Гидроокись алюминия

Химические свойства

Химическая формула Гидроксида Алюминия: Al(OH)3 . Это химическое соединение оксида алюминия с водой. Синтезируют в виде белого желеобразного вещества, которое плохо растворимо в воде. У гидроксида имеются 4 кристаллические модификации: нордстрандит (β) , моноклинный (γ) гиббсит , байерит (γ) и гидрагилит . Также существует аморфное вещество, состав которого варьируется: Al2O3 nH2O.

Химические свойства. Соединение проявляет амфотерные свойства. Гидроксид Алюминия реагирует с щелочами: при реакции с гидроксидом натрия в растворе получается Na(Al(OH)4) ; при сплавлении веществ образуется вода и NaAlO2 .При нагревании наблюдается разложение Гидроксида Алюминия до воды и оксида алюминия . Вещество не реагирует с раствором аммиака . Реакция алюминий плюс гидроксид натрия : 2Al + 2NaOH + 6H2O = 2Na + 3H2 .

Получение Гидроксида Алюминия. Химическое соединение получают из солей Al при их взаимодействии с водным раствором щелочи в недостатке, избегая избытка. К хлориду алюминия AlCl3 прибавляют натрия гидроксид – в результате требуемое вещество выпадает в виде белого осадка и дополнительно образуется хлорид натрия .

Также средство можно получить с помощью реакции водорастворимой соли алюминия с карбонатом щелочного металла. Например, к хлориду алюминия прибавить карбонат натрия и воду – в результате получим хлорид натрия , углекислый газ и гидроксид Al .

Применение:

  • используют для очистки воды в качестве адсорбента;
  • можно синтезировать сульфат алюминия при взаимодействии гидроксида Al и серной кислоты ;
  • в качестве адъюванта при изготовлении вакцины;
  • в медицине в виде антацида ;
  • при изготовлении пластика и прочих материалов в виде подавителя процессов горения.

Фармакологическое действие

Антацидное, адсорбирующее, обволакивающее.

Фармакодинамика и фармакокинетика

Гидроксид Алюминия нейтрализует соляную кислоту, разлагая ее на хлорид алюминия и воду. Вещество постепенно повышает рН желудочного сока до 3-4,5 и удерживает на этом уровне в течение нескольких часов. Кислотность желудочного сока значительно снижается, угнетается его протеолитическая активность. При проникновении в щелочную среду кишечника средство образует ионы хлора и фосфаты, которые не всасываются, ионы Cl подвергаются реабсорбции.

Показания к применению

Лекарство используют:

  • для лечения 12-перстной кишки и желудка;
  • при хроническом при нормальной и повышенной секреторной функции желудка во время обострения;
  • во время терапии грыжи пищеводного отверстия диафрагмы;
  • для устранения дискомфорта и болезненных ощущений в области желудка;
  • при после употребления алкоголя, кофе или никотина, некоторых лекарств;
  • при несоблюдении диеты.

Противопоказания

Средство нельзя принимать:

  • пациентам с ;
  • при серьезных заболеваниях почек.

Побочные действия

После приема Гидроксида Алюминия побочные реакции развиваются редко. Наиболее вероятно возникновение . Вероятность развития побочного действия можно снизить, если дополнительно принять .

Инструкция по применению (Способ и дозировка)

Гидроксид Алюминия назначают для приема внутрь. Лекарство чаще всего принимают в виде суспензии, с концентрацией активного компонента 4%. Как правило, принимают по 1 или 2 чайным ложкам препарата, 4 или 6 раз в сутки. Продолжительность лечения зависит от болезни и рекомендаций врача.

Передозировка

Данные о передозировке средством отсутствуют.

Взаимодействие

При сочетании препарата с трисиликатом магния наблюдается оптимизация антацидного действия и снижается констипационное действие лекарства от изжоги.

Особые указания

Особую осторожность соблюдают при лечении пациентов с нарушениями фосфорного обмена.

Неорганическое вещество, щелочь алюминия, формула Al(OH) 3 . Встречается в природе, входит в состав бокситов.

Свойства

Существует в четырех кристаллических модификациях и в виде коллоидного раствора, гелеобразного вещества. Реактив почти не водорастворим. Не горит, не взрывается, не ядовит.

В твердом виде - мелкокристаллический рыхлый порошок, белый или прозрачный, иногда с легким серым или розовым оттенком. Гелеобразный гидроксид тоже белый.

