В таблице Менделеева, принятой у нас, приводятся русские названия элементов. У подавляющего числа элементов они фонетически близки к латинским: аргон - argon, барий - barium, кадмий - cadmium и т.д. Аналогично называются эти элементы и в большинстве западноевропейских языков. У некоторых же химических элементов названия в разных языках совершенно различны.

Всё это не случайно. Наибольшие отличия в названиях тех элементов (либо их самых распространённых соединений), с которыми человек познакомился в древности или в начале средних веков. Это семь металлов древних (золото, серебро, медь, свинец, олово, железо, ртуть, которые сопоставлялись с известными тогда планетами, а также сера и углерод). Они встречаются в природе в свободном состоянии, и многие получили названия, соответствующие их физическим свойствам.

Вот наиболее вероятное происхождение этих названий:

Золото

С древнейших времен блеск золота сопоставлялся с блеском солнца (sol). Отсюда - русское «золото». Слово gold в европейских языках связано с греческим богом Солнца Гелиосом. Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Серебро

По-гречески серебро - «аргирос», от «аргос» - белый, блистающий, сверкающий (индоевропейский корень «арг» - пылать, быть светлым). Отсюда - argentum. Интересно, что единственная страна, названная по химическому элементу (а не наоборот), - это Аргентина. Слова silver, Silber, a также серебро восходят к древнегерманскому silubr, происхождение которого неясно (возможно, слово пришло из Малой Азии, от ассирийского sarrupum - белый металл, серебро).

Железо

Происхождение этого слова доподлинно неизвестно; по одной из версий, оно родственно слову «лезвие». Европейские iron, Eisen происходят от санскритского «исира» - крепкий, сильный. Латинское ferrum происходит от fars - быть твёрдым. Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно.

Сера

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» - светло-желтый. Интересно было бы проследить, нет ли родства у серы с древнееврейским серафим - множительным числом от сераф; буквально «сераф» означает «сгорающий», а сера хорошо горит. В древнерусском и старославянском сера - вообще горючее вещество, в том числе и жир.

Свинец

Происхождение слова неясно; во всяком случае, ничего общего со свиньей. Самое удивительное здесь то, что на большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом! Наш «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский).

Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить», хотя лудят опять же не ядовитым свинцом, а оловом. Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber - водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей - Пьомбе. Из этой тюрьмы по некоторым данным ухитрился бежать Казанова. А вот мороженое здесь ни при чём: пломбир произошёл от названия французского курортного городка Пломбьер.

Олово

В Древнем Риме олово называли «белым свинцом» (plumbum album), в отличие от plumbum nigrum - чёрного, или обыкновенного, свинца. По-гречески белый - алофос. По-видимому, от этого слова и произошло «олово», что указывало на цвет металла. В русский язык оно попало в XI веке и означало как олово, так и свинец (в древности эти металлы плохо различали). Латинское stannum связано с санскритским словом, означающим стойкий, прочный. Происхождение английского (а также голландского и датского) tin неизвестно.

Ртуть

Латинское hydrargirum произошло от греческих слов «хюдор» - вода и «аргирос» - серебро. «Жидким» (или «живым», «быстрым») серебром ртуть называется также в немецком (Quecksilber) и в староанглийском (quicksilver) языках, а по-болгарски ртуть - живак: действительно, шарики ртути блестят, как серебро, и очень быстро «бегают» - как живые. Современное английское (mercury) и французское (mercure) названия ртути произошли от имени латинского бога торговли Меркурия. Меркурий был также вестником богов, и его обычно изображали с крылышками на сандалиях или на шлеме. Так что бог Меркурий бегал так же быстро, как переливается ртуть. Ртути соответствовала планета Меркурий, которая быстрее других передвигается по небосводу.

Русское название ртути, по одной из версий, - это заимствование из арабского (через тюркские языки); по другой версии, «ртуть» связана с литовским ritu - качу, катаю, происшедшим от индоевропейского рет(х) - бежать, катиться. Литва и Русь были тесно связаны, а во 2-й половине XIV века русский язык был языком делопроизводства великого княжества Литовского, а также языком первых письменных памятников Литвы.

Углерод

Международное название происходит от латинского carbo - уголь, связанного с древним корнем kar - огонь. Этот же корень в латинском cremare - гореть, а возможно, и в русском «гарь», «жар», «угореть» (в древнерусском «угорати» - обжигать, опалять). Отсюда - и «уголь». Вспомним здесь также игру горелки и украинскую горшку.

Медь

Слово того же происхождения, что и польское miedz, чешское med. У этих слов два источника - древненемецкое smida - металл (отсюда немецкие, английские, голландские, шведские и датские кузнецы - Schmied, smith, smid, smed) и греческое «металлон» - рудник, копь. Так что медь и металл - родственники сразу по двум линиям. Латинское cuprum (от него произошли и другие европейские названия) связано с островом Кипр, где уже в III веке до н.э. существовали медные рудники и производилась выплавка меди. Римляне называли медь cyprium aes - металл из Кипра. В позднелатинском cyprium перешло в cuprum. С местом добычи или с минералом связаны названия многих элементов.

Кадмий

Открыт в 1818 году немецким химиком и фармацевтом Фридрихом Штромейером в карбонате цинка, из которого на фармацевтической фабрике получали медицинские препараты. Греческим словом «кадмейа» с древних времён называли карбонатные цинковые руды. Название восходит к мифическому Кадму (Кадмосу) - герою греческой мифологии, брату Европы, царю Кадмейской земли, основателю Фив, победителю дракона, из зубов которого выросли воины. Кадм будто бы первым нашёл цинковый минерал и открыл людям его способность изменять цвет меди при совместной выплавке их руд (сплав меди с цинком - латунь). Имя Кадма восходит к семитскому «Ка-дем» - Восток.

Кобальт

В XV веке в Саксонии среди богатых серебряных руд обнаруживали блестящие, как сталь, белые или серые кристаллы, из которых не удавалось выплавить металл; их примесь к серебряной или медной руде мешала выплавке этих металлов. «Нехорошая» руда получила у горняков имя горного духа Коболда. По всей видимости, это были содержащие мышьяк кобальтовые минералы - кобальтин CoAsS, или сульфиды кобальта скуттерудит, сафлорит или смальтин. При их обжиге выделяется летучий ядовитый оксид мышьяка. Вероятно, имя злого духа восходит к греческому «кобалос» - дым; он образуется при обжиге руд, содержащих сульфиды мышьяка. Этим же словом греки называли лживых людей. В 1735 году шведский минералог Георг Бранд сумел выделить из этого минерала не известный ранее металл, который и назвал кобальт. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет - этим свойством пользовались ещё в древних Ассирии и Вавилоне.

Никель

Происхождение названия сходно с кобальтом. Средневековые горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, медный чёрт) - фальшивую медь. Эта руда внешне походила на медную и применялась в стекловарении для окрашивания стекол в зелёный цвет. А вот медь из неё никому получить не удавалось - её там не было. Эту руду - медно-красные кристаллы никелина (красного никелевого колчедана NiAs) в 1751 году исследовал шведский минералог Аксель Кронштедт и выделил из неё новый металл, назвав его никелем.

