Линейная зависимость и линейная независимость векторов.
Базис векторов. Аффинная система координат

В аудитории находится тележка с шоколадками, и каждому посетителю сегодня достанется сладкая парочка – аналитическая геометрия с линейной алгеброй. В данной статье будут затронуты сразу два раздела высшей математики, и мы посмотрим, как они уживаются в одной обёртке. Сделай паузу, скушай «Твикс»! …блин, ну и чушь спорол. Хотя ладно, забивать не буду, в конце концов, на учёбу должен быть позитивный настрой.

Линейная зависимость векторов , линейная независимость векторов , базис векторов и др. термины имеют не только геометрическую интерпретацию, но, прежде всего, алгебраический смысл . Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства . Или вектор погоды, за которым я только что сходил на Гисметео: – температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….

Нет, я не собираюсь грузить вас теорией, линейными векторными пространствами, задача состоит в том, чтобы понять определения и теоремы. Новые термины (линейная зависимость, независимость, линейная комбинация, базис и т.д.) приложимы ко всем векторам с алгебраической точки зрения , но примеры будут даны геометрические. Таким образом, всё просто, доступно и наглядно. Помимо задач аналитической геометрии мы рассмотрим и некоторые типовые задания алгебры . Для освоения материала желательно ознакомиться с уроками Векторы для чайников и Как вычислить определитель?

Линейная зависимость и независимость векторов плоскости.
Базис плоскости и аффинная система координат

Рассмотрим плоскость вашего компьютерного стола (просто стола, тумбочки, пола, потолка, кому что нравится). Задача будет состоять в следующих действиях:

1) Выбрать базис плоскости . Грубо говоря, у столешницы есть длина и ширина, поэтому интуитивно понятно, что для построения базиса потребуется два вектора. Одного вектора явно мало, три вектора – лишка.

2) На основе выбранного базиса задать систему координат (координатную сетку), чтобы присвоить координаты всем находящимся на столе предметам.

Не удивляйтесь, сначала объяснения будут на пальцах. Причём, на ваших. Пожалуйста, поместите указательный палец левой руки на край столешницы так, чтобы он смотрел в монитор. Это будет вектор . Теперь поместите мизинец правой руки на край стола точно так же – чтобы он был направлен на экран монитора. Это будет вектор . Улыбнитесь, вы замечательно выглядите! Что можно сказать о векторах ? Данные векторы коллинеарны , а значит, линейно выражаются друг через друга:
, ну, или наоборот: , где – некоторое число, отличное от нуля.

Картинку сего действа можно посмотреть на уроке Векторы для чайников , где я объяснял правило умножения вектора на число.

Будут ли ваши пальчики задавать базис на плоскости компьютерного стола? Очевидно, что нет. Коллинеарные векторы путешествуют туда-сюда по одному направлению, а у плоскости есть длина и ширина.

Такие векторы называют линейно зависимыми .

Справка: Слова «линейный», «линейно» обозначают тот факт, что в математических уравнениях, выражениях нет квадратов, кубов, других степеней, логарифмов, синусов и т.д. Есть только линейные (1-й степени) выражения и зависимости.

Два вектора плоскости линейно зависимы тогда и только тогда , когда они коллинеарны .

Скрестите пальцы на столе, чтобы между ними был любой угол, кроме 0 или 180 градусов. Два вектора плоскости линейно не зависимы в том и только том случае, если они не коллинеарны . Итак, базис получен. Не нужно смущаться, что базис получился «косым» с неперпендикулярными векторами различной длины. Очень скоро мы увидим, что для его построения пригоден не только угол в 90 градусов, и не только единичные, равные по длине векторы

Любой вектор плоскости единственным образом раскладывается по базису :
, где – действительные числа . Числа называют координатами вектора в данном базисе.

Также говорят, что вектор представлен в виде линейной комбинации базисных векторов . То есть, выражение называют разложением вектора по базису или линейной комбинацией базисных векторов.

