная форма деятельнос

Механизм обратной связи
· Рефлекторная дуга не заканчивается ответной реакцие организма на раздражение (работой эффектора). Все ткани и органы имеют собственные рецепторы и афферентные нервные пути, подходящие к чувствите

Спинной мозг
1. Наиболее древний отдел ЦНС позвоночных (впервые появляется у головохордовых – ланцетника) 2. В процессе эмбриогенеза развивается из нервной трубки 3. Располагается в костном

Скелетно-моторные рефлексы
1. Коленный рефлекс (центр локализуется в поясничном сегменте); рудиментарный рефлекс от животных предков 2. Ахиллов рефлекс (в поясничном сегменте) 3. Подошвенный рефлекс (с

Проводниковая функция
· Спинной мозг имеет двустороннюю связь с головным мозгом (стволовой частью и корой полушарий); через спинной мозг головной мозг связан с рецепторами и исполнительными органами тела · Св

Головной мозг
· Головной и спинной мозг развиваются у эмбриона из наружного зародышевого листка - эктодермы · Располагается в полости мозгового черепа · Покрыт (как и спинной мозг) тремя обол

Продолговатый мозг
2. В процессе эмбриогенеза развивается из пятого мозгового пузыря нервной трубки зародыша 3. Является продолжением спинного мозга (нижней границей между ними является место выхода корешко

Рефлекторная функция
1. Защитные рефлексы: кашель, чихание, мигание, рвота, слёзоотделение 2. Пищевые рефлексы: сосание, глотание, сокоотделение пищеварительных желёз, моторика и перистальтика

Средний мозг
1. В процессе эмбриогенеза из третьего мозгового пузыря нервной трубки зародыша 2. Покрыт белым веществом, серое вещество – внутри в виде ядер 3. Имеет следующие структурные компо

Функции среднего мозга (рефлекторная и проводниковая)
I. Рефлекторная функция(все рефлексы врождённые, безусловные) 1. Регуляция мышечного тонуса при движении, ходьбе, стоянии 2. Ориентировочный рефлекс

Таламус (зрительные бугры)
· Представляет собой парные скопления серого вещества (40 пар ядер), покрытые слоем белого вещества, внутри – III желудочек и ретикулярная формация · Все ядра таламуса афферентные, чувств

Функции гипоталамуса
1. Высший центр нервной регуляции сердечно-сосудистой системы, проницаемость кровеносных сосудов 2. Центр терморегуляции 3. Регуляция водно-солевого баланса орган

Функции мозжечка
· Мозжечёк соединён со всеми отделами ЦНС; рецепторами кожи, проприорецептрами вестибулярного и двигательного аппарата, подкоркой и корой больших полушарий · Функции мозжечка исследуют пут

Конечный мозг (большой мозг, большие полушария переднего мозга)
1. В процессе эмбриогенеза развивается из первого мозгового пузыря нервной трубки зародыша 2. Состоит из двух полушарий (правого и левого), разделённых глубокой продольной щелью и соединён

Кора больших полушарий (плащ)
1. У млекопитающих и человека поверхность коры складчатая, покрытая извилинами и бороздами, обеспечивающими увеличение площади поверхности (у человека составляет около 2200 см2

Функции коры больших полушарий
Методы изучения: 1. Электрическое раздражение отдельных участков (метод «вживления» электродов в зоны мозга) 3. 2. Удаление (экстирпация) отдельных участк

Сенсорные зоны(области) коры больших полушарий
· Представляют из себя центральные (корковые) отделы анализаторов, к ним подходят чувствительные (афферентные) импульсы от соответствующих рецепторов · Занимают небольшую часть кор

Функции ассоциативных зон
1. Связь между различными зонами коры (сенсорными и моторными) 2. Объединение (интеграция) всей чувствительной информации, поступающей в кору с памятью и эмоциями 3. Решающее з

Особенности вегетативной нервной системы
1. Разделяется на два отдела: симпатический и парасимпатический (каждый из них имеет центральную и переферическую части) 2. Не имеет собственных афферентных (

Особенности отделов вегетативной нервной системы
Симпатический отдел Парасимпатический отдел 1. Центральные ганглии расположены в боковых рогах грудных и поясничных сегментов спинн

Функции вегетативной нервной системы
· Большинство органов тела иннервирует как симпатическая, так и парасимпатическая системы (двойная иннервация) · Оба отдела оказывают на органы три рода действий – сосудодвигательное,

Влияние симпатического и парасимпатического отдела вегетативной нервной системы
Симпатический отдел Парасимпатический отдел 1. Учащает ритм, увеличивает силу сердечных сокращений 2. Расширяет коронарные сосуды се

Высшая нервная деятельность человека
Психические механизмы отражения: Психические механизмы проектирования будущего - ощуще

Особенности (признаки) безусловных и условных рефлексов
Безусловные рефлексы Условные рефлексы 1. Врожденные видовые реакции организма (передаются по наследству) – генетически детерм

Методика выработки (образования) условных рефлексов
· Разработана И. П. Павловым на собаках при изучении слюноотделения при действии световых или звуковых раздражений, запахов, прикосновений и т. д. (проток слюнной железы выводился наружу через разр