Ниобий и тантал

В 1801 году английский химик Чарлз Хатчет проанализировал чёрный минерал, хранившийся в Британском музее и найденный ещё в 1635 году на территории современного штата Массачусетс в США. Хатчет обнаружил в минерале оксид неизвестного элемента, который получил название Колумбии - в честь страны, где он был найден (в то время США ещё не имели устоявшегося названия, и многие называли их Колумбией по имени первооткрывателя континента). Минерал же назвали колумбитом. В 1802 году шведский химик Андерс Экеберг выделил из колумбита ещё один оксид, который упорно не хотел растворяться (как тогда говорили - насыщаться) ни в одной кислоте. «Законодатель» в химии тех времён шведский химик Йене Якоб Берцелиус предложил назвать содержащийся в этом оксиде металл танталом. Тантал - герой древнегреческих мифов; в наказание за свои противоправные действия он стоял по горло в воде, к которой склонялись ветви с плодами, но не мог ни напиться, ни насытиться. Аналогично и тантал не мог «насытиться» кислотой - она отступала от него, как вода от Тантала. По свойствам этот элемент настолько был похож на колумбий, что в течение длительного времени шли споры о том, являются ли Колумбий и тантал одним и тем же или всё же разными элементами. Только в 1845 году немецкий химик Генрих Розе разрешил спор, проанализировав несколько минералов, в том числе и колумбит из Баварии. Он установил, что на самом деле существуют два близких по свойствам элемента. Колумбий Хатчета оказался их смесью, а формула колумбита (точнее, манганоколумбита) - (Fe,Mn)(Nb,Ta)2O6. Второй элемент Розе назвал ниобием, по имени дочери Тантала Ниобы. Однако символ Cb до середины XX века оставался в американских таблицах химических элементов: там он стоял на месте ниобия. А имя Хатчета увековечено в названии минерала хатчита.

Прометий

Его много раз «открывали» в различных минералах при поисках недостающего редкоземельного элемента, который должен был занимать место между неодимом и самарием. Но все эти открытия оказались ложными. Впервые недостающее звено в цепи лантанидов обнаружили в 1947 году американские исследователи Дж. Маринский, Л. Гленденин и Ч. Кориэлл, разделив хроматографически продукты деления урана в ядерном реакторе. Жена Кориэлла предложила назвать открытый элемент прометием, по имени Прометея, похитившего у богов огонь и передавшего его людям. Этим подчеркивалась грозная сила, заключенная в ядерном «огне». Жена исследователя оказалась права.

Торий

В 1828 году Й.Я. Берцелиус обнаружил в редком минерале, присланном ему из Норвегии, соединение нового элемента, который он назвал торием - в честь древнескандинавского бога Тора. Правда, название это Берцелиус придумал ещё в 1815 году, когда ошибочно «открыл» торий в другом минерале из Швеции. Это был тот редкий случай, когда сам исследователь «закрыл» якобы обнаруженный им элемент (в 1825 году, когда оказалось, что ранее у Берцелиуса был фосфат иттрия). Новый же минерал назвали торитом, это был силикат тория ThSiO4. Торий радиоактивен; период его полураспада 14 млрд. лет, конечный продукт распада - свинец. По количеству свинца в ториевом минерале можно определить его возраст. Так, возраст одного из минералов, найденного в штате Вирджиния, оказался равным 1,08 млрд. лет.

Титан

Считается, что этот элемент открыл немецкий химик Мартин Клапрот. В 1795 году он обнаружил в минерале рутиле оксид неизвестного металла, который назвал титаном. Титаны - в древнегреческой мифологии гиганты, с которыми боролись боги-олимпийцы. Через два года выяснилось, что элемент «менакин», который обнаружил в 1791 году английский химик Уильям Грегор в минерале ильмените (FeTiO3), тождествен титану Клапрота.

Ванадий

Открыт в 1830 году шведским химиком Нильсом Сефстремом в шлаке доменных печей. Назван в честь древнескандинавской богини красоты Ванадис, или Вана-Дис. В этом случае тоже выяснилось, что ванадий открывали и раньше, и даже не один раз - мексиканский минералог Андрее Мануэль дель Рио в 1801 году и немецкий химик Фридрих Вёлер незадолго до открытия Сефстрема. Но дель Рио сам отказался от своего открытия, решив, что имеет дело с хромом, а Вёлеру завершить работу помешала болезнь.

Уран, нептуний, плутоний

В 1781 году английский астроном Уильям Гершель открыл новую планету, которую назвали Ураном - по имени древнегреческого бога неба Урана, деда Зевса. В 1789 году М. Клапрот выделил из минерала смоляной обманки чёрное тяжёлое вещество, которое он принял за металл и, по традиции алхимиков, «привязал» его название к недавно открытой планете. А смоляную обманку он переименовал в урановую смолку (именно с ней работали супруги Кюри). Лишь спустя 52 года выяснилось, что Клапрот получил не сам уран, а его оксид UO2.

В 1846 году астрономы открыли предсказанную незадолго до этого французским астрономом Леверье новую планету. Её назвали Нептуном - по имени древнегреческого бога подводного царства. Когда в 1850 году в минерале, привезенном в Европу из США, обнаружили, как полагали, новый металл, его, под впечатлением открытия астрономов, предложили назвать нептунием. Однако вскоре выяснилось, что это был уже открытый ранее ниобий. О «нептунии» забыли почти на целое столетие, пока в продуктах облучения урана нейтронами не обнаружили новый элемент. И как в Солнечной системе за Ураном следует Нептун, так и в таблице элементов за ураном (№ 92) появился нептуний (№ 93).

В 1930 году была открыта девятая планета Солнечной системы, предсказанная американским астрономом Ловеллом. Её назвали Плутоном - по имени древнегреческого бога подземного царства. Поэтому было логично назвать следующий за нептунием элемент плутонием; он был получен в 1940 году в результате бомбардировки урана ядрами дейтерия.

Гелий

Обычно пишут, что его открыли спектральным методом Жансен и Локьер, наблюдая полное солнечное затмение в 1868 году. На самом деле всё было не так просто. Спустя несколько минут после окончания солнечного затмения, которое французский физик Пьер Жюль Жансен наблюдал 18 августа 1868 года в Индии, ему впервые удалось увидеть спектр солнечных протуберанцев. Аналогичные наблюдения провёл английский астроном Джозеф Норман Локьер 20 октября того же года в Лондоне, особо подчеркнув, что его способ позволяет изучать солнечную атмосферу во вне-затменное время. Новые исследования солнечной атмосферы произвели большое впечатление: в честь этого события Парижская академия наук вынесла постановление о чеканке золотой медали с профилями учёных. При этом ни о каком новом элементе речи не было.

Итальянский астроном Анджело Секки 13 ноября того же года обратил внимание на «замечательную линию» в солнечном спектре вблизи известной жёлтой D-линии натрия. Он предположил, что эту линию испускает водород, находящийся в экстремальных условиях. И только в январе 1871 года Локьер высказал идею, что эта линия может принадлежать новому элементу. Впервые слово «гелий» произнёс в своей речи президент Британской ассоциации содействия наукам Уильям Томсон в июле того же года. Название было дано по имени древнегреческого бога солнца Гелиоса. В 1895 году английский химик Уильям Рамзай собрал выделенный из уранового минерала клевеита при его обработке кислотой неизвестный газ и с помощью Локьера исследовал его спектральным методом. В результате «солнечный» элемент был обнаружен и на Земле.

Цинк

Слово «цинк» ввёл в русский язык М.В. Ломоносов - от немецкого Zink. Вероятно оно происходит от древнегерманского tinka - белый, действительно, самый распространённый препарат цинка - оксид ZnO («философская шерсть» алхимиков) имеет белый цвет.

Фосфор

Когда в 1669 году гамбургский алхимик Хеннинг Бранд открыл белую модификацию фосфора, он был поражён его свечением в темноте (на самом деле светится не фосфор а его пары при их окислении кислородом воздуха). Новое вещество получило название, которое в переводе с греческого означает «несущий свет». Так что «светофор» - лингвистически то же самое, что и «Люцифер». Кстати, греки называли Фосфоросом утреннюю Венеру, которая предвещала восход солнца.