Например, можно сказать, что вектор разложен по ортонормированному базису плоскости , а можно сказать, что он представлен в виде линейной комбинации векторов .

Сформулируем определение базиса формально: Базисом плоскости называется пара линейно независимых (неколлинеарных) векторов , , при этом любой вектор плоскости является линейной комбинацией базисных векторов.

Существенным моментом определения является тот факт, что векторы взяты в определённом порядке . Базисы – это два совершенно разных базиса! Как говорится, мизинец левой руки не переставишь на место мизинца правой руки.

С базисом разобрались, но его недостаточно, чтобы задать координатную сетку и присвоить координаты каждому предмету вашего компьютерного стола. Почему недостаточно? Векторы являются свободными и блуждают по всей плоскости. Так как же присвоить координаты тем маленьким грязным точкам стола, которые остались после бурных выходных? Необходим отправной ориентир. И таким ориентиром является знакомая всем точка – начало координат. Разбираемся с системой координат:

Начну со «школьной» системы. Уже на вступительном уроке Векторы для чайников я выделял некоторые различия между прямоугольной системой координат и ортонормированным базисом . Вот стандартная картина:

Когда говорят о прямоугольной системе координат , то чаще всего имеют в виду начало координат, координатные оси и масштаб по осям. Попробуйте набрать в поисковике «прямоугольная система координат», и вы увидите, что многие источники вам будут рассказывать про знакомые с 5-6-го класса координатные оси и о том, как откладывать точки на плоскости.

С другой стороны, создается впечатление, что прямоугольную систему координат вполне можно определить через ортонормированный базис . И это почти так. Формулировка звучит следующим образом:

началом координат , и ортонормированный базис задают декартову прямоугольную систему координат плоскости . То есть, прямоугольная система координат однозначно определяется единственной точкой и двумя единичными ортогональными векторами . Именно поэтому, вы видите чертёж, который я привёл выше – в геометрических задачах часто (но далеко не всегда) рисуют и векторы, и координатные оси.

Думаю, всем понятно, что с помощью точки (начала координат) и ортонормированного базиса ЛЮБОЙ ТОЧКЕ плоскости и ЛЮБОМУ ВЕКТОРУ плоскости можно присвоить координаты. Образно говоря, «на плоскости всё можно пронумеровать».

Обязаны ли координатные векторы быть единичными? Нет, они могут иметь произвольную ненулевую длину. Рассмотрим точку и два ортогональных вектора произвольной ненулевой длины:


Такой базис называется ортогональным . Начало координат с векторами задают координатную сетку, и любая точка плоскости, любой вектор имеют свои координаты в данном базисе. Например, или . Очевидное неудобство состоит в том, что координатные векторы в общем случае имеют различные длины, отличные от единицы. Если длины равняются единице, то получается привычный ортонормированный базис.

! Примечание : в ортогональном базисе, а также ниже в аффинных базисах плоскости и пространства единицы по осям считаются УСЛОВНЫМИ . Например, в одной единице по оси абсцисс содержится 4 см, в одной единице по оси ординат 2 см. Данной информации достаточно, чтобы при необходимости перевести «нестандартные» координаты в «наши обычные сантиметры».

И второй вопрос, на который уже на самом деле дан ответ – обязательно ли угол между базисными векторами должен равняться 90 градусам? Нет! Как гласит определение, базисные векторы должны быть лишь неколлинеарными . Соответственно угол может быть любым, кроме 0 и 180 градусов.

Точка плоскости, которая называется началом координат , и неколлинеарные векторы , , задают аффинную систему координат плоскости :


Иногда такую систему координат называют косоугольной системой. В качестве примеров на чертеже изображены точки и векторы:

Как понимаете, аффинная система координат ещё менее удобна, в ней не работают формулы длин векторов и отрезков, которые мы рассматривали во второй части урока Векторы для чайников , многие вкусные формулы, связанные со скалярным произведением векторов . Зато справедливы правила сложения векторов и умножения вектора на число, формулы деления отрезка в данном отношении , а также ещё некоторые типы задач, которые мы скоро рассмотрим.

