Полупроводниками называют вещества, удельное сопротивление которых во много раз меньше, чем у диэлектриков, о намного больше, чем у металлов. Наиболее широко в качестве полупроводников используют кремний и германий.

Главная особенность полупроводников – зависимость их дельного сопротивления от внешних условий (температуры, освещенности, электрического поля) и от наличия примесей. В 20-м веке ученые и инженеры начали использовать эту особенность полупроводников для создания чрезвычайно миниатюрных сложных приборов с автоматизированным управлением – например, компьютеров, мобильных телефонов, бытовой техники.

Быстродействие компьютеров примерно за полвека их существования увеличилось в миллионы раз. Если бы за этот же промежуток времени скорость автомобилей увеличилась тоже миллионы раз, то они мчались бы сегодня со скоростью, приближающейся к скорости света!

Если бы в одно (далеко не прекрасное!) мгновение полупроводники «отказались от работы», то сразу погасли бы экраны компьютеров и телевизоров, замолчали бы мобильные телефоны, а искусственные спутники потеряли бы управление. Остановились бы тысячи производств, потерпели бы аварии самолеты и корабли, а также миллионы автомобилей.

Носители заряда в полупроводниках

Электронная проводимость. В полупроводниках валентные электроны «принадлежат» двум соседним атомам. Например, в кристалле кремния у каждой пары атомов-соседей есть два «общих» электрона. Схематически это изображено на рисунке 60.1 (здесь изображены только валентные электроны).

Связь электронов с атомами в полупроводниках слабее, чем в диэлектриках. Поэтому даже при комнатной температуре тепловой энергии некоторых валентных электронов достаточно для того, чтобы они оторвались от своей пары атомов, став электронами проводимости. Так в полупроводнике возникают отрицательные носители заряда.

Проводимость полупроводника, обусловленную перемещением свободных электронов, называют электронной.

Дырочная проводимость. Когда валентный электрон становится электроном проводимости, он освобождает место, в котором возникает нескомпенсированный положительный заряд. Это место называют дыркой. Дырке соответствует положительный заряд, равный по модулю заряду электрона.

По значению удельного электрического сопротивления полупроводники занимают промежуточное место между проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T .

Полупроводниками называются вещевтва, удельное сопротивление которых убывает с повышением температуры.

Такой ход зависимости ρ(T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Объяснение явлений, наблюдаемых в проводниках, возможно на основе законов квантовой механики. Рассмотрим качественно механизм электрического тока в полупроводниках на примере германия (Ge).

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , то есть осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.

Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит. При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами.

Вакансии, которые не заняты электронами получили название дырок .

Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар .

В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией .

Рекомбинация – восстановление электронной связи между атомами.

Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.

В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p

Электрическим током в полупроводниках называется направленное движение электронов к положительному полюсу, а дырок к отрицательному.

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.

При наличии примесей электропроводимость полупроводников сильно изменяется.

Примесной проводимостью называется проводимость полупроводников при наличии примесей.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Различают два типа примесной проводимости – электронную и дырочную проводимости.

  1. Электронная проводимость возникает, когда в кристалл полупроводника вводится примесь с большей валентностью.

Например, вкристалл германия с четырехвалентными атомами введены пятивалентные атомы мышьяка, As.

На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался лишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Донорской примесью – называется примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла.

В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p .

Проводимость, при которой основными носителями свободного заряда являются электроны называется электронной.

Полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

  1. Дырочная проводимость возникает, когда в кристалл полупроводника введена примесь с меньшей валентностью.

Например, в кристалл германия введены трехвалентные атомы In.

На рисунке показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.


Акцепторной примесью – называется п римесь из атомов с валентностью меньшей, чем валентность основных атомов полупроводникового кристалла, способных захватывать электроны.

В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n .

Проводимость, при которой основными носителями свободного заряда являются дырки, называется дырочной проводимостью .

Полупроводник с дырочной проводимостью называется полупроводником p-типа .

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Зависимость электропроводимости полупроводников от температуры и освещенности

  1. У полупроводников с ростом температуры подвижность электронов и дырок падает, но это не играет заметной роли, так как при нагревании полупроводника кинетическая энергия валентных электронов возрастает и наступает разрыв отдельных связей, что приводит к увеличению числа свободных электронов, т. е. росту электропроводимости .
  1. При освещении полупроводника в нем появляются дополнительные носите­ли, что приводит к повышению его электропроводности. Это возникает в резуль­тате того, что свет вырывает электроны из атома и при этом одновременно возрастает число электронов и дырок.