Мышьяк

Русское название, наиболее вероятно, связано с ядом которым травили мышей, помимо прочего, по цвету серый мышьяк напоминает мышь. Латинское arsenicum восходит к греческому «арсеникос» - мужской, вероятно, по сильному действию соединений этого элемента. А для чего их использовали, благодаря художественной литературе знают все.

Сурьма

В химии у этого элемента три названия. Русское слово «сурьма» происходит от турецкого «сюрме» - натирание или чернение бровей в древности краской для этого служил тонко размолотый чёрный сульфид сурьмы Sb2S3 («Ты постом говей, не сурьми бровей». - М. Цветаева). Латинское название элемента (stibium) происходит от греческого «стиби» - косметического средства для подведения глаз и лечения глазных болезней. Соли сурьмяной кислоты называют антимонитами, название, возможно, связано с греческим «антемон» - цветок сростки игольчатых кристаллов сурьмяного блеска Sb2S2 похожи на цветы.

Висмут

Вероятно это искажённое немецкое «weisse Masse» - белая масса с древности были известны белые с красноватым оттенком самородки висмута. Кстати в западноевропейских языках (кроме немецкого) название элемента начинается на «b» (bismuth). Замена латинского «b» русским «в» - распространённое явление Abel - Авель, Basil - Василий, basilisk - василиск, Barbara - Варвара, barbarism - варварство, Benjamin - Вениамин, Bartholomew - Варфоломей, Babylon - Вавилон, Byzantium - Византия, Lebanon - Ливан, Libya - Ливия, Baal - Ваал, alphabet - алфавит… Возможно переводчики полагали, что греческая «бета» - это русская «в».


Процесс образования химических элементов во Вселенной неразрывно связан с эволюцией Вселенной. Мы уже познакомились с процессами, происходящими вблизи «Большого взрыва», знаем некоторые детали процессов, происходивших в «первичном бульоне» элементарных частиц. Первые атомы химических элементов, находящиеся в начале таблицы Д. И. Менделеева (водород, дейтерий, гелий), начали образовываться во Вселенной еще до возникновения звезд первого поколения. Именно в звездах, их недрах, разогретых снова (после Big Bang температура Вселенной начала стремительно падать) до миллиардов градусов, и были произведены ядра химических элементов, следующих за гелием. Учитывая значение звезд как источников, генераторов химических элементов, рассмотрим некоторые этапы звездной эволюции. Без понимания механизмов звездообразования и эволюции звезд невозможно представить процесс образования тяжелых элементов, без которых, в конечном счете, не возникла бы жизнь. Без звезд во Вселенной так бы вечно и существовала водородо-гелиевая плазма, в которой организация жизни, очевидно, невозможна (на современном уровне понимания этого явления).

Ранее мы отметили три наблюдательных факта или теста современной космологии, простирающихся на сотни парсек, теперь укажем четвертый - распространенность легких химических элементов в космосе. Необходимо подчеркнуть, что образование легких элементов в первые три минуты и распространенность их в современной Вселенной впервые была рассчитана в 1946 г. международной троицей выдающихся ученых: американцем Альфером, немцем Гансом Бете и русским Георгием Гамовым. С тех пор физики, занимающиеся атомной и ядерной физикой, неоднократно рассчитывали образование легких элементов в ранней Вселенной и распространенность их сегодня. Можно утверждать, что стандартная модель нуклеосинтеза хорошо подтверждается наблюдениями.

Эволюция звезд. Механизм образования и эволюции основных объектов Вселенной - звезд, изучен наиболее xoponio. Здесь ученым помогла возможность наблюдать огромное количество звезд на самых разных стадиях развития - от рождения до смерти, - в том числе множество так называемых «звездных ассоциаций» - групп звезд, родившихся почти одновременно. Помогла и сравнительная «простота» строения звезды, которое довольно успешно поддается теоретическому описанию и компьютерному моделированию.

Звезды образуются из газовых облаков, которые, при определенных обстоятельствах, распадаются на отдельные «сгустки», которые дальше сжимаются под действием собственного тяготения. Сжатию газа под действием собственного тяготения препятствует повышающееся давление. При адиабатическом сжатии должна повышаться и температура - в виде тепла выделяется гравитационная энергия связи. Пока облако разреженное, все тепло легко уходит с излучением, но в плотном ядре сгущения вынос тепла затруднен, и оно быстро разогревается. Соответствующее повышение давления тормозит сжатие ядра, и оно продолжает происходить только за счет продолжающего падать на рождающуюся звезду газа. С ростом массы растет давление и температура в центре, пока наконец последняя не достигает величины 10 миллионов Кельвинов. В этот момент в центре звезды начинаются ядерные реакции, превращающие водород в гелий, которые поддерживают стационарное состояние вновь образовавшейся звезды миллионы, миллиарды или десятки миллиардов лет, в зависимости от массы звезды.

Звезда превращается в огромный термоядерный реактор, в котором устойчиво и стабильно протекает, в общем, та же реакция, которую человек пока научился осуществлять только в неуправляемом варианте - в водородной бомбе. Выделяемое при реакции тепло стабилизирует звезду, поддерживая внутреннее давление и препятствуя ее дальнейшему сжатию. Небольшое случайное усиление реакции слегка «раздувает» звезду, и соответствующее уменьшение плотности приводит снова к ослаблению реакции и стабилизации процесса. Звезда «горит» с почти неизменной яркостью.

Температура и мощность излучения звезды зависит от ее массы, причем зависит нелинейно. Грубо говоря, при увеличении массы звезды в 10 раз мощность ее излучения увеличивается в 100 раз. Поэтому более массивные, более горячие звезды расходуют свои запасы топлива гораздо быстрее, чем менее массивные, и живут относительно недолго. Нижний предел массы звезды, при котором еще возможно достижение в центре температур, достаточных для начала термоядерных реакций, составляет примерно 0,06 солнечной. Верхний предел - около 70 солнечных масс. Соответственно, самые слабые звезды светят в несколько сот раз слабее Солнца и могут так светить сотню миллиардов лет, гораздо больше времени существования нашей Вселенной. Массивные горячие звезды могут светить в миллион раз сильнее Солнца и живут лишь несколько миллионов лет. Время стабильного существования Солнца примерно 10 миллиардов лет, и из этого срока оно прожило пока половину.

Стабильность звезды нарушается, когда выгорает значительная часть водорода в ее недрах. Образуется лишенное водорода гелиевое ядро, а горение водорода продолжается в тонком слое на его поверхности. При этом ядро сжимается, в центре его давление и температура повышается, в то же время верхние слои звезды, расположенные выше слоя горения водорода, наоборот, расширяются. Диаметр звезды растет, а средняя плотность падает. Благодаря росту площади излучающей поверхности, медленно растет также ее полная светимость, хотя температура поверхности звезды падает. Звезда превращается в красного гиганта. В какой-то момент времени температура и давление внутри гелиевого ядра оказываются достаточными для начала следующих реакций синтеза более тяжелых элементов - углерода и кислорода из гелия, а на следующем этапе и еще более тяжелых. В недрах звезды могут образоваться из водорода и гелия многие элементы Периодической системы, но только вплоть до элементов группы железа, обладающего наибольшей энергией связи, приходящейся на одну частицу. Более тяжелые элементы образуются в других более редких процессах, а именно при взрывах сверхновых звезд и частично новых, и поэтому в природе их мало.