Химические свойства у твердой и гелеобразной модификации отличаются. Твердое вещество достаточно инертно, не вступает в реакции с кислотами, щелочами, другими элементами, но может образовывать метаалюминаты в результате сплавления с твердыми щелочами или карбонатами.

Гелеобразное вещество проявляет амфотерные свойства, то есть реагирует и с кислотами, и со щелочами. В реакции с кислотами образуются соли алюминия соответствующей кислоты, со щелочами - соли другого типа, алюминаты. Не вступает в реакции с раствором аммиака.

При нагревании гидроксид разлагается на оксид и воду.

Меры предосторожности

Реактив относится к четвертому классу опасности, считается пожаробезопасным и практически безопасным для человека и окружающей среды. Осторожность нужно проявлять только с аэрозольными частицами в воздухе: пыль оказывает раздражающее воздействие на органы дыхания, кожу, слизистые оболочки.

Поэтому на рабочих местах, где возможно образование большого количества пыли гидроксида алюминия, сотрудники должны использовать средства защиты для органов дыхания, глаз и кожи. Следует наладить контроль содержания в воздухе рабочей зоны вредных веществ по методике, утвержденной ГОСТом.

Помещение должно быть оборудовано приточно-вытяжной вентиляцией, а при необходимости - местными аспирационными отсосами.

Хранят твердую гидроокись алюминия в многослойных бумажных мешках или другой таре для сыпучих продуктов.

Применение

В промышленности реактив используется для получения чистого алюминия и производных алюминия, например, оксида алюминия, сернокислого и фтористого алюминия .
- Оксид алюминия, получаемый из гидроксида, применяется для получения искусственных рубинов для нужд лазерной техники, корундов - для сушки воздуха, очистки минеральных масел, для производства наждака.
- В медицине используется как обволакивающее средство и антацид длительного действия для нормализации кислотно-щелочного баланса ЖКТ человека, для лечения язвенной болезни желудка и двенадцатиперстной кишки, гастро-эзофагеального рефлюкса и некоторых других заболеваний.
- В фармакологии входит в состав вакцин для усиления иммунной реакции организма на воздействие введенной инфекции.
- В водоочистке - как адсорбент, помогающий удалять из воды различные загрязнения. Гидроксид активно вступает в реакции с веществами, которые нужно удалить, образуя нерастворимые соединения.
- В химпроме используется как экологичный антипирен для полимеров, силиконов, каучуков, лакокрасочных материалов - чтобы ухудшить их горючесть, способность к возгоранию, подавить выделение дыма и токсичных газов.
- В производстве зубной пасты, минеральных удобрений, бумаги, красителей, криолита.

2s 2p 3s 3p

Электронная конфигурация алюминия в возбужденном состоянии :

+13Al * 1s 2 2s 2 2p 6 3s 1 3p 2 1s 2s 2p 3s 3p

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки , защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии .

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Температура плавления 660 о С, температура кипения 1450 о С, плотность алюминия 2,7 г/см 3 .

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Бокситы Al 2 O 3 · H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3) — гидрат оксида алюминия

Корунд Al 2 O 3 . Красный корунд называют рубином, синий корунд называют сапфиром.

Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970 о С) Na 3 AlF 6 , а затем подвергуют электролизу с углеродными электродами . При растворении в расплаве криолита оксид алюминия распадается на ионы:

Al 2 O 3 → Al 3+ + AlO 3 3-

На катоде происходит восстановление ионов алюминия :

К: Al 3+ +3e → Al 0

На аноде происходит окисление алюминат-ионов :

А: 4AlO 3 3- — 12e → 2Al 2 O 3 + 3O 2

Суммарное уравнение электролиза расплава оксида алюминия:

2Al 2 O 3 → 4Al + 3O 2

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl 3 + 3K → 4Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами . При этом образуется белый аморфный осадок гидроксида алюминия .

Например , хлорид алюминия взаимодействует с гидроксидом натрия :

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината :

Al(OH) 3 + NaOH = Na

Обратите внимание , если мы поместим соль алюминия в избыток раствора щелочи , то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс :

AlCl 3 + 4NaOH = Na

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также выпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl 3 + 3 NH 3 · H 2 O = Al(OH) 3 ↓ + 3 NH 4 Cl

Al 3+ + 3 NH 3 · H 2 O = Al(OH) 3 ↓ + 3 NH 4 +

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть

Химические свойства

1. Алюминий – сильный восстановитель . Поэтому он реагирует со многими неметаллами .