Условия выработки условных рефлексов
1. Индифферентный раздражитель должен предшествовать безусловному (опережающее действие) 2. Средняя сила индифферентного раздражителя (при малой и большой силе рефлекс может не образовать

Значение условных рефлексов
1. Лежат в основе обучения, получения физических и психических навыков 2. Тонкое приспособление вегетативных, соматических и психических реакций к условиям с

Индукционное (внешнее) торможение
o Развивается при действии постороннего, неожиданного, сильного раздражителя из внешней или внутренней среды v Сильный голод, переполненный мочевой пузырь, боль или половое возбуждение тор

Угасательное условное торможение
· Развивается при систематическом неподкреплении условного раздражителя безусловным v Если условный раздражитель повторять через короткие промежутки времени без подкреплениея его бе

Взаимоотношене возбуждения и торможения в коре больших полушарий
Иррадиация - распространение процессов возбуждения или торможения из очага их возникновения на другие области коры · Примером иррадиации процесса возбуж

Причины возникновения сна
· Существуют несколько гипотез и теорий причин возникновения сна: Химическая гипотеза – причиной сна является отравления клеток мозга токсичными продуктами жизнедеятельности, образ

Быстрый (парадоксальный) сон
· Наступает после периода медленного сна и продолжается 10 -15 мин; затем опять сменяется медленным сном; повторяется в течение ночи 4-5 раз · Характеризуется быстрыми

Особенности высшей нервной деятельности человека
(отличия от ВНД животных) · Каналы получения информации о факторах внешней и внутренней среды называются сигнальными системами · Выделяют первую и вторую сигнальные систем

Особенности высшей нервная деятельность человека и животных
Животное Человек 1. Получение информации о факторах среды только с помощью первой сигнальной системы (анализаторов) 2. Конкретное

Память, как компонент высшей нервной деятельности
Память – совокупность психических прцессов, обеспечивающих сохранение, закрепление и воспроизведение предыдущего индивидуального опыта v Основные прцессы памяти

Анализаторы
· Всю информацию о внешней и внутренней среде организма, необходимую для взаимодействие с ней человек получает с помощью органов чувств (сенсорных систем, анализаторов) v Понятие об анали

Строение и функции анализаторов
· Каждый анализатор состоит из трёх анатомически и функционально связанных отделов: переферического, проводникового и центрального · Повреждение одной из частей анализатора

Значение анализаторов
1. Информация организму о состоянии и изменении внешней и внутренней среды 2. Возникновение ощущений и формирование на их основе понятий и представлений об окружающем мире,т. е.

Сосудистая оболочка (средняя)
· Находится под склерой, богата кровеносными сосудами, состоит из трёх частей: переднюю – радужку, среднюю – ресничное тело и заднюю – собственно сосудистую

Особенности фоторецепторных клеток сетчатки
Палочки Колбочки 1. Количество 130 млн. 2. Зрительный пигмент– родопсин(зрительный пурпур) 3. Максимальное количество на п

Хрусталик
· Расположен позади зрачка, имеет форму двояковыпуклой линзы диаметром около 9 мм, абсолютно прозрачен и эластичен. Покрыт прозрачной капсулой, к которой прикрепляются цинновы связки ресничного тел

Функционирование глаза
· Зрительная рецепция начинается с фотохимических реакций, начинающихся в палочках и колбочках сетчатки и заключающихся в распаде зрительных пигментов под действием квантов света. Именно это

Гигиена зрения
1. Профилактика травм (защитные очки на производстве с травмирующими объектами – пыль, химические вещества, стружки, осколки и т.д.) 2. Защита глаз от слишком яркого света – солнце, эле

Наружное ухо
· Представлении ушной раковиной и наружным слуховым проходом · Ушная раковина – свободно выступающая на поверхности головы

Среднее ухо (барабанная полость)
· Лежит внутри пирамиды височной кости · Заполнено воздухом и сообщается с носоглоткой через трубку, длиной 3,5 см. и диаметром 2 мм – евстахиеву трубу Функция евстахиев

Внутреннее ухо
· Расплагается в пирамиде височной кости · Включает костный лабиринт, представляющий собой сложно устроенные каналы · Внутри костног

Восприятие звуковых колебаний
· Ушная раковина улавливает звуки и направляет их в наружный слуховой проход. Звуковые волны вызывают колебания барабанной перепонки, которые от неё предаются по системе рычагов слуховых косточек (

Гигиена слуха
1. Профилактика травм органов слуха 2. Защита органов слуха от чрезмерной силы или продолжительности звуковых раздражений – т. н. «шумового загрязнения», особенно в условиях шумного произв

Биосферный
1. Представлен клеточными органоидами 2. Биологические мезосистемы 3. Возможны мутации 4. Гистологический метод исследования 5. Начало метаболизма 6. Об


« Строение эукариотической клетки » 9. Органоид клетки, содержащие ДНК 10. Имеет поры 11. Выполняет в клетке компартаментальную функцию 12. Функ

Клеточный центр
Проверочный тематический цифровой диктант по теме « Метаболизм клетки » 1. Осуществляется в цитоплазме клетки 2. Требует специфических фермен

Тематический цифровой программированный диктант
по теме « Энергетический обмен » 1. Осуществляются реакции гидролиза 2. Конечные продукты – СО2 и Н2 О 3. Конечный продукт – ПВК 4. НАД восстана