Отметим интересное, парадоксальное, на первый взгляд, обстоятельство. Пока вблизи центра звезды идет горение водорода, температура там не может подняться до порога гелиевой реакции. Для этого необходимо, чтобы горение прекратилось, и ядро звезды начало остывать! Остывающее ядро звезды сжимается, при этом повышается напряженность поля тяготения и выделяется гравитационная энергия, которая нагревает вещество. При повышенной напряженности поля необходима более высокая температура, чтобы давление могло противостоять сжатию, и гравитационной энергии оказывается достаточно, чтобы обеспечить эту температуру. Аналогичный парадокс мы имеем при снижении космического аппарата: чтобы перевести его на более низкую орбиту, его надо притормозить, но при этом он оказывается ближе к Земле, где сила тяжести больше, и скорость его возрастет. Остывание увеличивает температуру, а торможение увеличивает скорость! Такими кажущимися парадоксами полна природа, и далеко не всегда можно доверяться «здравому смыслу».

После начала горения гелия расходование энергии идет очень быстрыми темпами, так как энергетический выход всех реакций с тяжелыми элементами намного ниже, чем при реакции горения водорода и, кроме того, общая светимость звезды на этих этапах значительно возрастает. Если водород горит миллиарды лет, то гелий миллионы, а все остальные элементы - не более тысяч лет. Когда в недрах звезды все ядерные реакции затухают, ничто уже не может препятствовать ее гравитационному сжатию, и оно происходит катастрофически быстро (как говорят, коллапсирует). Верхние слои падают к центру с ускорением свободного падения (величина его на многие порядки превосходит земное ускорение падения из-за несопоставимой разности масс), выделяя огромную гравитационную энергию. Вещество сжимается. Часть его, переходя в новое состояние высокой плотности, образует звезду-остаток, а часть (обычно большая) выбрасывается в пространство в виде отраженной ударной волны с огромной скоростью. Происходит взрыв сверхновой звезды. (Помимо гравитационной энергии в кинетическую энергию ударной волны вносит свой вклад и термоядерное догорание части оставшегося во внешних слоях звезды водорода, когда падающий газ сжимается вблизи звездного ядра -происходит взрыв грандиозной «водородной бомбы»).

На какой стадии эволюции звезды остановится сжатие и что будет представлять собой остаток сверхновой, все эти варианты зависят от ее массы. Если эта масса менее 1,4 солнечной, это будет белый карлик, звезда с плотностью 10 9 кг/м 3 , медленно остывающая без внутренних источников энергии. От дальнейшего сжатия ее удерживает давление вырожденного электронного газа. При большей массе (примерно до 2,5 солнечной) образуется нейтронная звезда (их существование предсказано великим советским физиком, нобелевским лауреатом Львом Ландау) с плотностью примерно равной плотности атомного ядра. Нейтронные звезды были открыты как так называемые пульсары. При еще большей исходной массе звезды образуется черная дыра - безудержно сжимающийся объект, который не может покинуть ни один объект, даже свет. Именно при взрывах сверхновых происходит образование элементов тяжелее железа, для которых нужны чрезвычайно плотные потоки частиц высокой энергии, чтобы были достаточно вероятны многочастичные столкновения. Все материальное в этом мире является потомками сверхновых, в том числе и люди, поскольку атомы, из которых мы состоим, возникли когда-то при взрывах сверхновых.

Таким образом, звезды являются не только мощным источником энергии высокого качества, рассеяние которой способствует возникновению сложнейших структур, включающих и жизнь, но и реакторами, в которых производится вся таблица Менделеева - необходимый материал для этих структур. Взрыв заканчивающей свою жизнь звезды выбрасывает в пространство огромное количество разнообразных элементов тяжелее водорода и гелия, которые смешиваются с галактическим газом. За время жизни Вселенной закончили свою жизнь очень многие звезды. Все звезды типа Солнца и более массивные, возникшие из первичного газа, уже прошли свой жизненный путь. Так что сейчас Солнце и ему подобные звезды - это звезды второго поколения (а может быть, и третьего), существенно обогащенные тяжелыми элементами. Без такого обогащения вряд ли около них могли бы возникнуть планеты земного типа и жизнь.

Приведем информацию о распространенности некоторых химических элементов во Вселенной:

Как видим из этой таблицы, преимущественными химическими элементами и в настоящее время являются водород и гелий (почти 75% и 25% каждый). Относительно малого содержания тяжелых элементов, впрочем, оказалось достаточным для образования жизни (по крайней мере, на одном из островков Вселенной вблизи «рядовой» звезды, Солнца - желтого карлика). Помимо уже указанного нами ранее, надо помнить, что в открытом космическом пространстве присутствуют космические лучи, по сути являющиеся потоками элементарных частиц, в первую очередь, электронов и протонов разных энергий. В некоторых областях межзвездного пространства имеются локальные области повышенной концентрации межзвездного вещества, получившие название межзвездных облаков. В отличие от плазменного состава звезды, вещество межзвездных облаков уже содержит (об этом свидетельствуют многочисленные астрономические наблюдения) молекулы и молекулярные ионы. Например, обнаружены межзвездные облака из молекулярного водорода Н 2 , очень часто присутствуют в спектрах поглощения такие соединения, как ион гидроксила ОН, молекулы СО, молекулы воды и др. Сейчас число обнаруженных в межзвездных облаках химических соединений составляет свыше ста. Под действием внешнего облучения и без него в облаках происходят разнообразные химические реакции, зачастую такие, которые невозможно осуществить на Земле по причине особых условий в межзвездной среде. Вероятно, примерно 5 миллиардов лет назад, когда образовалась наша солнечная система, первичным материалом при образовании планет были такие же простейшие молекулы, которые сейчас мы наблюдаем в других межзвездных облаках. Другими словами, процесс химической эволюции, начавшийся в межзвездном облаке, затем продолжился уже на планетах. Хотя сейчас в некоторых межзвездных облаках обнаружены достаточно сложные органические молекулы, вероятно, химическая эволюция привела к появлению «живого» вещества (т. е. клеток с механизмами самоорганизации и наследственности) уже только на планетах. Очень трудно представить организацию жизни в объеме межзвездных облаков.

Планетная химическая эволюция

Рассмотрим процесс химической эволюции на Земле. Первичная атмосфеpa Земли содержала в основном простейшие соединения водорода Н 2 , H 2 О, NH 3 ,CH 4 . Кроме этого, атмосфера была богата инертными газами, прежде всего гелием и неоном. В настоящее время обилие благородных газов на Земле ничтожно мало, что означает, что они в свое время диссонировали в межпланетное пространство. Наша современная атмосфера имеет вторичное происхождение. Первое время химический состав атмосферы мало отличался от первичной. После образования гидросферы из атмосферы практически исчез аммиак NH 3 , растворившийся в воде, атомарный и молекулярный водород улетучился в межпланетное пространство, атмосфера была насыщена преимущественно азотом N. Насыщение атмосферы кислородом происходило постепенно, сначала благодаря диссоциации молекул воды ультрафиолетовым излучением Солнца, затем, и главным образом, благодаря фотосинтезу растений.

Не исключено, что некоторое количество органических веществ было принесено на Землю при падении метеоритов и, возможно, даже комет. Например, в кометах присутствуют такие соединения, как N, NH 3 , CH 4 и др. Известно, что возраст земной коры примерно равен 4,5 млрд. лет. Имеются также геологические и геохимические данные, указывающие на то, что уже 3,5 млрд. лет назад земная атмосфера была богата кислородом. Таким образом, первичная атмосфера Земли существовала не более 1 млрд. лет, а жизнь возникла, вероятно, даже раньше.