На этом уроке мы рассмотрим такую среду прохождения электрического тока, как полупроводники. Мы рассмотрим принцип их проводимости, зависимость этой проводимости от температуры и наличия примесей, рассмотрим такое понятие, как p-n переход и основные полупроводниковые приборы.

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда (рис. 9).

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличие от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается (рис. 10).

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Полупроводниковые приборы

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например, германий.

Одним из таких приборов является диод - прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа (рис. 11).

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами, называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования (рис. 12).

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используется множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Вследствие чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?

К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)

Зонная модель электронно-дырочной проводимости полупроводников

При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны Е V промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Е g .Выше запрещенной зоны расположена зона разрешенных для электронов энергетических состояний – зона проводимости Е c .


Зона проводимости при 0 К полностью свободна, а валентная зона полностью занята. Подобные зонные структуры характерны для кремния, германия, арсенида галлия (GaAs), фосфида индия (InP) и многих других твердых тел, являющихся полупроводниками.

При повышении температуры полупроводников и диэлектриков электроны способны получать дополнительную энергию, связанную с тепловым движением kT . У части электронов энергии теплового движения оказывается достаточно для перехода из валентной зоны в зону проводимости, где электроны под действием внешнего электрического поля могут перемещаться практически свободно.

В этом случае, в цепи с полупроводниковым материалом по мере повышения температуры полупроводника будет нарастать электрический ток. Этот ток связан не только с движением электронов в зоне проводимости, но и с появлением вакантных мест от ушедших в зону проводимости электронов в валентной зоне, так называемых дырок . Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. Электроны забрасываются в зону проводимости с уровня Ферми , который оказывается в собственном полупроводнике расположенным посередине запрещенной зоны (рис. 9.4).

Существенно изменить проводимость полупроводников можно, введя в них очень небольшие количества примесей. В металлах примесь всегда уменьшает проводимость. Так, добавление в чистый кремний 3 % атомов фосфора увеличивает электропроводность кристалла в 10 5 раз.

Небольшое добавление примеси к полупроводнику называется легированием.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла. Проводимость полупроводников при наличии примесей называется примесной проводимостью .

Различают два типа примесной проводимости электронную и дырочную проводимости. Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As) (рис. 9.5).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним. Он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорской примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз.

Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника. Такая проводимость, обусловленная свободными электронами, называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы, например, атомы индия (рис. 9.5)

На рисунке 6 показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа . Основными носителями свободного заряда в полупроводниках p -типа являются дырки.

Электронно-дырочный переход. Диоды и транзисторы

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n p -переход) – это область контакта двух полупроводников с разными типами проводимости.

На границе полупроводников (рис. 9.7) образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Способность n p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами . Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

На рисунке 9.8 приведена типичная вольт - амперная характеристика кремниевого диода.

Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами . Транзисторы бывают двух типов: p n p -транзисторы и n p n -транзисторы. В транзисторе n p n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа (рис.9.9).


В транзисторе p–n–p – типа всё наоборот. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э).

Дрейфовый ток

В полупроводниках свободные электроны и дырки на­ходятся в состоянии хаотического движения. Поэтому, если выбрать произвольное сечение внутри объема полупровод­ника и подсчитать число носителей заряда, проходящих через это сечение за единицу времени слева направо и справа налево, значения этих чисел окажутся одинаковы­ми. Это означает, что электрический ток в данном объеме полупроводника отсутствует.

При помещении полупроводника в электрическое поле напряженностью Е на хаотическое движение носителей зарядов накладывается составляющая направленного дви­жения. Направленное движение носителей зарядов в элек­трическом поле обусловливает появление тока, называе­мого дрейфовым (Рисунок 1.6, а) Из-за столкновения носителей зарядов с атомами кристал- лической решетки их движение в направ­лении действия электрического поля

прерывисто и харак­теризуется подвижностью m. Подвижность равна сред­ней скорости , приобретаемой носителями заряда в направлении действия электрического поля напряженностью Е = 1 В/м, т. е.

Подвижность носителей зарядов зависит от механизма их рассеивания в кристаллической решетке. Исследова­ния показывают, что подвижности электронов m n и дырок m p имеют различное значение (m n > m p) и определяются температурой и концентрацией примесей. Увеличение тем­пературы приводит к уменьшению подвижности, что зави­сит от числа столкновений носителей зарядов в единицу времени.