Кислородный этап
Тематический цифровой программированный диктант по теме « Фотосинтез » 1. Осуществляется фотолиз воды 2. Происходит восстановление


« Метаболизм клетки:Энергетический обмен. Фотосинтез. Биосинтез белка» 1. Осуществляется у автотрофов 52. Осуществляется транскрипция 2. Связан с функционировани

Основные признаки царств эукариот
Царство Растений Царство Животных 1. Имеют три подцарства: – низшие растения (настоящие водоросли) – красные водоросли

Особенности видов искусственного отбора в селекции
Массовый отбор Индивидуальный отбор 1. К размножению допускаются множество особей с наиболее выраженными хозя

Общие признаки массового и индивидуального отбора
1. Осуществляется человеком при искусственном отборе 2. К дальнейшему размножению допускаются толко особи с наиболее выраженным желаемым признаком 3. Может быть многократным

1. ТРАНСПОРТ ГИДРОФИЛЬНЫХ МОЛЕКУЛ, и, в частности, заряженных частиц. Например, транспорт ионов натрия и калия осуществляется K,Na-насосом.

2. ФЕРМЕНТАТИВНАЯ РОЛЬ.

Ферменты, заключенные в мембрану, обладают рядом особенностей каталитических свойств. У этих ферментов особая чувствительность к факторам окружающей среды.

    РЕЦЕПТОРНАЯ РОЛЬ. Взаимодействие с гормонами, медиаторами осуществляется мембранными белками-гликопротеинами. Самостоятельно углеводный компонент не участвует в построении мембраны, но липиды и белки содержат углеводы.

Роль углеводных компонентов мембран

а) Участвуют в рецепции.

б) Обеспечивают взаимодействие клеток друг с другом.

в) Некоторые углеводные компоненты обеспечивают антигенную специфичность клеток. Например, эритроциты разных групп крови отличаются друг от друга по составу углеводных компонентов.

Мембраны асимметричны. 2 монослоя отличаются друг от друга по своему составу. Например, гликолипиды плазматической мембраны всегда находятся в наружном монослое. Асимметрия характерна и для белковых компонентов.

Аденилатциклаза. Ее активный центр находится на внутренней части мембраны. Белки-рецепторы свой углеводный компонент содержат с внешней стороны мембраны.

Важнейшим компонентом плазматических мембран является холестерин.

Холестерин взаимодействует с гидрофобными хвостами полярных молекул и ограничивает скорость диффузии липидов. Поэтому холестерин называют стабилизатором биологических мембран. Компоненты мембран не только движутся в пространстве, но и постоянно обновляются. Их место занимают новые молекулы.

В учебную программу входит только обмен ГФЛ и холестерина. Липоиды синтезируются на мембранах эндоплазматического ретикулума. Наблюдается постоянное передвижение липоидов от мембран ЭПС к другим мембранам.

СИНТЕЗ ХОЛЕСТЕРИНА

Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин - эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом - холестерином.

ТРАНСПОРТ ХОЛЕСТЕРИНА.

Пищевой холестерин транспортируется хиломикронами и попадает в печень. Поэтому печень является для тканей источником и пищевого холестерина (попавшего туда в составе хиломикронов), и эндогенного холестерина.

В печени синтезируются и затем попадают в кровь ЛОНП - липопротеины очень низкой плотности (состоят на 75% из холестерина), а также ЛНП - липопротеины низкой плотности(в их составе есть апобелок апоВ 100 .

Почти во всех клетках имеются рецепторы для апоВ 100 . Поэтому ЛНП фиксируются на поверхности клеток. При этом наблюдается переход холестерина в клеточные мембраны. Поэтому ЛНП способны снабжать холестерином клетки тканей.

Помимо этого, происходит и освобождение холестерина из тканей и транспорт его в печень. Транспортируют холестерин из тканей в печень липопротеины высокой плотности (ЛВП). Они содержат очень мало липидов и много белка. Синтез ЛВП протекает в печени. Частицы ЛВП имеют форму диска, и в их составе находятся апобелки апоА, апоС и апоЕ . В кровеносном русле к ЛНП присоединяется белок-фермент лецитинхолестеринацилтрансфераза (ЛХАТ) (смотрите рисунок).

АпоС и апоЕ могут переходить от ЛВП на хиломикроны или ЛОНП. Поэтому ЛВП являются донорами апоЕ и апоС. АпоА является активатором ЛХАТ.

ЛХАТ катализирует следующую реакцию:


Это реакция переноса жирной кислоты из положения R 2 на холестерин.

Реакция является очень важной, потому что образующийся эфир холестерина является очень гидрофобным веществом и сразу переходит в ядро ЛВП - так при контакте с мембранами клеток ЛВП удаляют из них избыток холестерина. Дальше ЛВП идут в печень, там разрушаются, и избыток холестерина удаляется из организма.

Нарушение соотношения между количеством ЛНП, ЛОНП и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП - антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.