В настоящее время накоплен значительный экспериментальный материал, иллюстрирующий, каким образом такие простые вещества, как вода, метан, аммиак, окись углерода, аммонийные и фосфатные соединения превращаются в высокоорганизованные структуры, являющиеся строительными кирпичиками клетки. Американские ученые Кельвин, Миллер и Юри провели ряд опытов, в результате которых было показало, как в первичной атмосфере могли возникнуть аминокислоты. Ученые создали смесь газов - метана СН 4 , молекулярного водорода Н 2 , аммиака NH 3 и паров воды Н 2 O, моделирующую состав первичной атмосферы Земли. Через ату смесь пропускали электрические разряды, в результате в исходной смеси газов были обнаружены глицин, аланин и другие аминокислоты. Вероятно, существенное влияние на химические реакции в первичной атмосфере Земли оказывало Солнце своим ультрафиолетовым излучением, которое не задерживалось в атмосфере в связи с отсутствием озона.

Немаловажное значение на химическую эволюцию оказали не только электрические разряды и ультрафиолетовое излучение Солнца, но и вулканическое тепло, ударные волны, радиоактивный распад калия К (доля энергии распада калия примерно 3 млрд. лет назад на Земле была второй, после энергии ультрафиолетового излучения Солнца). Например, газы, выделяющиеся из первичных вулканов (O 2 , СО, N 2 , Н 2 O, Н 2 , S, H 2 S, СН 4 , SО 2), при воздействии различных видов энергии реагируют с образованием разнообразных малых органических соединений, типа: цианистый водород HCN, муравьиная кислота HCO 2 H, уксусная кислота H 3 CO 2 H, глицин H 2 NCH 2 CO 2 H и т. д. В дальнейшем, опять же при воздействии различных видов энергии, малые органические соединения реагируют с образованием более сложных органических соединений: аминокислоты.

Таким образом, на Земле были условия для образования сложных органических соединений, необходимых для создания клетки.

В настоящее время еще нет единой логически последовательной картины, как из первичной «суперкапли материи» под названием Вселенная после Большого Взрыва возникла жизнь. Но уже многие элементы этой картины ученые представляют и считают, что так все и происходило на самом деле. Одним из элементов этой единой картины эволюции является химическая эволюция. Пожалуй, химическая эволюция - это один из аргументированных элементов единой картины эволюции хотя бы потому, что допускает экспериментальное моделирование химических процессов (чего, например, нельзя сделать в отношении условий, аналогичных тем, что были вблизи «большого взрыва»). Химическая эволюция прослеживается вплоть до элементарных кирпичиков живой материи: аминокислот, нуклеиновых кислот.



Месяц назад, 16 октября, от гравитационно-волновых обсерваторий «LIGO», «Virgo» и целого ряда иных крупных международных научных групп поступило сообщение касательно крайне значимого для астрономии современности открытия. Свыше 70 обсерваторий, специализирующихся в плане всех диапазонов электромагнитного спектра, а ещё все 3 функционирующие гравитационно-волновые обсерватории в первый раз подробно продемонстрировали информацию касательно слияния двух звёзд нейтронного типа. В данном материале мы поведаем, что же именно увидели учёные и какие ответы касательно вопросов о нашей Вселенной были получены благодаря новому исследованию.

Как всё это было?

В этом году, 17 августа, в 15:41:04 по Москве детектор обсерватории «LIGO», находящейся в Хенфорде, что в Вашингтоне, уловил рекордно длинную волну гравитации. Сигнал длился приблизительно сто секунд. Это весьма большой временной промежуток, ведь прежние 4 фиксации волн гравитации длились не больше трёх секунд. В этом случае сработала автоматическая программ оповещения. Астрономами осуществлена проверка сведений, в результате чего было выявлено, что, оказывается, 2-ой детектор «LIGO», располагаемый в Луизиане, тоже уловил волну, но в этом же случае автоматический триггер не сработал ввиду краткосрочных шумов.

На 1,7 сек. позднее первого детектора, независимо от него же, сработала автоматическая система телескопов «Интеграл» и «Ферми», являющихся космическими гамма-обсерваториями, наблюдающими за одними из самых высокоэнергетических событий всей Вселенной. Приборами была зафиксирована яркая вспышка и приблизительно определены её же координатные данные. Вспышка же здесь длилась всего-навсего 2 сек. в отличие от сигнала гравитации. Примечательно, что российско-европейским «Интегралом» был замечен гамма-всплеск, так сказать, «боковым зрением», то есть «защитными кристаллами» главного детектора. Однако, это не стало помехой процессу триангуляции сигнала.

Приблизительно спустя час «LIGO» распространила информацию касательно потенциально возможных координатных данных источника волн гравитации. Установка данной области осуществилась за счёт того, что сигнал был замечен и детектором «Virgo». Задержки, с которыми устройства получали сигнал, сказали, что, скорее всего, источник располагается на юге, ведь сначала сигнал уловил «Virgo», а только после этого, как прошло 22 миллисекунды, его зафиксировала и обсерватория «LIGO». Изначально область, которую рекомендовали в целях поиска, доходила до 28 квадратных градусов. Этот показатель эквивалентен сотням лунных площадей.

На следующем этапе было осуществлено объединение информации гамма- и гравитационных обсерваторий в единое целое и начался поиск точного источника излучения. Физиками было инициировано в миг несколько оптических поисков, ведь и гамма-телескопы, и гравитационные обсерватории не давали возможности нахождения требуемой точки с высокой точностью.

Один из поисков осуществлялся посредством применения роботизированной системы телескопов под названием «МАСТЕР», которая была создана в ГАИШ МГУ.

Именно чилийский метровой телескоп «Swope» сумел найти среди тысяч потенциальных кандидатов требуемую вспышку. Он это сделал спустя 11 ч. после гравитационных волн. Астрономами была зафиксирована новая светящаяся точка в галактике «NGC 4993», находящейся в созвездии Гидры. Яркость данной точки была не выше 17 звёздной величины. Подобный объект находится в доступности для наблюдения с применением полупрофессиональных телескопов.

Спустя приблизительно час после этого, невзирая на «Swope», источник был найден ещё четырьмя обсерваториями, включая телескоп сети «МАСТЕР» из Аргентины. Затем же и началась глобальная наблюдательная компания, в которой задействовали телескопы Южной европейской обсерватории, такие знаменитые аппараты, как «Чандра» и «Хаббл», массив радиотелескопов VLA и ещё куча иных приборов. В совокупности за развитием событие наблюдали 70 учёных коллективов. Спустя 9 дней астрономы сумели добиться получения изображения в рентгеновском диапазоне, а через 16 же дней – даже в радиочастотном. Через какое-то время светило стало ближе к галактике, а в сентябре же наблюдения оказались невозможными.

Почему произошёл взрыв?

Столь характерную картину взрыва во множестве электромагнитных диапазонов предсказали и описали уже давно. В ней показывается столкновение двух звёзд нейтронного типа, являющихся ультракомпактными объектами, состоящими из нейтронной материи.

Учёные утверждают, что масса звёзд нейтронного типа доходит до 1,1 и 1,6 солнечной массы, что в сумме даёт 2,7. Впервые волны гравитации образовались при достижении расстояния между объектами в 300 км.

Неожиданным оказалось малое расстояние от данной системы до нас. Оно равнялось 130 млн. световых лет, а ведь это всего лишь в 50 раз больше, нежели расстояние от нас до туманности Андромеды, а также практически на порядок наоборот меньше расстояния от нас до чёрных дыр, которые столкнулись, как нам показывают «LIGO» и «Virgo». Также столкновение это выступили самым близким к нам источником короткого гамма-всплеска.

Что представляют собой звёзды нейтронного типа?