1.1. Алюминий реагируют с галогенами с образованием галогенидов :

1.2. Алюминий реагирует с серой с образованием сульфидов :

2Al + 3S → Al 2 S 3

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды :

Al + P → AlP

Алюминий не реагирует с водородом .

1.4. С азотом алюминий реагирует при нагревании до 1000 о С с образованием нитрида :

2Al +N 2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия :

4Al + 3C → Al 4 C 3

1.6. Алюминий взаимодействует с кислородом с образованием оксида :

4Al + 3O 2 → 2Al 2 O 3

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть .

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой ? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует . И мы уже упоминали, почему:из-за образования оксидной пленки . А вот если алюминий очистить от оксидной пленки (например, амальгамировать ), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода :

2Al 0 + 6H 2 + O → 2Al +3 ( OH) 3 + 3H 2 0

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути (II ):

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть .

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом . При этом образуются соль и водород.

Например , алюминий бурно реагирует с соляной кислотой :

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV) , сульфат алюминия и вода :

2Al + 6H 2 SO 4(конц.) → Al 2 (SO 4) 3 + 3SO 2 + 6H 2 O

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота :

10Al + 36HNO 3 (разб) → 3N 2 + 10Al(NO 3) 3 + 18H 2 O

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония :

8Al + 30HNO 3(оч.разб.) → 8Al(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород :

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть .

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода :

2Al + 6NaOH → 2Na 3 AlO 3 + 3H 2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → NaAlO 2 + 3H 2 + Na 2 O

2.6. Алюминий восстанавливает менее активные металлы из оксидов . Процесс восстановления металлов из оксидов называется алюмотермия .

Например , алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

Еще пример : алюминий восстанавливает железо из железной окалины , оксида железа (II, III) :

8Al + 3Fe 3 O 4 → 4Al 2 O 3 + 9Fe

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия , нитратами и нитритами в щелочной среде, перманганатами , соединениями хрома (VI):

2Al + 3Na 2 O 2 → 2NaAlO 2 + 2Na 2 O

8Al + 3KNO 3 + 5KOH + 18H 2 O → 8K + 3NH 3

10Al + 6KMnO 4 + 24H 2 SO 4 → 5Al 2 (SO 4) 3 + 6MnSO 4 + 3K 2 SO 4 + 24H 2 O

2Al + NaNO 2 + NaOH + 5H 2 O → 2Na + NH 3

Al + 3KMnO 4 + 4KOH → 3K 2 MnO 4 + K

4Al + K 2 Cr 2 O 7 → 2Cr + 2KAlO 2 + Al 2 O 3

Алюминий – ценный промышленный металл, который опдвергается вторичной переработке. Узнать подробнее о приеме алюминия на переработку, а также об актуальных ценах на данный вид металла можно .

Оксид алюминия

Способы получения

Оксид алюминия можно получить различными методами :

1. Горением алюминия на воздухе:

4Al + 3O 2 → 2Al 2 O 3

2. Разложением гидроксида алюминия при нагревании :

3. Оксид алюминия можно получить разложением нитрата алюминия :

Химические свойства

Оксид алюминия — типичный амфотерный оксид . Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодествии оксида алюминия с основными оксидами образуются соли-алюминаты .

Например , оксид алюминиявзаимодействует с оксидом натрия :

Na 2 O + Al 2 O 3 → 2NaAlO 2

2. Оксид алюминия взаимодействует При этом в расплаве образуются соли алюминаты, а в растворе – комплексные соли . При этом оксид алюминия проявляет кислотные свойства .

Например , оксид алюминиявзаимодействует с гидроксидом натрия в расплаве с образованием алюмината натрия и воды :

2NaOH + Al 2 O 3 → 2NaAlO 2 + H 2 O

Оксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината :

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

3. Оксид алюминия не взаимодействует с водой.

4. Оксид алюминия взаимодействуетс кислотными оксидами (сильных кислот). При этом образуются соли алюминия. При этом оксид алюминия проявляет основные свойства .

Например , оксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

Al 2 O 3 + 3SO 3 → Al 2 (SO 4) 3

5. Оксид алюминия взаимодействует с растворимыми кислотами с образованием средних и кислых солей .