А вывод таков, что наиболее удобным частным случаем аффинной системы координат является декартова прямоугольная система. Поэтому её, родную, чаще всего и приходится лицезреть. …Впрочем, всё в этой жизни относительно – существует немало ситуаций, в которых уместна именно косоугольная (или какая-набудь другая, например, полярная ) система координат. Да и гуманоидам такие системы могут прийтись по вкусу =)

Переходим к практической части. Все задачи данного урока справедливы как для прямоугольной системы координат, так и для общего аффинного случая. Сложного здесь ничего нет, весь материал доступен даже школьнику.

Как определить коллинеарность векторов плоскости?

Типовая вещь. Для того чтобы два вектора плоскости были коллинеарны, необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны .По существу, это покоординатная детализация очевидного соотношения .

Пример 1

а) Проверить, коллинеарны ли векторы .
б) Образуют ли базис векторы ?

Решение:
а) Выясним, существует ли для векторов коэффициент пропорциональности , такой, чтобы выполнялись равенства :

Обязательно расскажу о «пижонской» разновидности применения данного правила, которая вполне прокатывает на практике. Идея состоит в том, чтобы сразу составить пропорцию и посмотреть, будет ли она верной:

Составим пропорцию из отношений соответствующих координат векторов:

Сокращаем:
, таким образом, соответствующие координаты пропорциональны, следовательно,

Отношение можно было составить и наоборот, это равноценный вариант:

Для самопроверки можно использовать то обстоятельство, что коллинеарные векторы линейно выражаются друг через друга. В данном случае имеют место равенства . Их справедливость легко проверяется через элементарные действия с векторами:

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Исследуем на коллинеарность векторы . Составим систему:

Из первого уравнения следует, что , из второго уравнения следует, что , значит, система несовместна (решений нет). Таким образом, соответствующие координаты векторов не пропорциональны.

Вывод : векторы линейно независимы и образуют базис.

Упрощённая версия решения выглядит так:

Составим пропорцию из соответствующих координат векторов :
, значит, данные векторы линейно независимы и образуют базис.

Обычно такой вариант не бракуют рецензенты, но возникает проблема в тех случаях, когда некоторые координаты равны нулю. Вот так: . Или так: . Или так: . Как тут действовать через пропорцию? (действительно, на ноль же делить нельзя). Именно по этой причине я и назвал упрощенное решение «пижонским».

Ответ: а) , б) образуют.

Небольшой творческий пример для самостоятельного решения:

Пример 2

При каком значении параметра векторы будут коллинеарны?

В образце решения параметр найден через пропорцию .

Существует изящный алгебраический способ проверки векторов на коллинеарность., систематизируем наши знания и пятым пунктом как раз добавим его:

Для двух векторов плоскости эквивалентны следующие утверждения :

2) векторы образуют базис;
3) векторы не коллинеарны;

+ 5) определитель, составленный из координат данных векторов, отличен от нуля .

Соответственно, эквивалентны следующие противоположные утверждения :
1) векторы линейно зависимы;
2) векторы не образуют базиса;
3) векторы коллинеарны;
4) векторы можно линейно выразить друг через друга;
+ 5) определитель, составленный из координат данных векторов, равен нулю .

Я очень и очень надеюсь, что на данный момент вам уже понятны все встретившиеся термины и утверждения.

Рассмотрим более подробно новый, пятый пункт: два вектора плоскости коллинеарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю :. Для применения данного признака, естественно, нужно уметь находить определители .

Решим Пример 1 вторым способом:

а) Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны.

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Вычислим определитель, составленный из координат векторов :
, значит, векторы линейно независимы и образуют базис.

Ответ: а) , б) образуют.