Эти уникальные звёзды формируются при так называемых коллапсах гигантов и сверхгигантов, имеющих массы, в 10-25 раз превышающие солнечную массу. Как можно описать их рождение? Вначале на определённом этапе масса звёздного ядра становится выше предела Чандрасекара, равного 1,4 массы Солнца. В этот момент как раз происходит нарушение равновесия между ядерной гравитацией, которая притягивает внешний слой звезды, и давлением электронов, которое выступает препятствием для процесса сжатия. Звезда же начинает сжатие, то есть коллапсирование. Показатели плотности и температуры ядерного вещества внезапно повышаются, протоны начинают захватывать электроны в результате чего образуются нейтроны, и при этом происходит выброс нейтрино. Спустя определённого время ядро уже почти полностью представляет собой множество нейтронов.

Энергетические выбросы, возникающие вследствие протон-электронных соединений, приводят к разрыву звёздной оболочки и уносят её же материал. Таким образом, возникает как раз взрыв сверхновой. В результате мы видим плотное ядро, имеющее тонкую оболочку и состоящее из нейтронов. Показатель плотности звезды нейтронного типа огромен. Его находят только через давление вырожденных нейтронов. Он доходит до значения 4–6×1017 кг/м3. Одна капля нейтронной материи, равная 0,030 миллилитра, по весу превышает десяток млн. т. Это сравнимо с сотней доверху загруженных поездов грузового назначения. В то же время характерные размеры таких звёзд не так уж велики – всего где-то около 10 км. в одном дм. Отметим, что такая звезда может быть помещена даже в московской Третье транспортное кольцо.

Помимо большого показателя плотности, у звёзд такого типа имеются мощные магнитные поля. Индукция их достигает тысячи-триллионы тесла, а ведь земное магнитное поле не превышает по этому показателю и 0,065 тесла. У части таких звёзд после взрыва появляется большой угловой момент. Таким образом образуются такие уникальные объекты, как пульсары.

В настоящее время учёные не пришли ещё к единой картине устройства нейтронной материи. Не было ещё построено специальное уравнение её состояния. Вместе с тем есть информация, что у «Нейтрония» имеются такие свойства, как сверхтекучесть и сверхпроходимость.

Двойные же звёзды нейтронного типа знают уже с 1974 г. Одна из подобных систем в то время была открыта нобелевскими лауреатами Расселом Халсом и Джозефом Тейлором. Но все известные двойные такие звёзды всё ещё были расположены в нашей же галактике, а стабильности их орбиты хватало, чтобы они не соударились друг с другом на протяжении обозримых миллионов лет. Новая пара звёзд была сближена настолько, что это запустили процесс взаимодействия, а там и переноса вещества.

Событие назвали килоновой. Если говорить дословно, это выглядит так, что яркость вспышки была приблизительно в тысячу раз большей по мощности, нежели обычные вспышки новых звёзд, являющихся двойными системами, где компактный компаньон занимается перетягиванием на себя же материи.

Полное собрание сведений уже даёт возможность учёным считать данное событие ураеугольным камнем будущей гравитационно-волновой астрономии. Результаты обработки информации заложили основу в написание в течение двух месяцев примерно 30 статей в популярных журналах. Таким образом, 7 статей опубликовали в «Nature», 7 – в «Science», а другие же работы были обнародованы в «Astrophysical Journal Letters» и прочих изданиях научной тематики. В качестве соавторов одной из данных статей выступило 4600 астрономов из совершенно разных коллабораций. Это число астрономов составляет свыше трети астрономов по всему миру.

Итак, мы дошли до ключевых вопросов, на которые учёные со всей серьёзности сумели дать настоящий ответ.

Что способствует запуску коротких гамма-всплесков?

Гамма-всплески являются одними из самых высокоэнергетических явлений во всей Вселенной. По мощности один такой всплеск достигает такого значения, что за секунды способно выбросить в окружающую среду энергию, равную по количеству солнечной, генерируемой в течение десятка млн. лет. Принято разделять короткие гамма-всплески от длинных. В то же время считают, что это совершенно разные по своему принципу явления. Например, в качестве источника длинных всплесков выступают коллапсы звёзд огромных масс.

В качестве же источника коротких гамма-всплесков, согласно некоторым предположениям, считают слияния звёзд нейтронного типа. Но всё ещё не было прямых подтверждений этим предположениям. Новые же наблюдения уже являются весьма веским в настоящее время доказательством существования данного механизма.

Как во Вселенной возникают золото и прочие тяжёлые элементы?

Нуклеосинтез является слиянием звёздных ядер в самих светилах. Этот процесс даёт возможность получения огромного спектра химических элементов. В случае лёгких ядер реакции слияния проходят с выделением энергии. В общем данные реакции являются энергетически выгодными. Для элементов же, масса которых примерно как и масса железа, выигрыш в энергетическом плане уже не столь значителен. По этой причине в звёздах практически не возникают элементы, масса которых превышает массу железа. В качестве исключения можно выделить взрывы сверхновых. Однако, их отнюдь не достаточно для объяснения распространённости золота, урана, лантанидов и прочих тяжёлых элементов, образуемых по всей Вселенной.

Стоит вспомнить, что ещё в 1989 г. физиками было сделано предположение, что здесь в процессе поучаствовал r-нуклеосинтез, происходящий в слияниях звёзд нейтронного типа. Более подробно касательно этой информации можно вычитать в блоге специалиста в сфере астрофизики Марата Мусина. Доселе о данном процессе говорили лишь в теории. Теперь же всё изменилось.

Спектральные исследования нового события говорят об отчётливых следах возникновения тяжёлых элементов. Таким образом, спектрометры, огромный телескоп «VLT» и знаменитый «Хаббл» помогли астрономам в обнаружении наличия в космосе золота, цезия, платины и теллура. Ещё имеются свидетельства возникновения сурьмы, ксенома и иода. Физики привели оценочную информацию, в которой говорится, что после столкновения был произведён выброс общей массы лёгких и тяжёлых элементов, равной 40 массам Юпитера. Одно ли золото, как говорят теоретические модели, возникает столько, что это равно приблизительно 10 массам Луны.

Чему равна константа Хаббла?

Экспериментальная оценка скорости расширения Вселенной может проводиться посредством специальных «стандартных свечей», являющихся объектами, для которых известен показатель абсолютной яркости. Это означает, что соотношение между показателями абсолютной яркости и видимой позволяет сделать заключение о дальности их нахождения. Скорость расширения на такой дистанции от наблюдателя находится с применением доплеровского смещения, к примеру, водородных линий. Роль «стандартных свечей» взяли на себя роль, к примеру, сверхновые Ia типа, являющиеся «взрывами» белых карликов. Стоит добавить, что именно на их выборке и доказали факт расширения Вселенной.

Константа Хаббла же позволяет задать линейную зависимость показателя скорости расширения Вселенной на этой дистанции. Каждое из независимых определений её значения даёт возможность быть уверенными в принятой ныне космологии.

Источники волн гравитации тоже выступают как так называемые «стандартные свечи». По-иному их называют ещё «сиренами». Характер волн гравитации, создаваемые этими свечами, позволяет независимо определить дистанцию до них. Именно это и было использовано астрономами в одной из своих новых работ. Результат приравнивается и с прочими независимыми измерениями, а именно основанными на реликтовом излучении и на наблюдениях за гравитационно-линзированными объектами. Константа приблизительно остаётся равной 62-82 км. в сек. на мегапарсек. Это значит, что две галактики, что удалены на 3,2 млн. световых лет, в среднем имеют разбег со скорость в 70 км/с. Новые же слияния звёзд нейтронного типа дадут возможность увеличения точности данной оценки.

Как "устроена" гравитация?

Всеми принятая ныне общая теория относительности точно предсказывает поведение волн гравитации. Но квантовая же теория гравитации всё ещё не была разработана. Существует некоторое число гипотез касательно того, как «устроена» гравитация. Они представлены в виде теоретических конструкций с большим числом неизвестного рода параметров. Одновременное наблюдение электромагнитного излучения и волн гравитации даст возможность выявить и сделать несколько уже границы для данных параметров, а ещё отбросить какие-то гипотезы, признанные несостоятельными.