Например серной кислотой :

Al 2 O 3 + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2 O

6. Оксид алюминия проявляет слабые окислительные свойства .

Например , оксид алюминия реагирует с гидридом кальция с образованием алюминия , водорода и оксида кальция :

Al 2 O 3 + 3CaH 2 → 3CaO + 2Al + 3H 2

Электрический ток восстанавливает алюминий из оксида (производство алюминия):

2Al 2 O 3 → 4Al + 3O 2

7. Оксид алюминия — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната натрия :

Al 2 O 3 + Na 2 CO 3 → 2NaAlO 2 + CO 2

Гидроксид алюминия

Способы получения

1. Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия .

Например , хлорид алюминия реагирует с водным раствором аммиака с образованием гидроксида алюминия и хлорида аммония :

AlCl 3 + 3NH 3 + 3H 2 O = Al(OH) 3 + 3NH 4 Cl

2. Пропусканием углекислого газа , сернистого газа или сероводорода через раствор тетрагидроксоалюмината натрия:

Na + СО 2 = Al(OH) 3 + NaНCO 3

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество Na на составные части: NaOH и Al(OH) 3 . Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Al(OH) 3 не реагирует с СО 2 , то мы записываем справа Al(OH) 3 без изменения.

3. Гидроксид алюминия можно получить действием недостатка щелочи на избыток соли алюминия .

Например , хлорид алюминия реагирует с недостатком гидроксида калия с образованием гидроксида алюминия и хлорида калия :

AlCl 3 + 3KOH (недост) = Al(OH) 3 ↓+ 3KCl

4. Также гидроксид алюминия образуется при взаимодействии растворимых солей алюминия с растворимыми карбонатами, сульфитами и сульфидами . Сульфиды, карбонаты и сульфиты алюминия в водном растворе.

Например: бромид алюминия реагирует с карбонатом натрия . При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется бромид натрия:

2AlBr 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 ↓ + CO 2 + 6NaBr

Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида натрия:

2AlCl 3 + 3Na 2 S + 6H 2 O = 2Al(OH) 3 + 3H 2 S + 6NaCl

Химические свойства

1. Гидроксид алюминия реагирует с растворимыми кислотами . При этом образуются средние или кислые соли , в зависимости от соотношения реагентов и типа соли.

Например азотной кислотой с образованием нитрата алюминия :

Al(OH) 3 + 3HNO 3 → Al(NO 3) 3 + 3H 2 O

Al(OH) 3 + 3HCl → AlCl 3 + 3H 2 O

2Al(OH) 3 + 3H 2 SO 4 → Al 2 (SO 4) 3 + 6H 2 O

Al(OH) 3 + 3HBr → AlBr 3 + 3H 2 O

2. Гидроксид алюминия взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия :

2Al(OH) 3 + 3SO 3 → Al 2 (SO 4) 3 + 3H 2 O

3. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли алюминаты, а в растворе – комплексные соли . При этом гидроксид алюминия проявляет кислотные свойства .

Например , гидроксид алюминиявзаимодействует с гидроксидом калия в расплаве с образованием алюмината калия и воды :

2KOH + Al(OH) 3 → 2KAlO 2 + 2H 2 O

Гидроксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината :

Al(OH) 3 + KOH → K

4. Г идроксид алюминия разлагается при нагревании :

2Al(OH) 3 → Al 2 O 3 + 3H 2 O

Видеоопыт взаимодействия гидроксида алюминия с соляной кислотой и щелочами (амфотерные свойства гидроксида алюминия) можно посмотреть .

Соли алюминия

Нитрат и сульфат алюминия

Нитрат алюминия при нагревании разлагается на оксид алюминия , оксид азота (IV) и кислород :

4Al(NO 3) 3 → 2Al 2 O 3 + 12NO 2 + 3O 2

Сульфат алюминия при сильном нагревании разлагается аналогично — на оксид алюминия , сернистый газ и кислород :

2Al 2 (SO 4) 3 → 2Al 2 O 3 + 6SO 2 + 3O 2

Комплексные соли алюминия

Для описания свойств комплексных солей алюминия — гидроксоалюминатов , удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы — гидроксид алюминия и гидроксид щелочного металла.

Например , тетрагидроксоалюминат натрия разбиваем на гидроксид алюминия и гидроксид натрия:

Na разбиваем на NaOH и Al(OH) 3

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы алюминия реагируют с кислотными оксидами .