ЛЕКЦИЯ

ТЕМА:” Введение в гистологию. Плазматическая мембрана, строение и функции. Структуры, формируемые плазматической мембраной”

Гистология в дословном переводе - это наука о тканях, однако это понятие не вмещает того действительно большого обьема материала, который освещает эта понастоящему медицинская дисциплина. Курс гистологии начинается с изучения цитологии не столько на светооптическом, сколько на молекулярном уровне, который в современной медицине логически вошел в этиологию и патогенез целого ряда заболеваний. Гистология – это и отдельные разделы из курса эмбриологии, не всей конечно, а той ее части, которая затрагивает вопрос закладки и дифференцировки тканевых зачатков. И,наконец, гистология – это большой раздел частной гистологии, то есть, раздел, изучающий строение и функции различных органов. Перечисленные разделы курса гистологии не оставляют сомнения в том, что изучение нашей дисциплины следует проводить в аспекте сохранения единства клеточного, тканевого, органного и системного уровней организации

Мы начнем гистологию с изучения эукариотической клетки, являющейся самой простой системой, наделенной жизнью. При исследовании клетки в световом микроскопе мы получаем информацию о ее размере, форме, и эта информация связана с наличием у клеток ограниченных мембраной границ. С развитием электронной микроскопии (ЭМ) наши представления о мембране, как о четко ограниченной линии раздела между клеткой и окружающей средой изменились, ибо оказалось,что на поверхности клетки имеется сложная структура, состоящая из следующих 3-х компонентов:

1. Надмембранный компонент (гликокаликс) (5-100 нм)

2. Плазматическая мембрана (8-10 нм)

3. Подмембранный компонент (зона вариации белков цитоскелета)

При этом 1 и 3 компоненты вариабельны и зависят от типа клеток, наиболее статичным представляется строение плазматической мембраны, которую мы и рассмотрим.

Изучение плазмолеммы в условиях ЭМ привело к заключению об однотипности ее структурной организации, при которой она имеет вид триламинарной линии, где внутренний и наружный слои электронноплотные, а расположенный между ними – более широкий слой представляется электроннопрозрачным. Такой тип структурной организации мембраны свидетельствует об ее химической гетерогенности. Не касаясь дискуссии по этому вопросу, оговорим, что плазмолемма состоит из трех типов веществ: липидов, белков и углеводов.

Липиды , входящие в состав мембран, обладают амфифильными свойствами за счет присутствия в их составе как гидрофильных, так и гидрофобных групп.

Амфипатический характер липидов мембраны способствует образованию липидного бислоя. При этом в фосфолипидах мембраны выделяют два домена: а) фосфатная – голова молекулы, химические свойства этого домена определяют его растворимость в воде и его называют гидрофильным

б) ацильные цепи, представляющие собой этерифицированные жирные кислоты – это гидрофобный домен.

Типы мембранных липидов. 1. Основным классом липидов биологических мембран являются фосфо(глицериды) (фосфолипиды), они формируют каркас

биологической мембраны (рис. 1).

Биомембраны – это двойной слой амфифильных липидов (липидный бислой). В водной среде такие амфифильные молекулы самопроизвольно образуют бислой, в котором гидрофобные части молекул ориентированы друг к другу, а гидрофильные к воде (рис. 2).

В состав мембран входят липиды следующих типов:

1. Фосфолипиды

2.Сфинголипиды “головки” + 2 гидрофобных “хвоста”

3.Гликолипиды

Холестерин (ХЛ) – находится в мембране в основном в срединной зоне бислоя, он амфифилен и гидрофобный (за исключением одной гидроксигруппы). Липидный состав влияет на свойства мембран: отношение белок/липиды близок 1:1, однако миелиновые оболочки обогащены липидами, а внутренние мембраны – белками.

Способы упаковки амфифильных липидов : 1. Бислои (липидная мембрана), 2.Липосомы - это пузырек с двумя слоями липидов, при этом как внутренняя, так и наружная поверхности являются полярны. 3. Мицеллы – третий вариант организации амфифильных липидов – пузырек, стенка которого образована одним слоем липидов, при этом их гидрофобные концы обращены к центру мицеллы и их внутренняя среда является не водной, агидрофобной.

Наиболее распространенной формой упаковки молекул липидов является образование ими плоского бислоя мембран. Липосомы и мицеллы – это скорые транспортные формы, обеспечивающие перенос веществ в клетку и из нее. В медицине липосомы используют для переноса водорастворимых, а мицеллы – для переноса жирорастворимых веществ.

Белки мембраны:

1. Интегральные (включены в липидные слои)

2. Периферические

Интегральные (трансмембранные белки):

1. Монотопные – (например, гликофорин. Они пересекают мембрану 1 раз), и являются рецепторами, при этом их наружный – внеклеточный домен – относится к распознающей части молекулы.

2. Политопные – многократно пронизывают мембрану – это тоже рецепторные белки, но они активизируют путь передачи сигнала внутрь клетки.

Мембранные белки, связанные с липидами.

4. Мембранные белки, связанные с углеводами.

Периферические белки – не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются за счет ионных взаимодействий. Периферические белки ассоциированы с интегральными белками в мембране за счет взаимодействия - белок-белковые взаимодействия.

Пример этих белков:

1. Спектрин , который расположен на внутренней поверхности клетки

2. Фибронектин, локализован на наружной поверхности мембраны

Белки – обычно составляют до 50% массы мембраны. При этом

интегральные белки выполняют следующие функции:

а) белки ионных каналов

б) рецепторные белки

2. Периферические мембранные белки (фибриллярные, глобулярные) выполняют функции:

а) наружные (рецепторные и адгезионные белки)

б) внутренние – белки цитоскелета (спектрин, анкирин), белки системы вторых посредников.