Например, существует факт того, что волны гравитации возникли за 1,7 сек. до гамма-квантов. Это как раз и говорит, что они в действительности расходятся со скоростью света. Также саму величину задержки можно применить в целях проверки принципа эквивалентности, что лежит в основе ОТО.

Как устроены звёзды нейтронного типа?

Нам известно строение таких звёзд только в общих чертах, поверхностно. Они имеют кору, состоящую из тяжёлых элементов, а также ядро, в основе которого, как мы и сказали выше, лежат нейтроны. Однако, мы всё ещё не знаем уравнения состояния нейтронной материи в самом ядре. А ведь это важно, так как именно это поможет понять, что же было образовано во время столкновения, наблюдавшегося астрономами.

Как и по отношению к белым карликам, так и к звёздам нейтронного типа мы можем применить понятие критической массы. При превышении данной массы есть риск начала процесса коллапса. По мере того, превысила ли масса нового тела критическую отметку или же нет, имеется несколько вариантов последующего развития событий. Если суммарно масса будет излишне большой, объект внезапно станет коллапсировать в чёрную дыру. Если же масса несколько меньше, есть риск возникновения неравновесной быстровращающейся звезды нейтронного типа, которая так же с течением времени коллапсирует в чёрную дыру. В качестве альтернативы здесь можно рассмотреть образование магнетара. Это быстровращающаяся звезда нейтронного типа, имеющая огромное магнитное поле. Видимо, магнетар не был образован в столкновении, и учёные не сумели зафиксировать сопутствующее ему излучение рентгеновского типа.

Владимир Липунов, являющийся руководителем сети «МАСТЕР», ныне информации не хватает для выяснения, что же там возникло вследствие слияния. Но астрономы уже собираются предоставить несколько теорий и планируют выложить их на публику в ближайшие дни. Вероятно, благодаря будущим слияниям звёзд учёные сумеют выявить искомую критическую массу.

Валерий Митрофанов, являющийся профессоров физического факультета МГУ им. М. В. Ломоносова, высказался, что в обозримом будущем они (учёные) ожидают регистрации волн гравитации и от прочих источников, например, от непрерывных источников излучения, стохастических волн и гравитационного реликтового излучения, но для таких целей потребуется существенное повышение чувствительности детекторов. Также он отметил, что ещё весьма интересно на сегодняшний день заниматься поисков новых неизведанных источников.

Была выяснена механика движения планет и звёзд. После того как этот рубеж остался позади, мифотворческие концепции происхождения энергии Солнца и звёзд уже не могли восприниматься всерьёз, и хорошо, казалось бы, но изученное астроно́мами небо вдруг покрылось вопросительными знаками. Для проникновения в недра звёзд учёные располагали единственным орудием - «аналитической бурово́й машиной» собственного мозга, по выражению английского астрофизика Артура Стэнли Э́ддингтона (1882-1944).

Первым выдвинул идею о возможности «перекачки» звёздной массы в энергию через термоядерные реакции синтеза гелия и водорода (1920 г.). Он писал: «Внутренние области звезды представляют собой смесь из атомов, электронов и волн эфира (так учёный называет электромагнитные волны). Мы должны призвать на помощь новейшие достижения атомной физики для того́, чтобы понять законы этого хаоса. Мы начали исследовать внутреннее строение звезды; вскоре мы обнаружили, что исследуем внутреннее строение атома». И далее: «...необходимая энергия может освободиться при перегруппировке протонов и электронов в атомных я́драх (превращение элементов) и гораздо бо́льшая энергия - при их аннигиляции... Тот или другой процесс может быть использован для получения солнечного тепла...».

О каких же этапах звёздных биографий может рассказать современная наука?

Сразу оговоримся: существующие представления о происхождении и развитии звёзд, несмотря на широкое признание, пока не вступили в права незы́блемой теории. Много сложных вопросов ещё ждут ответа. Однако эти представления, по-видимому, достаточно правильно обрисо́вывают контуры звёздной эволюции. Бытие звезды начинается с огромного холодного облака газа, состоящего в основном из водорода. Под действием сил тяготения оно постепенно сжима́ется. Потенциальная гравитационная энергия частичек газа переходит в кинетическую, т.е. тепловую, около половины которой расходуется на излучение. Остальная идёт на разогрев образующегося в центре плотного сгустка - ядра́. Когда температура и давление в ядре возрастают настолько, что становятся возможными термоядерные реакции, начинается самый долгий этап эволюции звезды - термоядерный. Часть энергии, выделяющейся в её ядре при синтезе гелия из водорода, уно́сится в мировое пространство всепроника́ющими нейтрино, а основная доля переносится к поверхности светила γ-квантами и частицами сильно ионизованного газа. Этот истекающий от центра поток энергии противостоит давлению внешних слоёв и препятствует дальнейшему сжатию. Такое равновесное состояние звезды с массой, вдвое превышающей массу Солнца, длится почти 10 млрд. лет.

После того как большая часть водорода в ядре вы́горела, энергии для поддержания равновесия уже не хватает. «Термоядерный реактор» звезды постепенно переходит на новый режим. Звезда сжима́ется, давление и температура в её центре возрастают, и примерно при 100 млн. градусов в реакции наряду́ с протонами вступают я́дра гелия. Синтезируются более тяжёлые элементы - углерод, азот, кислород, а от центра звезды к поверхности, подобно одному из кругов, разбега́ющихся по воде от брошенного камня, движется слой, в котором продолжает сгорать водород.

Со временем исчерпываются и ресурсы гелия. Звезда ещё сильнее сжима́ется, температура в её центре повышается до 600 млн. градусов. Теперь в реакциях участвуют ядра с Z > 2 . А к периферии движется слой сгорающего гелия.

Шаг за шагом вещество в ядре занимает всё новые клетки в таблице Менделеева и при 4 млрд. градусов «добирается» наконец до желе́за и элементов, близких к нему по массе ядра́. У этих элементов максимальный дефект масс, т.е. энергия связи в я́драх наибольшая, и они представляют собой «шлак» «термоядерных звёздных реакторов»: никакие ядерные реакции более не способны извлечь из них энергию. А раз так, невозможно и дальнейшее выделение энергии за счёт реакций синтеза - термоядерный период звезды закончился. Дальнейший ход эволюции вновь определяется гравитационными силами, сжима́ющими звезду. Начинается её гибель.

Как именно будет умирать звезда, зависит от её массы. Например, звёздам с массой, превышающей две солнечные, уготован самый драматический конец. Силы тяготения оказываются настолько мощными, что осколки раздавленных атомов - электроны и я́дра - образуют как бы два растворённых друг в друге газа - электронный и ядерный. Хотя ход эволюции таких звёзд на стадиях, следующих за выгора́нием лёгких элементов, не может считаться точно установленным, тем не менее существующая теория признаётся большинством астрофизиков. Своим успехом эта теория прежде всего обязана тому, что предлагаемый ею механизм образования химических элементов и предска́зываемая распространённость элементов во Вселенной хорошо согласуются с данными наблюдений.

Итак, массивная звезда исчерпа́ла все запасы ядерного горючего. Последовательно нагрева́ясь до нескольких миллиардов градусов, она обратила основную часть вещества в ядерную золу́ - элементы группы желе́за с атомными массами от 50 до 65 (от вана́дия до цинка). Дальнейшее сжатие звезды приводит к нарушению стабильности образовавшихся я́дер, которые начинают разрушаться. Их осколки - alfa -частицы, протоны и нейтроны - вступают в реакции с я́драми группы желе́за и соединяются с ними. Образуются более тяжёлые элементы, тоже вступающие в реакции, - заполняются следующие клетки периодической таблицы. Из-за чрезвычайно высоких температур эти процессы протекают очень быстро - в течение нескольких тысячелетий.