Например , гидроксокомплекс разрушается под действием избытка углекислого газа . При этом с СО 2 реагирует NaOH с образованием кислой соли (при избытке СО 2), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Na + CO 2 → Al(OH) 3 ↓ + NaHCO 3

Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:

K + CO 2 → Al(OH) 3 + KHCO 3

По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO 2:

Na + SO 2 → Al(OH) 3 ↓ + NaHSO 3

K + SO 2 → Al(OH) 3 + KHSO 3

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.

Например , с соляной кислотой :

Na + 4HCl (избыток) → NaCl + AlCl 3 + 4H 2 O

Правда, под действием небольшого количества (недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:

Na + НCl (недостаток) → Al(OH) 3 ↓ + NaCl + H 2 O

Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:

Na + HNO 3(недостаток) → Al(OH) 3 ↓ + NaNO 3 + H 2 O

Комлекс разрушается при взамодействии с хлорной водой (водным раствором хлора) Cl 2:

2Na + Cl 2 → 2Al(OH) 3 ↓ + NaCl + NaClO

При этом хлор диспропорционирует .

Также комплекс может прореагировать с избытком хлорида алюминия . При этом выпадает осадок гидроксида алюминия:

AlCl 3 + 3Na → 4Al(OH) 3 ↓ + 3NaCl

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:

Na → NaAlO 2 + 2H 2 O

K → KAlO 2 + 2H 2 O

Гидролиз солей алюминия

Растворимые соли алюминия и сильных кислот гидролизуются по катиону . Гидролиз протекает ступенчато и обратимо , т.е. чуть-чуть:

I ступень: Al 3+ + H 2 O = AlOH 2+ + H +

II ступень: AlOH 2+ + H 2 O = Al(OH) 2 + + H +

III ступень: Al(OH) 2 + + H 2 O = Al(OH) 3 + H +

Однако сульфиды, сульфиты, карбонаты алюминия и их кислые соли гидролизуются необратимо , полностью , т.е. в водном растворе не существуют, а разлагаются водой :

Al 2 (SO 4) 3 + 6NaHSO 3 → 2Al(OH) 3 + 6SO 2 + 3Na 2 SO 4

2AlBr 3 + 3Na 2 CO 3 + 3H 2 O → 2Al(OH) 3 ↓ + CO 2 + 6NaBr

2Al(NO 3) 3 + 3Na 2 CO 3 + 3H 2 O → 2Al(OH) 3 ↓ + 6NaNO 3 + 3CO 2

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O → 2Al(OH) 3 ↓ + 6NaCl + 3CO 2

Al 2 (SO 4) 3 + 3K 2 CO 3 + 3H 2 O → 2Al(OH) 3 ↓ + 3CO 2 + 3K 2 SO 4

2AlCl 3 + 3Na 2 S + 6H 2 O → 2Al(OH) 3 + 3H 2 S + 6NaCl

Алюминаты

Соли, в которых алюминий является кислотным остатком (алюминаты) — образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:

Al 2 O 3 + Na 2 O → 2NaAlO 2

Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.

Например, алюминат натрия мы раделим мысленно на два вещества: оксид алюминия и оксид натрия.

NaAlO 2 разбиваем на Na 2 O и Al 2 O 3

Тогда нам станет очевидно, что алюминаты реагируют с кислотами с образованием солей алюминия :

KAlO 2 + 4HCl → KCl + AlCl 3 + 2H 2 O

NaAlO 2 + 4HCl → AlCl 3 + NaCl + 2H 2 O

NaAlO 2 + 4HNO 3 → Al(NO 3) 3 + NaNO 3 + 2H 2 O

2NaAlO 2 + 4H 2 SO 4 → Al 2 (SO 4) 3 + Na 2 SO 4 + 4H 2 O

Под действием избытка воды алюминаты переходят в комплесные соли:

KAlO 2 + H 2 O = K

NaAlO 2 + 2H 2 O = Na

Бинарные соединения

Сульфид алюминия под действием азотной кислоты окисляется до сульфата:

Al 2 S 3 + 8HNO 3 → Al 2 (SO 4) 3 + 8NO 2 + 4H 2 O

либо до серной кислоты (под действием горячей концентированной кислоты ):