Ионные каналы – это сформированные интегральными белками каналы, они формируют небольшую пору, через которую по электрохимическому градиенту проходят ионы. Наиболее известные каналы – это каналы для Nа, К, Са 2 , Сl.

Существуют и водные каналы – это аквопорины (эритроциты, почка, глаз).

Надмембранный компонент – гликокаликс, толщина 50 нм. Это углеводные участки гликопротеинов и гликолипидов, обеспечивающие отрицательный заряд. Под ЭМ – это рыхлый слой умеренной плотности, покрывающий наружную поверхность плазмолеммы. В состав гликокаликса помимо углеводных компонентов входят периферические мембранные белки (полуинтегральные). Функциональные участки их находятся в надмембранной зоне- это иммуноглобулины (рис. 4) .

Функция гликокаликса: 1. Играют рольрецепторов .

2. Межклеточное узнавание .

3. Межклеточные взаимодействия (адгезивные взаимодействия).

4. Рецепторы гистосовместимости.

5. Зона адсорбции ферментов (пристеночное пищеварение).

6. Рецепторы гормонов .

Подмембранный компонент или самая наружная зона цитоплазмы, обычно обладает относительной жесткостью и эта зона особенно богата филаментами (d 5-10 нм). Предполагают, что интегральные белки, входящие в состав клеточной мембраны, прямо или косвенно связаны с актиновыми филаментами, лежащими в подмембранной зоне. При этом экспериментально доказано, что при агрегации интегральных белков, находящийся в этой зоне актин и миозин также агрегируют, что указывает на участие актиновых филамент в регуцляции формы клетки.

Структуры, формируемые плазмолеммой

Контуры клетки, даже на светооптическом уровне, не представляются ровными и гладкими, а электронная микроскопия позволила обнаружить и описать в клетке различные структуры, которые отражают характер ее функциональной специализации. Различают следующие структуры:

1. Микроворсинки – выпячивание цитоплазмы, покрытые плазмолеммой. Цитоскелет микроворсинки сформирован пучком актиновых микрофиламент, которые вплетаются в терминальную сеть апикальной части клеток (рис. 5). Единичные микроворсинки на светооптическом уровне не видны. При наличии значительного их числа (до 2000-3000) в апикальной части клетки уже при световой микроскопии различают “ щеточную каемку”.

2. Реснички – располагаются в апикальной зоне клетки и имеют две части (рис. 6) : а) наружную - аксонему

Б) внутреннюю – безальное тельце

Аксонема состоит из комплекса микротрубочек (9 + 1 пары) и связанных с ними белков. Микротрубочки образованы белком тубулином, а ручки – белком динеином – эти белки в совокупности формируют тубулин-динеиновый хемомеханический преобразователь.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных у основания реснички и служит матрицей при организации аксонемы.

3. Базальный лабиринт – это глубокие инвагинации базальной плазмолеммы с лежащими между ними митохондриями. Это механизм активного всасывания воды, а так же ионов против градиента концентрации.

1. Транспорт низкомолекулярных соединений осуществляется тремя способами:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

Простая диффузия – низкомолекулярные гидрофобные органические соединения (жирные кислоты, мочевина) и нейтральные молекулы (Н О, СО, О). С увеличением разности концентраций между отсеками, разделенными мембраной, растет и скорость диффузии.

Облегченная диффузия – вещество идет через мембрану также по направлению градиента концентрации, но с помощью транспортного белка – транслоказы. Это интегральные белки, обладающие специфичностью в отношении переносимых веществ. Это, например, анионные каналы (эритроцит), К - каналы (плазмолемма возбужденных клеток) и Са - каналы (саркоплазматический ретикулум). Транслоказа для Н О – это аквапорин.

Механизм действия транслоказы:

1. Наличие открытого гидрофильного канала для веществ определенного размера и заряда.

2. Канал открывается только при связывании специфического лиганда.

3. Канала нет как такового, а сама молекула транслоказы, связав лиганд, поворачивается в плоскости мембраны на 180 .

Активный транспорт – это транспорт с помощью такого же транспортного белка (транслоказы), но против градиента концентрации. Это перемещение требует затрат энергии.

Как правило именно белки ответственны за функциональную активность мембран. К ним относятся разнообразные ферменты транспортные белки рецепторы каналы поры и. До этого считалось что мембранные белки имеют исключительно β – складчатую структуру вторичная структура белка но данные работы показали что мембраны содержат большое количество α – спиралей. Дальнейшие исследования показали что мембранные белки могут глубоко проникать в липидный бислой или даже пронизывать его и их стабилизация осуществляется за счёт гидрофобных...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 5