Выглядит значительно компактнее и симпатичнее, чем решение с пропорциями.

С помощью рассмотренного материала можно устанавливать не только коллинеарность векторов, но и доказывать параллельность отрезков, прямых. Рассмотрим пару задач с конкретными геометрическими фигурами.

Пример 3

Даны вершины четырёхугольника . Доказать, что четырёхугольник является параллелограммом.

Доказательство : Чертежа в задаче строить не нужно, поскольку решение будет чисто аналитическим. Вспоминаем определение параллелограмма:
Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Таким образом, необходимо доказать:
1) параллельность противоположных сторон и ;
2) параллельность противоположных сторон и .

Доказываем:

1) Найдём векторы:


2) Найдём векторы:

Получился один и тот же вектор («по школьному» – равные векторы). Коллинеарность совсем очевидна, но решение таки лучше оформить с толком, с расстановкой. Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .

Вывод : Противоположные стороны четырёхугольника попарно параллельны, значит, он является параллелограммом по определению. Что и требовалось доказать .

Больше фигур хороших и разных:

Пример 4

Даны вершины четырёхугольника . Доказать, что четырёхугольник является трапецией.

Для более строгой формулировки доказательства лучше, конечно, раздобыть определение трапеции, но достаточно и просто вспомнить, как она выглядит.

Это задание для самостоятельного решения. Полное решение в конце урока.

А теперь пора потихонечку перебираться из плоскости в пространство:

Как определить коллинеарность векторов пространства?

Правило очень похоже. Для того чтобы два вектора пространства были коллинеарны, необходимо и достаточно , чтобы их соответствующие координаты были пропорциональны .

Пример 5

Выяснить, будут ли коллинеарны следующие векторы пространства:

а) ;
б)
в)

Решение:
а) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:

Система не имеет решения, значит, векторы не коллинеарны.

«Упрощёнка» оформляется проверкой пропорции . В данном случае:
– соответствующие координаты не пропорциональны, значит, векторы не коллинеарны.

Ответ: векторы не коллинеарны.

б-в) Это пункты для самостоятельного решения. Попробуйте его оформить двумя способами.

Существует метод проверки пространственных векторов на коллинеарность и через определитель третьего порядка, данный способ освещен в статье Векторное произведение векторов .

Аналогично плоскому случаю, рассмотренный инструментарий может применяться в целях исследования параллельности пространственных отрезков и прямых.

Добро пожаловать во второй раздел:

Линейная зависимость и независимость векторов трехмерного пространства.
Пространственный базис и аффинная система координат

Многие закономерности, которые мы рассмотрели на плоскости, будут справедливыми и для пространства. Я постарался минимизировать конспект по теории, поскольку львиная доля информации уже разжёвана. Тем не менее, рекомендую внимательно прочитать вводную часть, так как появятся новые термины и понятия.

Теперь вместо плоскости компьютерного стола исследуем трёхмерное пространство. Сначала создадим его базис. Кто-то сейчас находится в помещении, кто-то на улице, но в любом случае нам никуда не деться от трёх измерений: ширины, длины и высоты. Поэтому для построения базиса потребуется три пространственных вектора. Одного-двух векторов мало, четвёртый – лишний.

И снова разминаемся на пальцах. Пожалуйста, поднимите руку вверх и растопырьте в разные стороны большой, указательный и средний палец . Это будут векторы , они смотрят в разные стороны, имеют разную длину и имеют разные углы между собой. Поздравляю, базис трёхмерного пространства готов! Кстати, не нужно демонстрировать такое преподавателям, как ни крути пальцами, а от определений никуда не деться =)

Далее зададимся важным вопросом, любые ли три вектора образуют базис трехмерного пространства ? Пожалуйста, плотно прижмите три пальца к столешнице компьютерного стола. Что произошло? Три вектора расположились в одной плоскости, и, грубо говоря, у нас пропало одно из измерений – высота. Такие векторы являются компланарными и, совершенно очевидно, что базиса трёхмерного пространства не создают.