Al 2 S 3 + 30HNO 3(конц. гор.) → 2Al(NO 3) 3 + 24NO 2 + 3H 2 SO 4 + 12H 2 O

Сульфид алюминия разлагается водой :

Al 2 S 3 + 6H 2 O → 2Al(OH) 3 ↓ + 3H 2 S

Карбид алюминия также разлагается водой при нагревании на гидроксид алюминия и метан :

Al 4 C 3 + 12H 2 O → 4Al(OH) 3 + 3CH 4

Нитрид алюминия разлагается под действием минеральных кислот на соли алюминия и аммония:

AlN + 4HCl → AlCl 3 + NH 4 Cl

Также нитрид алюминия разлагается под действием воды :

AlN + 3H 2 O → Al(OH) 3 ↓ + NH 3

Оксид алюминия – Al2O3. Физические свойства: оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы. Молекулярная масса = 101,96, плотность – 3,97 г/см3, температура плавления – 2053 °C, температура кипения – 3000 °C.

Химические свойства: оксид алюминия проявляет амфотерные свойства – свойства кислотных оксидов и основных оксидов и реагирует и с кислотами, и с основаниями. Кристаллический Аl2О3 химически пассивен, аморфный – более активен. Взаимодействие с растворами кислот дает средние соли алюминия, а с растворами оснований – комплексные соли – гидроксоалюминаты металлов:

При сплавлении оксида алюминия с твердыми щелочами металлов образуются двойные соли – метаалюминаты (безводные алюминаты):

Оксид алюминия не взаимодействует с водой и не растворяется в ней.

Получение: оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия , открытый Бекетовым :

Применение: оксид алюминия применяется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и аб-разивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Сr2О3 (красный цвет), Тi2О3 и Fe2О3 (голубой цвет).

Гидроксид алюминия – А1(ОН)3 . Физические свойства: гидроксид алюминия – белый аморфный (гелеобразный) или кристаллический. Почти не растворим в воде; молекулярная масса – 78,00, плотность – 3,97 г/см3.

Химические свойства: типичный амфотерный гидроксид реагирует:

1) с кислотами, образуя средние соли: Al(ОН)3 + 3НNO3 = Al(NO3)3 + 3Н2О;

2) с растворами щелочей, образуя комплексные соли – гидроксоалюминаты: Al(ОН)3 + КОН + 2Н2О = К.

При сплавлении Al(ОН)3 с сухими щелочами образуются метаалюминаты: Al(ОН)3 + КОН = КAlO2 + 2Н2О.

Получение:

1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

62. Общая характеристика подгруппы хрома

Элементы подгруппы хрома занимают промежуточное положение в ряду переходных металлов. Имеют высокие температуры плавления и кипения, свободные места на электронных орбиталях. Элементы хром и молибден обладают нетипичной электронной структурой – на внешней s-орбитали имеют один электрон (как у Nb из подгруппы VB). У этих элементов на внешних d– и s-орбиталях находится 6 электронов, поэтому все орбитали заполнены наполовину, т. е. на каждой находится по одному электрону. Имея подобную электронную конфигурацию, элемент обладает особенной стабильностью и устойчивостью к окислению. Вольфрам имеет более сильную металлическая связь, нежели молибден . Степень окисления у элементов подгруппы хрома сильно варьирует. В надлежащих условиях все элементы проявляют положительную степень окисления от 2 до 6, максимальная степень окисления соответствует номеру группы. Не все степени окисления у элементов стабильны, у хрома самая стабильная – +3.

Все элементы образуют оксид MVIO3, известны также оксиды с низшими степенями окисления. Все элементы данной подгруппы амфотерны – образуют комплексные соединения и кислоты.

Хром, молибден и вольфрам востребованы в металлургии и электротехнике. Все рассматриваемые металлы покрываются пассивирующей оксидной пленкой при хранении на воздухе или в среде кислоты-окислителя. Удалив пленку химическим или механическим способом, можно повысить химическую активность металлов.

Хром. Элемент получают из хромитной руды Fe(CrO2)2, восстанавливая углем: Fe(CrO2)2 + 4C = (Fe + 2Cr) + 4CO?.

Чистый хром получают восстановлением Cr2O3 с помощью алюминия или электролиза раствора, содержащего ионы хрома. Выделяя хром с помощью электролиза, можно получить хромовое покрытие, используемое в качестве декоративных и защитных пленок.