Строение и функции мембранных белков

Клеточные мембраны содержат белка от 20 до 80% (по весу). Как правило, именно белки ответственны за функциональную активность мембран. К ним относятся разнообразные ферменты, транспортные белки, рецепторы, каналы, поры и. т.д., которые обеспечивают уникальность функций каждой мембраны. Первые успехи в изучении мембранных белков были достигнуты тогда, когда биохимики научились использовать детергенты для выделения мембранных белков в функционально активной форме. Это были работы по изучению ферментных комплексов внутренней мембраны митохондрий. До этого считалось, что мембранные белки имеют исключительно β – складчатую структуру (вторичная структура белка), но данные работы показали, что мембраны содержат большое количество α – спиралей. Значительно реже встречается β – спираль, которой, однако, придают важное биологическое значение. Дело в том, что на участках, окружённых липидами, β – спираль представляет собой полый цилиндр, в наружной стенке которого сосредоточены неполярные (гидрофобные) аминокислотные остатки, а во внутренней – гидрофильные. Такой цилиндр мог бы образовать в мембране канал, через который свободно проходят ионы и водорастворимые вещества. Дальнейшие исследования показали, что мембранные белки могут глубоко проникать в липидный бислой или даже пронизывать его и их стабилизация осуществляется за счёт гидрофобных взаимодействий. Существует, как минимум, четыре вида расположения белков в мембранах: Первый вид – трансмембранный, когда белок пронизывает всю мембрану, а гидрофобный участок белка имеет α – конфигурацию. Похожее расположение в мембране имеет молекула бактериородопсина из Halobacterium halobium его α – спирали последовательно пересекают бислой; Второй вид – связывание с помощью гидрофобного якоря, когда у белка есть короткий участок, состоящего из гидрофобных остатков аминокислот вблизи карбоксильного конца. Это, так называемый, гидрофобный якорь, который можно удалить с помощью протеолиза, а высвобождённый белок становится водорастворимым. Такое расположение в мембране присуще многим цитохромам. Третий вид – связывание с поверхностью бислоя, когда взаимодействие белков имеет в первую очередь электростатическую природу или гидрофобную природу. Данный тип взаимодействия может использоваться как дополнение к другим взаимодействиям, например, к трансмембранному заякориванию. Четвёртый тип- связывание с белками, погружёнными в бислой, это когда некоторые белки связываются с белками, которые располагаются внутри липидного бислоя. Например, F 1 - часть Н + - АТФазы, которая связывается с F 0 – частью, погружённой в мембрану, а также некоторые белки цитоскелета.

В основе современных представлений о структуре мембранных белков лежит идея о том, что их полипептидная цепь уложена так, чтобы образовалась неполярная, гидрофобная поверхность, контактирующая с неполярной областью липидного бислоя. Полярные домены белковой молекулы могут взаимодействовать с полярными головками липидов на поверхности бислоя. Многие белки являются трансмембранными и пронизывают бислой. Некоторые белки, по – видимому, связаны с мембраной лишь за счёт их взаимодействия с другими белками.

Многие мембранные белки обычно связываются с мембраной с помощью нековалентных взаимодействий. Однако есть белки, которые связаны с липидами ковалентно. Многие белки плазматических мембран относятся к классу гликопротеинов. Углеводные остатки этих белков всегда находятся с наружной стороны плазматической мембраны.

Обычно мембранные белки подразделяют на наружные (периферические) и внутренние (интегральные). При этом критерием служит степень жёсткости обработки, необходимой для извлечения этих белков из мембраны. Периферические белки высвобождаются при промывании мембран буферными растворами с низкой ионной силой, низким или, наоборот, с высоким значением рН и в присутствии хелатирующих агентов (например, ЭДТА), связывающих двухвалентные катионы. Часто бывает, что очень трудно отличить периферические мембранные белки от белков, связавшихся с мембраной в процессе выделения.

Для высвобождения интегральных мембранных белков необходимо использовать детергенты или даже органические растворители.

Многие мембранные белки эукариот и прокариот ковалентно связаны с липидами, которые присоединяются к полипептиду после трансляции.

Мембранные белки, ковалентно связанные с липидами

  1. Прокариоты
    • Липопротеины наружной мембраны бактерий E . coli
    • Пенициллаза
    • Цитохромная субъединица реакционного центра
  2. Эукариоты

(А) Белки, к которым присоединена миристиновая кислота

  1. Каталитическая единица цАМФ – протеинкиназы
    1. НАДФН – цитохром в 5 – редуктаза
      1. α – Субъединица гуаниннуклеотидсвязывающего белка

(Б) Белки, к которым присоединена пальмитиновая кислота

  1. Гликопротеин G вируса везикулярного стоматита
  2. НА – Гликопротеин вируса гриппа
  3. Трансферриновый рецептор
  4. Родопсин
  5. Анкирин

(В) Белки с гликозилфосфатидилинозитольным якорем

  1. Гликопротеин Thy – 1
  2. Ацетилхолинэстераза
  3. Щелочная фосфатаза

4. Адгезивная молекула нервных клеток

В некоторых случаях эти липиды играют роль гидрофобного якоря, с помощью которого белок прикрепляется к мембране. В других случаях липиды, вероятно, выполняют функцию помощника при миграции белка в соответствующую область клетки или (как в случае белков оболочки вирусов) в слиянии мембран.

У прокариот наиболее полно охарактеризован белок липопротеин Брауна – основной липопротеин наружной мембраны E . coli . Зрелая форма этого белка содержит ацилглицерол, который связан тиоэфирной связью с N – концевым цистеином. Кроме того, N – концевая аминокислота связана с жирной кислотой амидной связью. Мембраносвязанная форма пенициллазы прикрепляется к цитоплазматической мембране с помощью N – концевого ацилглицерола аналогично липопротеинам мембраны.