Следует отметить, что компланарные векторы не обязаны лежать в одной плоскости, они могут находиться в параллельных плоскостях (только не делайте этого с пальцами, так отрывался только Сальвадор Дали =)).

Определение : векторы называются компланарными , если существует плоскость, которой они параллельны. Здесь логично добавить, что если такой плоскости не существует, то и векторы будут не компланарны.

Три компланарных вектора всегда линейно зависимы , то есть линейно выражаются друг через друга. Для простоты снова представим, что они лежат в одной плоскости. Во-первых, векторы мало того, что компланарны, могут быть вдобавок ещё и коллинеарны, тогда любой вектор можно выразить через любой вектор. Во втором случае, если, например, векторы не коллинеарны, то третий вектор выражается через них единственным образом: (а почему – легко догадаться по материалам предыдущего раздела).

Справедливо и обратное утверждение: три некомпланарных вектора всегда линейно независимы , то есть никоим образом не выражаются друг через друга. И, очевидно, только такие векторы могут образовать базис трёхмерного пространства.

Определение : Базисом трёхмерного пространства называется тройка линейно независимых (некомпланарных) векторов , взятых в определённом порядке , при этом любой вектор пространства единственным образом раскладывается по данному базису , где – координаты вектора в данном базисе

Напоминаю, также можно сказать, что вектор представлен в виде линейной комбинации базисных векторов.

Понятие системы координат вводится точно так же, как и для плоского случая, достаточно одной точки и любых трёх линейно независимых векторов:

началом координат , и некомпланарные векторы , взятые в определённом порядке , задают аффинную систему координат трёхмерного пространства :

Конечно, координатная сетка «косая» и малоудобная, но, тем не менее, построенная система координат позволяет нам однозначно определить координаты любого вектора и координаты любой точки пространства. Аналогично плоскости, в аффинной системе координат пространства не будут работать некоторые формулы, о которых я уже упоминал.

Наиболее привычным и удобным частным случаем аффинной системы координат, как все догадываются, является прямоугольная система координат пространства :

Точка пространства, которая называется началом координат , и ортонормированный базис задают декартову прямоугольную систему координат пространства . Знакомая картинка:

Перед тем, как перейти к практическим заданиям, вновь систематизируем информацию:

Для трёх векторов пространства эквивалентны следующие утверждения :
1) векторы линейно независимы;
2) векторы образуют базис;
3) векторы не компланарны;
4) векторы нельзя линейно выразить друг через друга;
5) определитель, составленный из координат данных векторов, отличен от нуля.

Противоположные высказывания, думаю, понятны.

Линейная зависимость / независимость векторов пространства традиционно проверяется с помощью определителя (пункт 5). Оставшиеся практические задания будут носить ярко выраженный алгебраический характер. Пора повесить на гвоздь геометрическую клюшку и орудовать бейсбольной битой линейной алгебры:

Три вектора пространства компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю :.

Обращаю внимание на небольшой технический нюанс: координаты векторов можно записывать не только в столбцы, но и в строки (значение определителя от этого не изменится – см. свойства определителей). Но гораздо лучше в столбцы, поскольку это выгоднее для решения некоторых практических задач.

Тем читателям, которые немножко позабыли методы расчета определителей, а может и вообще слабо в них ориентируются, рекомендую один из моих самых старых уроков: Как вычислить определитель?

Пример 6

Проверить, образуют ли базис трёхмерного пространства следующие векторы:

Решение : Фактически всё решение сводится к вычислению определителя.

а) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):

, значит, векторы линейно независимы (не компланарны) и образуют базис трёхмерного пространства.

Ответ : данные векторы образуют базис

б) Это пункт для самостоятельного решения. Полное решение и ответ в конце урока.

Встречаются и творческие задачи:

Пример 7

При каком значении параметра векторы будут компланарны?