Плотность тока в полупроводнике, обусловленного дрей­фом свободных электронов под действием внешнего элек­трического поля со средней скоростью , определяется выражением .

Перемещение (дрейф) дырок в валентной зоне со сред­ней скоростью создает в полупроводнике дырочный ток, плотность которого . Следовательно, полная плот­ность тока в полупроводнике содержит электронную j n и дырочную j р составляющие и равна их сумме (n и p - концентрации соответственно электронов и дырок).

Подставляя в выражение для плотности тока соотноше­ние для средней скорости электронов и дырок (1.11), по­лучаем

(1.12)

Если сравнить выражение (1.12) с законом Ома j =sЕ, то удельная электропроводность полупроводника опреде­ляется соотношением

У полупроводника с собственной электропроводностью кон­центрация электронов равна концентрации дырок (n i = p i), и его удельная электропроводность определяется выра­жением

В полупроводнике n-типа > , и его удельная электропроводность с достаточной степенью точности мо­жет быть определена выражением

.

В полупроводнике р-типа > , и удельная элек­тропроводность такого полупроводника

В области высоких температур концентрация электро­нов и дырок значительно возрастает за счет разрыва ковалентных связей и, несмотря на уменьшение их подвижно­сти, электропроводность полупроводника увеличивается по экспоненциальному закону.

Диффузионный ток

Кроме теплового возбуждения, приводящего к возник­новению равновесной концентрации зарядов, равномерно распределенных по объему полупроводника, обогащение полупроводника электронами до концентрации n p и дыр­ками до концентрации p n может осуществляться его осве­щением, облучением потоком заряжённых частиц, введе­нием их через контакт (инжекцией) и т. д. В этом случае энергия возбудителя передается непосредственно носите­лям заряда и тепловая энергия кристаллической решетки остается практически постоянной. Следовательно, избы­точные носители заряда не находятся в тепловом равнове­сии с решеткой и поэтому называются неравновесными. В отличие от равновесных они могут неравномерно распре­деляться по объему полупроводника (рисунок 1.6, б)

После прекращения действия возбудителя за счет реком­бинации электронов и дырок концентрация избыточных но­сителей быстро убывает и достигает равновесного значения.

Скорость рекомбинации неравновесных носителей про­порциональна избыточной концентрации дырок (p n - ) или электронов (n p - ):

где t p - время жизни дырок; t n - время жизни электронов. За время жизни концентрация неравновесных носите­лей уменьшается в 2,7 раза. Время жизни избыточных носителей составляет 0,01...0,001 с.

Носители зарядов рекомбинируют в объеме полупро­водника и на его поверхности. Неравномерное распределение неравновесных носите­лей зарядов сопровождается их диффузией в сторону мень­шей концентрации. Это движение носителей зарядов обу­словливает прохождение электрического тока, называемо­го диффузионным (рисунок 1.6, б).

Рассмотрим одномерный случай. Пусть в полупровод­нике концентрации электронов n(x) и дырок p(x) являют­ся функциями координаты. Это приведет к диффузионно­му движению дырок и электронов из области с большей их концентрацией в область с меньшей концентрацией.

Диффузионное движение носителей зарядов обуслов­ливает прохождение диффузионного тока электронов и дырок, плотности которых определяют­ся из соотношений:

; (1.13) ; (1.14)

где dn(x)/dx, dp(x)/dx - градиенты концентраций электронов и дырок; D n , D p - коэффициенты диффузии электро­нов и дырок.

Градиент концентрации характери­зует степень неравномерности распределения зарядов (электронов и дырок) в полупроводнике вдоль какого-то выбранного направления (в данном случае вдоль оси x). Коэффициенты диффузии показывают количество носителей заряда, пересекающих в единицу времени еди­ничную площадку, перпендикулярную к выбранному направ­лению, при градиенте концентрации в этом направлении, рав­ном единице. Коэффициенты

диффузии связаны с подвижностями носителей зарядов соотношениями Эйнштейна:

; .

Знак "минус" в выражении (1.14) означает противопо­ложную направленность электрических токов в полупро­воднике при диффузионном движении электронов и дырок в сторону уменьшения их концентраций.

Если в полупроводнике существует и электрическое поле, и градиент концентрации носителей, проходящий ток будет иметь дрейфовую и диффузионную составляющие. В таком случае плотности токов рассчитываются по следую­щим уравнениям:

; .