Мембранные белки эукариот ковалентно связанные с липидами, как показано в таблице, их можно разделить на три класса. Белки первых двух классов, по – видимому, локализованы в основном на цитоплазматической поверхности плазматической мембраны, а белки третьего класса на наружной поверхности.

Существуют мембранные белки, которые ковалентно связаны с углеводами. К ним относятся поверхностные белки клеток в основном, выполняющих функции транспорта и рецепции. До сих пор неясно, в чём тут дело. Возможно, это связано с тем, что белки нужно сортировать при направлении их к плазматической мембране. Сахарные остатки могут защищать белок от протеолиза или участвовать в узнавании или адгезии. Поэтому сахарные остатки в мембранных гликопротеинах локализованы исключительно на наружной стороне мембраны.

Можно выделить два основных класса олигосахаридных структур мембранных гликопротеинов: 1) N – гликозидные олигосахариды, связанные с белками через амидную группу аспаргина; 2) О-гликозидные олигосахариды, связанные через гидроксильные группы серина и треонина. Данный класс олигосахаридов состоит из трёх подклассов.

  1. Простой или обогащённый маннозой комплекс, в котором олигосахарид содержит маннозу и N – ацетилглюкозамин.
  2. Нормальный комплекс, в котором обогащённый маннозой кор имеет дополнительные боковые ветви, содержащие другие сахаридные остатки, например сиаловую кислоту.
  3. Большой комплекс, который связан с анионным переносчиком мембраны эритроцитов

Большинство олигосахаридов мембранных гликопротеинов принадлежат к подклассу 1 или2.

Мембранные белки бактерий

Как уже отмечалось выше, белки в цитоплазматической мембране составляют около 50% её поверхности. Примерно 10% мембраны образовано прочно связанными белково–липидными комплексами. Молекула любого встроенного в мембрану белка окружена 45 – 130 и более липидными молекулами. Около половины свободных липидов связано с периферическими белками мембраны.

Белковый состав цитоплазматической мембраны бактерий более разнообразен, чем липидный. Так, в цитоплазматической мембране E . coli K 12 обнаружено около 120 различных белков. В зависимости от ориентации в мембране и характера связи с липидным бислоем, как уже отмечалось выше, белки делят на интегральные и периферические. К периферическим белкам бактерий можно отнести ряд ферментов таких как, НАДН – дегидрогеназа, малатдегидрогеназа и др., а также некоторые белки, которые входят в состав АТФазного комплекса. Этот комплекс представляет собой группу определённым образом расположенных белковых субъединиц, контактирующих с цитоплазмой, периплазматическим пространством и образующих в мембране канал, через который осуществляется переход протона. Участок комплекса, обозначаемый F 1 , погружён в цитоплазму, а и с – компоненты участка F 0 – гидрофобными сторонами молекул погружены в мембрану. Субъединица b частично погружена в мембрану своей гидрофобной частью и осуществляет связь мембранной и цитоплазматической частей ферментного комплекса, а также связь синтеза АТФ в участке F 1 с протонным потенциалом в мембране. Субъединицы а, b и с обеспечивают протонный канал. Другие компоненты комплекса обеспечивают его структурную и функциональную целостность.

К интегральным белкам E . coli , которые для проявления энзиматической активности необходимы липиды, можно отнести сукцинатдегидрогеназу, цитохром b . Очень интересными свойствами обладает антибиотики грамицидин А, аламетицин, амфотерицин и нистацин. Они при взаимодействии с мембраной бактерий становятся интегральными белками (антибиотики являются полипептидами и макроциклами).

Грамицидин А – это гидрофобный пептид, состоящий из 15 L - D -аминокислот. При встраивании в мембрану он образует каналы, которые пропускают одновалентные катионы. Этот канал, который образует грамицидин А – охарактеризован наиболее полно. Канал образован двумя молекулами грамицидина А. В результате чередования L - и D - аминокислот образуется спираль, в которой боковые цепи располагаются снаружи, а карбоксильные группы остова – внутри канала. Этот тип спирали, не встречается больше ни в каких белках и образуется из – за необычного чередования стереоизомеров аминокислот в грамицидине А. Грамицидиновый канал, как уже отмечалось выше, катионселективен. Небольшие неорганические и органические катионы проходят через него, в тоже время проницаемость по Cl - равна нулю.

Аламетицин – это пептидный антибиотик из 20 аминокислотных остатков, способный образовывать в мембране электовозбудимые каналы. Аминокислотная последовательность аламетицина включает необычные остатки –α –аминомасляную кислоту и L –фенилаланин. При связывании с мембраной в отличие от грамицидина А он образует пору. Она намного по размеру меньше, чем канал, который образует грамицидин А. Прежде всего это связано с тем, что пространство вокруг α – спирали слишком мало, чтобы через него мог пройти ион.

Марколидные антибиотки, такие как, нистатин и амфотерицин связываются с холестерином и образуют каналы. Каналы образуют 8 –10 молекул этих полиеновых антибиотиков, через которые, правда, с невысокими скоростями проникают ионы.