Решение : Векторы компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов равен нулю:

По существу, требуется решить уравнение с определителем. Налетаем на нули как коршуны на тушканчиков – определитель выгоднее всего раскрыть по второй строке и сразу же избавиться от минусов:

Проводим дальнейшие упрощения и сводим дело к простейшему линейному уравнению:

Ответ : при

Здесь легко выполнить проверку, для этого нужно подставить полученное значение в исходный определитель и убедиться, что , раскрыв его заново.

В заключение рассмотрим ещё одну типовую задачу, которая носит больше алгебраический характер и традиционно включается в курс линейной алгебры. Она настолько распространена, что заслуживает отдельного топика:

Доказать, что 3 вектора образуют базис трёхмерного пространства
и найти координаты 4-го вектора в данном базисе

Пример 8

Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.

Решение : Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис . И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:

Вычислим определитель, составленный из координат векторов :

, значит, векторы линейно независимы и образуют базис трехмерного пространства.

! Важно : координаты векторов обязательно записываем в столбцы определителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

ВЕКТОРЫ

Векторами называются математические объекты (a , b , c , …), для которых определено выполнение двух алгебраических операций:

· сложение двух векторов a + b = c

· умножение вектора на число a а = b .

Наиболее существенной особенностью этих операций является то, что в результате их выполнения всегда получается вектор того же типа, что и исходные векторы. Поэтому, имея некоторый исходный набор векторов, мы можем постепенно расширять его, т.е. получать все новые и новые векторы, применяя к уже имеющимся векторам операции сложения и умножения на число. В конце концов мы придем к такому множеству векторов, которое уже больше не будет расширяться, т.е. окажется замкнутым относительно указанных операций. Такое множество векторов называется векторным пространством .

Если при выполнении указанных операций выполняются дополнительные условия линейности :

a(a + b )= aa + ab

(a + b)a = aa + bb

то получающееся пространство называется линейным пространством (ЛП) или линейным векторным пространством (ЛВП). ЛВП может, наряду с группами симметрии, служить еще одним примером математических структур, представляющих собой замкнутые множества однотипных и упорядоченных определенным образом (с помощью алгебраических операций) объектов.

Линейные комбинации

Располагая операциями сложения векторов и умножения их на числа, можно построить и более сложную конструкцию типа:

aa + bb + gc + ..... = x

которая называется линейной комбинацией (ЛК) векторов a, b, c, . . . c коэффициентами a, b, g,. . . , соответственно.

Понятие ЛК позволяет сформулировать несколько общих правил:

· всякая ЛК любых векторов некоторого ЛП также является вектором того же самого ЛП;

· любой вектор некоторого ЛП может быть представлен в виде ЛК нескольких векторов того же самого ЛП;

· в любом ЛП существует такой выделенный набор векторов, называемый базисным набором (или просто базисом ), что все, без исключения, векторы этого ЛП могут быть представлены как линейные комбинации этих выделенных базисных векторов. На векторы, выбираемые в качестве базисных, накладывается одно важное условие: они должны быть линейно независимы между собой (не должны выражаться друг через друга, т.е.: x ≠ a × y ).

Эти правила дают возможность ввести специальный способ описания любого ЛП. Выберем базисный набор и разложим все интересующие нас векторы по этому базису (т.е. представим их в виде ЛК базисных векторов); тогда каждый вектор можно однозначно задать посредством набора коэффициентов ЛК, соответствующей данному вектору. Такие коэффициенты называются координатами вектора (по отношению к заданному базису). Подчеркнем, что координаты вектора - это обыкновенные числа, и координатное представление вектора позволяет описать его посредством только совокупности чисел, независимо от конкретного физического смысла, вкладываемого нами в понятие вектора.