Из хрома получают феррохром, применяемый при производстве стали.

Молибден. Получают из сульфидной руды. Его соединения используют при производстве стали. Сам металл получают при восстановлении его оксида. Прокаливая оксид молибдена с железом, можно получить ферромолибден. Используют для изготовления нитей и трубок для обмотки печей и электроконтактов. Сталь с добавлением молибдена используют в автомобильном производстве.

Вольфрам. Получают из оксида, добываемого из обогащенной руды. В качестве восстановителя используют алюминий или водород. Получившийся вольфрам в идее порошка впоследствии формуют при высоком давлении и термической обработке (порошковая металлургия). В таком виде вольфрам используют для изготовления нитей накаливания, добавляют к стали.

Внешний вид вещества гидроксид алюминия следующий. Как правило, это вещество белого, студневидного вида, хотя встречаются варианты присутствия в кристаллическом или аморфном состоянии. Например, в высушенном виде оно кристаллизуется в белые кристаллы, которые не растворяются ни в кислотах, ни в щелочах.

Гидроокись алюминия может быть представлена и мелкокристаллическим порошком белого цвета. Допустимо присутствие розового и серого оттенков.

Химическая формула соединения - Al(OH)3. Соединение и воды образуют гидроксид которого также определяются во многом элементами, входящими в его состав. Получают это соединение посредством проведения реакции взаимодействия соли алюминия и разбавленной щелочи, при этом следует не допускать их переизбытка. Получаемый в ходе данной реакции осадок гидроксида алюминия затем может взаимодействовать с кислотами.

Гидроокись алюминия взаимодействует с водным раствором гидрооксида рубидия, сплавом этого вещества, гидроокисью цезия, карбонатом цезия. Во всех случаях выделяется вода.

Гидроокись алюминия обладает равной 78,00, практически не растворяется в воде. Плотность вещества составляет 3,97 грамм/см3. Будучи амфотерным веществом, гидроксид алюминия взаимодействует с кислотами, при этом, в результате реакций получаются средние соли и выделяется вода. При вступлении в реакции со щелочами появляются комплексные соли - гидроксоалюминаты, например, К. Метаалюминаты образуются, если гидроксид алюминия сплавлять с безводными щелочами.

Как и все амфотерные вещества, кислотные и основные свойства одновременно гидроокись алюминия показывает при взаимодействии с а также со щелочами. В этих реакциях при растворении гидроксида в кислотах происходит отщепление ионов самого гидроксида, а при взаимодействии со щелочью - отщепляется ион водорода. Чтобы увидеть это, можно, например, провести реакцию, в которой участвуют гидроксид алюминия, Для ее проведения необходимо в пробирку засыпать немного опилок алюминия и залить небольшим количеством гидроксида натрия, не больше 3 миллилитров. Пробирку следует плотно закрыть пробкой, и начать медленный подогрев. После этого, закрепив пробирку на штативе, надо собрать выделенный водород в другую пробирку, предварительно надев ее на капиллярное приспособление. Примерно через минуту пробирку следует снять с капилляра и поднести к пламени. Если в пробирке собран чистый водород - горение будет происходить спокойно, в том же случае, если в нее попал воздух - произойдет хлопок.

Получают гидроксид алюминия в лабораториях несколькими способами:

Путем реакции взаимодействия солей алюминия и щелочных растворов;

Способом разложения нитрида алюминия под воздействием воды;

Путем пропускания углерода через специальный гидрокомплекс, содержащий Al(ОН)4;

Воздействием гидрата аммиака на соли алюминия.

Промышленное получение связано с переработкой бокситов. Используются также технологии воздействия на алюминатные растворы карбонатами.

Применяется гидроокись алюминия в изготовлении минеральных удобрений, криолита, различных медицинских и фармакологических препаратов. В химическом производстве вещество используют для получения фтористого и сернистого алюминия. Незаменимо соединение при производстве бумаги, пластмасс, красок и много другого.

Медицинское применение обусловлено позитивным действием препаратов, содержащих данный элемент в лечении желудочных расстройств, повышенной кислотности организма, язвенных заболеваний.

При обращении с веществом, следует остерегаться вдыхания его паров, так как они вызывают сильное поражение легких. Будучи слабодействующим слабительным, опасно в больших дозах. При коррозии вызывает алюминоз.

Само вещество достаточно безопасно, так как не вступает в реакции с окислителями.