«Тяжёлая» область таблицы Менделеева

При делении я́дер группы желе́за, как и при слиянии с ними нуклонов и лёгких я́дер (в реакциях синтеза, приводящих к заполнению «тяжёлой» области таблицы Менделеева), энергия не выделяется, а, наоборот, поглощается. В результате сжатие звезды всё убыстряется. Электронный газ более не способен противостоять давлению газа ядерного. Наступает коллапс - за несколько секунд ядро звезды претерпевает катастрофическое сжатие: оболочка звезды обрушивается, «взрывается внутрь». Плотность вещества увеличивается настолько, что даже нейтри́но не могут покинуть звезду. Однако «пленение» мощного нейтринного потока, уносящего большую часть энергии коллапси́рующего ядра звезды, не длится долго. Рано или поздно импульс «запертых» нейтри́но сообщается оболочке, и она сбрасывается, увеличивая в миллиарды раз свечение звезды.

Астрофизики считают, что именно так вспыхивают сверхновые звёзды. Гигантские взрывы, сопровождающие эти события, выбрасывают в межзвёздное пространство значительную часть вещества звезды: до 90% её массы.

Крабовидная туманность, например, представляет собой взорва́вшуюся и расширя́ющуюся оболочку одной из самых ярких сверхновых. Вспышка её произошла, как свидетельствуют звёздные летописи китайских и японских астрономов, в 1054 г. и была необычайно яркой: звезду видели даже днём в течение 23 суток. Измерения скорости расширения Крабовидной туманности показали, что за девять веков она могла достигнуть своих нынешних размеров, т. е. подтвердили дату её рождения. Однако гораздо более весомое доказательство правильности изложенной модели и основанных на ней теоретических предсказаний мощности нейтринного потока было получено 23 февраля 1987 г. Тогда астрофизики зарегистрировали нейтринный импульс, которым сопровождалось рождение сверхновой в Большом Магеллановом Облаке.

В них обнаружили линии тяжёлых элементов, на основании чего немецкий астроном Ва́льтер Бааде (1893-1960 г.) пришёл к выводу, что Солнце и большинство звёзд представляют собой по крайней мере второе поколение звёздного населения. Материалом для этого второго поколения послужили межзвёздный газ и космическая пыль, в которую превратилось вещество сверхновых более раннего поколения, рассеянное их взрывами.

Не могут ли во взрывах звёзд рождаться я́дра сверхтяжёлых элементов? Ряд теоретиков такую возможность допускают.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Происхождение химических элементов

Задачей теории П.х.э. (нуклеосинтеза) явл. построение эволюционной картины формирвоания всего наблюдаемого в природе многообразия хим. элементов. Ключом к пониманию процесса ядерной эволюции вещества от первоначальной горячей плазмы элементарных частиц до совр. состояния служит относительная и их изотопов в веществе наблюдаемой части Вселенной.

Совр. подход к объяснению осн. наблюдаемых закономерностей хим. и изотопного состава вещества Вселенной состоит в следующем.

Пердставляется наиболее вероятным, что изотопы всех элементов со значением образуются в звездах. Гелий, вероятно, уже содержался в протозвездном веществе, из к-рого формировались первые звезды галактик, и за его образование ответсвенны реакции термоядерного синтеза на ранних стадиях расширения горячей Вселенной (см. ). Вполне удовлетворительное согласие наблюдаемой распространенности гелия со значением, предсказываемым в рамках , явл. веским аргументом в пользу такого предположения. Этот же механизм ответствен, скорее всего, и за образование наблюдаемых количеств изотопов H 2 , He 3 , а также некоторой доли Li 7 .

Скорость образования элементов в Галактике была в прошлом существенно выше, чем на момент формирования Солнечной системы (4,6 млрд. лет назад), и осн. обогащение вещества Галактики элементами A >4 произошло 10-15 млрд. лет назад (см. ). Это заставляет предполагать, что среди первых поколений звезд преобладали массивные звезды, быстро заканчивавшие свою эволюцию выбросом значительной доли (или всего) переработанного в и обогащенного тяжелыми элементами вещества в межзвездное пространство, где оно входило в состав исходного материала для формирвоания следующих поколей звезд.

Проблема образования легких элементов - Li, Be и B - решена пока не полностью. Эти элементы легко разрушаются в термоядерных реакциях, и поэтому их эффективное производство возможно только в неравновесных процессах. Считается, что они образуются гл. обр. при взаимодействии частиц галактических с веществом межзвездного газа в реакциях скалывания (см. ). Однако возникающие трудности в объяснении необычного изотопного состава Li и B (резко выраженное преобладание нечетных изотопов) указывают, скорее всего, на наличие дополнительного эффективного источника их образования. Наиболее вероятным кандидатом на эту роль явл. взрывы , т.к. прохождение через сбрасываемую оболочку мощного потока нейтринного излучения от коллапсирующего ядра звезды, а также сильной ударной волны приводит к образованию заметных количеств именно нечетных изотопов легких элементов в веществе оболочки.

Большинство изотопов хим. элементов, начиная с углерода и вплоть до элементов района "железного пика" (Fe, Ni и др.), образуются в условиях высоких темп-р в реакциях термоядерного синтеза, причем начальным этапом этой последовательности ядерных превращений служат процессы 4 He + 4 He + 4 He 12 C + и 4 He + 12 C 16 O + , приводящие к эффективному увеличению количества 12 C и 16 O на гидростатически равновесных стадиях . Наиболее благоприятные условия для образования Ne и всех более тяжелых элементов этой группы реализуются, по-видимому, при взрывном горении C, O и Si на заключительном, неравновесном этапе эволюции массивных звезд.

Наиболее распространенные изотопы элементов тяжелее железа сформировались, очевидно, в недрах массивных звезд в результате последовательных реакций захвата нейтронов. Ряд характерных особенностей хода кривой распространенности этих тяжелых ядер указывает на то, что процесс их построения должен протекать достаточно эффективно как на сравнительно продолжительной равновесной стадии эволюции звезд в условиях малых интенсивностей потока нейтронов (s -процесс), так и в момент взрыва звезды при высокой интенсивности потока нейтронов (r -процесс).

Образование редких (с относительно низким содержаниемнейтронов) изотопов тяжелых элементов, к-рые не могли сформироваться в процессе последовательного присоединения нейтронов (откуда и термин ), возможно только на последней, катастрофической стадииэволюции массивных звезд либо под действием потока нейтринного излучения от коллапсирующего ядра звезды, либо в к.-л. др. ненеравновесных процессах.

Перечисленные механизмы образования каждой из осн. групп изотопов хим. элементов оказываются достаточно эффективными при физ. условиях, к-рые могут реализовываться в известных типах астрофизич. объектов и позволяют объяснить, по крайней мере в общих чертах, главные закономерности наблюдаемой распространенности хим. элементов. В этом смысле можно говорить о том, что осн. контуры картины П.х.э. уже намечены, в то время как построение последовательной и самосогласованной теории П.х.э. практически только начинается и требует решения еще многих проблем космологии, теории строения и эволюции галактик и звезд, физики атомного ядра и элементарных частиц.

Лит.:
Франк-Каменецкий Д.А., Ядерная астрофизика, М., 1967; Тейлер Р.Дж., Происхождениехимических элементов, пер. с англ., М., 1975; Ядерная астрофизика, пер. с англ., М. (в печати)

(Г.В. Домогацкий )