Рассмотрим конкретный пример. Пусть у нас имеется набор различных смесей двух чистых химических веществ: воды и спирта. Среди всех возможных смесей выделим две особых:

1) смесь S 1 , содержащая 100 % воды и 0 % спирта;

2) смесь S 2 , содержащая 0 % воды и 100 % спирта.

Ясно, что произвольную смесь можно представить в виде ЛК этих двух базисных смесей:

S = n 1 * S 1 + n 2 * S 2

и полностью охарактеризовать ее всего двумя числами-координатами: n 1 и n 2 . Другими словами, при заданном базисном наборе, мы можем установить эквивалентность произвольной химической смеси и набора чисел:

S ~ {n 1 , n 2 }.

Теперь достаточно заменить конкретное химическое слово "смесь" на абстрактный математический термин "вектор", чтобы получить модель ЛВП, описывающую множество смесей двух веществ.

В соответствии с этим компромиссным критерием для каждого решения определяется линейная комбинация минимального и максимального выигрышей  

Второй вариант предполагает ориентацию на один критерий. В качестве его может либо выбираться один из стандартных показателей , имеющих вполне понятную экономическую интерпретацию (например, один из коэффициентов ликвидности , коэффициент обеспеченности процентов и т.п.), либо этот критерий разрабатывается в виде некоторого искусственного показателя, обобщающего частные критерии. Для этого обобщенного критерия устанавливается пороговое значение, с которым и делается сравнение фактического значения критерия, рассчитанного для потенциального заемщика. Основная трудность в реализации этого подхода заключается в способе конструирования обобщенного показателя. Чаще всего он представляет собой линейную комбинацию частных критериев, каждый из которых включается в обобщающий показатель с некоторым весовым коэффициентом . Именно такой подход был использован Э. Альтманом при разработке Z-критерия для прогнозирования банкротства.  

Строка е называется линейной комбинацией строк е, е- ..., ет матрицы, если  

Понятие линейной комбинации, линейной зависимости и независимости векторов е, e2 . f ет аналогичны соответствующим понятиям для строк матрицы е, е2,..., ет (11.5).  

Как показано в , при ограниченных и выпуклых допустимых множествах (2.14) вектор х% 0, удовлетворяющий ограничению A xk bk, можно представить в виде выпуклой линейной комбинации конечного множества крайних точек  

Оптимизационная процедура расчета предельных значений элементов а и их линейных комбинаций в значительной мере лишена указанных недостатков.  

Очевидно, что точка (X1, д), полученная линейной комбинацией (А/, д) и (Л.", д"), также является решением системы (4.43), (4.44).  

В этом параграфе мы рассмотрим правила вычисления математического ожидания и дисперсии многомерной случайной величины , являющейся линейной комбинацией коррелированных случайных величин

Следовательно, для линейной комбинации произвольного количества случайных величин получаем  

Рассмотрим случай, когда инвестирование проводится в несколько активов (портфель). Портфель является линейной комбинацией активов, каждый из которых имеет собственное математическое ожидание дохода и дисперсию дохода.  

В отличие от произвольной линейной комбинации случайных величин , веса активов подчиняются правилу нормирования  

В предыдущем параграфе было показано, что в случае, когда коэффициент корреляции между активами меньше 1, диверсификация портфеля может улучшить соотношение между ожидаемым доходом и ожидаемым риском. Это связано с тем, что ожидаемый доход портфеля является линейной комбинацией ожидаемых доходов по входящим в портфель активам, а дисперсия портфеля является квадратичной функцией от с.к.о. входящих в портфель активов.  