Другие похожие работы, которые могут вас заинтересовать.вшм>

21572. СТРОЕНИЕ И ФУНКЦИИ БЕЛКОВ 227.74 KB
Содержание белков в организме человека выше чем содержание липидов углеводов. Преобладание в тканях белков по сравнению с другими веществами выявляется при расчёте содержания белков на сухую массу тканей. Содержание белков в различных тканях колеблется в определённом интервале.
17723. Мозжечек, строение и функции 22.22 KB
3 Общее строение головного мозга. В нервной системе выделяют также центральную часть ЦНС которая представлена головным и спинным мозгом и периферическую часть в которую входят нервы нервные клетки нервные узлы ганглии и сплетения топографически лежащие вне спинного и головного мозга. Объектом исследования является анатомия головного мозга. Данная цель предмет и объект подразумевают постановку и решение следующих задач: описать общий план строения головного мозга изучить анатомическое строение мозжечка выделить...
5955. Органы растений: их функции, строение и метаморфозы. 16.94 KB
Органы цветка являются видоизмененными листьями: покровные листья формируют чашелистики и лепестки а спорообразующие листья дают начало тычинкам и пестикам. Побег включает: а стебель б листья в вегетативные почки г цветки д плоды. Стеблем называется вегетативный орган растения который выполняет многочисленные функции: несёт листья или тяжелую крону из ветвей и листьев; связывает корни и листья; на нем образуются цветки; по нему передвигается вода с минеральными веществами и органическими соединениями; молодые стебли...
5067. Гладкие мышцы. Строение, функции, механизм сокращения 134.79 KB
Мышцы или мускулы от лат. Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Гладкие мышцы являются составной частью некоторых внутренних органов и участвуют в обеспечении функции выполняемые этими органами.
6233. Строение и функции ядра. Морфология и химический состав ядра 10.22 KB
От цитоплазмы ядра обычно отделяются четкой границей. Бактерии и синезеленые водоросли не имеют сформированного ядра: их ядро лишено ядрышка не отделено от цитоплазмы отчетливо выраженной ядерной мембраной и носит название нуклеоид. Форма ядра.
9495. Классификация, характеристика ассортимента пушно-мехового сырья и пушно-мехового полуфабриката, строение пушно-меховой шкуры, строение волоса и разновидность его форм, технология изготовления пушнины 1.05 MB
Меховые пластины полосы определенной формы сшитые из подобранных выделанных шкурок и предназначенные для раскроя на детали меховых изделий. К зимним видам пушного сырья относятся шкурки и шкуры пушных зверей добыча которых производится преимущественно в зимнее время когда качество шкурок особенно высоко. СТРОЕНИЕ И ХИМИЧЕСКИЙ СОСТАВ ШКУРОК ПУШНОМЕХОВОГО и овчинношубного СЫРЬЯ ПОНЯТИЕ О ТОПОГРАФИИ ШКУРКИ Шкуркой называют наружный покров животного отделенный от его тушки и состоящий из кожной ткани и волосяного покрова. У...
8011. Свойства мембранных липидов 10.13 KB
Некоторые липиды способствуют стабилизации сильно искривлённых участков мембраны образованию контакта между мембранами или связыванию определённых белков поскольку форма этих молекул благоприятствует нужной упаковке бислоя на соответствующих участках мембраны. Под жидкостным состоянием понимают способность фосфолипидных молекул к вращению и латеральному перемещению в соответствующем лепестке мембраны. Они вытянуты и ориентированы перпендикулярно плоскости мембраны. В состоянии жидкого кристалла молекулы жирных кислот подвижны но...
8014. Химический состав мембранных липидов 10.81 KB
Прежде всего это связано с множеством функций которые выполняют липиды в мембранах. Фосфатидная кислота в свободном виде содержится в мембранах бактерий в небольшом количестве обычно же к ней присоединены остатки спиртов аминокислот и др. Эти липиды являются сложными эфирами жирных кислот и глицерола и широко представлены во многих мембранах эукариотических и прокариотических клеток за исключением архебактерий. Они содержатся в большом количестве во внутренней мембране митохондрий в мембране хлоропластов и в некоторых бактериальных...
21479. ОБМЕН БЕЛКОВ 150.03 KB
Различают три вида азотистого баланса: азотистое равновесие положительный азотистый баланс отрицательный азотистый баланс При положительном азотистом балансе поступление азота преобладает над его выделением. При заболевании почек возможен ложный положительный азотистый баланс при котором происходит задержка в организме конечных продуктов азотистого обмена. При отрицательном азотистом балансе преобладает выделение азота над его поступлением. Это состояние возможно при таких заболеваниях как туберкулез ревматизм онкологические...
15073. Рассмотрение мембранных (ионоселективных) электродов с различного рода мембранами 127.48 KB
Для этого существуют разнообразные ионоселективные электроды главной особенностью которых является так называемая селективность к определенному виду ионов. Электроды с жидкой и пленочной мембраной Жидкие мембраны это растворы в органических растворителях ионообменных веществ жидкие катиониты или аниониты или нейтральных хелатов отделенные от водных растворов нейтральными пористыми перегородками полимерными стеклянными или др. В настоящее время промышленность выпускает пленочные ионоселективные электроды на катионы N К NH4 Са2...