Простейшим устройством распознавания образов , принадлежащим к рассматриваемому классу сетей, является одиночный нейрон, превращающий входной вектор признаков в скалярный ответ, зависящий от линейной комбинации входных переменных  

Поскольку дискриминантная функция зависит лишь от линейной комбинации входов, нейрон является линейным дискриминатором. В некоторых простейших ситуациях линейный дискриминатор - наилучший из возможных, а именно - в случае когда вероятности принадлежности входных векторов к классу k задаются гауссовыми распределениями  

Точнее - выходы сети Ойа являются линейными комбинациями первых Ш главных компонент . Чтобы получить в точности сами главные компоненты достаточно в правиле Ойа заменить суммирование по всем выходам на  

Векторы b, кроме того, образуют так называемый минимальный базис. А именно, это минимальное число векторов, с помощью линейной комбинации которых могут быть представлены все запоминаемые векторы  

Следующая систематическая процедура способна итеративно выделять наиболее значимые признаки, являющиеся линейными комбинациями входных переменных X = W X (подмножества входов является частным случаем линейной комбинации, т.е. формально можно найти лучшее решение, чем то, что доступно путем отбора наиболее значимых комбинаций входов).  

Метод позволяет выявить наиболее информативные факторы (линейные комбинации исходных признаков Xi - так называемые главные компоненты Zi) и исключив несущественные факторы, установить зависимость между ними в виде простых моделей . Эти модели, а также статисти-характеристики облегчают трактовку зависимостей Xi и степень их на некоторый показатель, например, производительность, надежность и т.п., а также позволяют осуществлять анализ и прогноз состояния изучаемых промышленных объектов.  

В ходе анализа для характеристики различных аспектов финансовогс состояния применяются как. абсолютные показатели , так и финансовые коэффициенты , представляющие собой относительные показатели финансового состояния . Последние рассчитываются в виде отношений абсолютных показателей финансового состояния или их линейных комбинаций. Согласно классификации одного из основателей балансоведени Н.А.Блатова, относительные показатели финансового состояния подразделяются на коэффициенты распределения и применяются в тех случаях, когда требуется определить, какую часть тот или иной

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.
Определение 1

Коллинеарные векторы - это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Пример 1

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1 . Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2 . Векторы a и b коллинеарны при равном отношении координат:

a = (a 1 ; a 2) , b = (b 1 ; b 2) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

a ∥ b ⇔ a , b = 0

Замечание 1

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Замечание 2

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Пример 1

Исследуем векторы а = (1 ; 3) и b = (2 ; 1) на коллинеарность.

Как решить?

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ : a | | b

Пример 2

Какое значение m вектора a = (1 ; 2) и b = (- 1 ; m) необходимо для коллинеарности векторов?

Как решить?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = - 2 .

Ответ: m = - 2 .

Критерии линейной зависимости и линейной независимости систем векторов

Теорема

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Доказательство

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k - 1 (a k - 1 a 1) e 1 + (a k - 1 a k) e k + . . . + (a k - 1 a n) e n = 0

Обозначим:

A k - 1 a m , где m ∈ 1 , 2 , . . . , k - 1 , k + 1 , n

В таком случае:

β 1 e 1 + . . . + β k - 1 e k - 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = (- β 1) e 1 + . . . + (- β k - 1) e k - 1 + (- β k + 1) e k + 1 + . . . + (- β n) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Достаточность

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k - 1 e k - 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k - 1 e k - 1 - e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен - 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

Следствие:

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора - коллинеарны. Два коллинеарных вектора - линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора - компланарны. (3 компланарных вектора - линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Пример 3

Проверим векторы a = 3 , 4 , 5 , b = - 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Пример 4

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , - 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 - x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 - 1 | 0 1 0 1 | 0 ~

Из 2-ой строки вычитаем 1-ю, из 3-ей - 1-ю:

~ 1 1 0 | 0 1 - 1 2 - 1 - 1 - 0 | 0 - 0 1 - 1 0 - 1 1 - 0 | 0 - 0 ~ 1 1 0 | 0 0 1 - 1 | 0 0 - 1 1 | 0 ~

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

~ 1 - 0 1 - 1 0 - (- 1) | 0 - 0 0 1 - 1 | 0 0 + 0 - 1 + 1 1 + (- 1) | 0 + 0 ~ 0 1 0 | 1 0 1 - 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter