В 2018 году лауреатами Нобелевской премии по физиологии и медицине стали двое ученых с разных концов света - Джеймс Эллисон из США и Тасуку Хондзё из Японии, - независимо открывшие и изучавшие один и тот же феномен. Они обнаружили два разных чекпоинта - механизма, с помощью которых организм подавляет активность Т-лимфоцитов, иммунных клеток-убийц. Если заблокировать эти механизмы, то Т-лимфоциты «выходят на свободу» и отправляются на битву с раковыми клетками. Это называют иммунотерапией рака, и она уже несколько лет применяется в клиниках.

Нобелевский комитет любит иммунологов: по меньшей мере каждая десятая премия по физиологии и медицине вручается за теоретические иммунологические работы. В этом же году речь зашла о практических достижениях. Нобелевские лауреаты 2018 года отмечены не столько за теоретические открытия, сколько за последствия этих открытий, которые уже шесть лет помогают онкобольным в борьбе с опухолями.

Общий принцип взаимодействия иммунной системы с опухолями выглядит следующим образом. В результате мутаций в клетках опухоли образуются белки, отличающиеся от «нормальных», к которым организм привык. Поэтому Т-клетки реагируют на них как на чужеродные объекты. В этом им помогают дендритные клетки - клетки-шпионы, которые ползают по тканям организма (за их открытие, кстати, присудили Нобелевскую премию в 2011 году). Они поглощают все проплывающие мимо белки, расщепляют их и выставляют получившиеся кусочки на свою поверхность в составе белкового комплекса MHC II (главный комплекс гистосовместимости , подробнее см.: Кобылы определяют, беременеть или нет, по главному комплексу гистосовместимости... соседа , «Элементы», 15.01.2018). С таким багажом дендритные клетки отправляются в ближайший лимфатический узел, где показывают (презентируют) эти кусочки пойманных белков Т-лимфоцитам. Если Т-киллер (цитотоксический лимфоцит, или лимфоцит-убийца) узнает эти белки-антигены своим рецептором, то он активируется - начинает размножаться, образуя клоны. Дальше клетки клона разбегаются по организму в поисках клеток-мишеней. На поверхности каждой клетки организма есть белковые комплексы MHC I, в которых висят кусочки внутриклеточных белков. Т-киллер ищет молекулу MHC I с антигеном-мишенью, который он может распознать своим рецептором. И как только распознавание произошло, Т-киллер убивает клетку-мишень, проделывая дырки в ее мембране и запуская в ней апоптоз (программу гибели).

Но этот механизм не всегда работает эффективно. Опухоль - это гетерогенная система клеток, которые используют самые разные способы ускользнуть от иммунной системы (об одном из недавно открытых таких способов читайте в новости Раковые клетки повышают свое разнообразие, сливаясь с иммунными клетками , «Элементы», 14.09.2018). Некоторые опухолевые клетки скрывают белки MHC со своей поверхности, другие уничтожают дефектные белки, третьи выделяют вещества, подавляющие работу иммунитета. И чем «злее» опухоль, тем меньше шансов у иммунной системы с ней справиться.

Классические методы борьбы с опухолью предполагают разные способы убийства ее клеток. Но как отличить опухолевые клетки от здоровых? Обычно используют критерии «активное деление» (раковые клетки делятся гораздо интенсивнее большинства здоровых клеток организма, и на это нацелена лучевая терапия , повреждающая ДНК и препятствующая делению) или «устойчивость к апоптозу» (с этим помогает бороться химиотерапия). При таком лечении страдают многие здоровые клетки, например стволовые, и не затрагиваются малоактивные раковые клетки, например спящие (см.: , «Элементы», 10.06.2016). Поэтому сейчас часто делают ставку на иммунотерапию, то есть активацию собственного иммунитета больного, так как иммунная система лучше, чем внешние лекарства, отличает опухолевую клетку от здоровой. Активировать иммунную систему можно самыми разными способами. Например, можно забрать кусочек опухоли, выработать антитела к ее белкам и ввести их в организм, чтобы иммунная система лучше «видела» опухоль. Или же забрать иммунные клетки и «натаскать» их на распознавание специфических белков. Но Нобелевскую премию в этом году вручают за совсем другой механизм - за снятие блокировки с Т-киллерных клеток.

Когда эта история только начиналась, никто не думал об иммунотерапии. Ученые пытались разгадать принцип взаимодействия Т-клеток с дендритными клетками. При ближайшем рассмотрении оказывается, что в их «общении» участвуют не только MHC II c белком-антигеном и рецептор Т-клетки. Рядом с ними на поверхности клеток расположены и другие молекулы, которые тоже участвуют во взаимодействии. Вся эта конструкция - множество белков на мембранах, которые соединяются друг с другом при встрече двух клеток, - называется иммунным синапсом (см. Immunological synapse). В состав этого синапса входят, например, костимулирующие молекулы (см. Co-stimulation) - те самые, которые посылают сигнал Т-киллерам активироваться и отправляться на поиски врага. Их обнаружили первыми: это рецептор CD28 на поверхности Т-клетки и его лиганд В7 (CD80) на поверхности дендритной-клетки (рис. 4).

Джеймс Эллисон и Тасуку Хондзё независимо обнаружили еще две возможные составляющие иммунного синапса - две ингибирующие молекулы. Эллисон занимался открытой в 1987 году молекулой CTLA-4 (cytotoxic T-lymphocyte antigen-4, см.: J.-F. Brunet et al., 1987. A new member of the immunoglobulin superfamily - CTLA-4). Изначально считалось, что это еще один костимулятор, потому что она появлялась только на активированных Т-клетках. Заслуга Эллисона в том, что он предположил, что всё наоборот: CTLA-4 появляется на активированных клетках специально, чтобы их можно было остановить! (M. F. Krummel, J. P. Allison, 1995. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation). Дальше оказалось, что CTLA-4 похожа по структуре на CD28 и тоже может связываться с B7 на поверхности дендритных клеток, причем даже сильнее, чем CD28. То есть на каждой активированной Т-клетке есть ингибирующая молекула, которая конкурирует с активирующей молекулой за прием сигнала. А поскольку в состав иммунного синапса входит множество молекул, то результат определяется соотношением сигналов - тем, сколько молекул CD28 и CTLA-4 смогли связаться с B7. В зависимости от этого Т-клетка либо продолжает работу, либо замирает и не может никого атаковать.

Тасуку Хондзё обнаружил на поверхности Т-клеток другую молекулу - PD-1 (ее название - сокращение от programmed death), которая связывается с лигандом PD-L1 на поверхности дендритных клеток (Y. Ishida et al., 1992. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death). Оказалось, что мыши, нокаутные по гену PD-1 (лишенные соответствующего белка), заболевают чем-то похожим на системную красную волчанку. Это аутоиммунное заболевание, то есть состояние, когда иммунные клетки атакуют нормальные молекулы организма. Поэтому Хондзё заключил, что PD-1 тоже работает как блокатор, сдерживая аутоиммунную агрессию (рис. 5). Это еще одно проявление важного биологического принципа: каждый раз, когда запускается какой-либо физиологический процесс, параллельно запускается противоположный ему (например, свертывающая и противосвертывающая системы крови), чтобы избежать «перевыполнения плана», которое может оказаться губительным для организма.

Обе блокирующие молекулы - CTLA-4 и PD-1 - и соответствующие им сигнальные пути назвали иммунными чекпоинтами (от англ. checkpoint - контрольная точка, см. Immune checkpoint). По всей видимости, это аналогия с чекпоинтами клеточного цикла (см. Cell cycle checkpoint) - моментами, в которые клетка «принимает решение», может ли она продолжать делиться дальше или какие-то ее компоненты существенно повреждены.

Но на этом история не закончилась. Оба ученых решили найти применение новооткрытым молекулам. Их идея состояла в том, что можно активировать иммунные клетки, если заблокировать блокаторы. Правда, побочным эффектом неизбежно будут аутоиммунные реакции (как и происходит сейчас у пациентов, которых лечат ингибиторами чекпоинтов), зато это поможет победить опухоль. Блокировать блокаторы ученые предложили с помощью антител: связываясь с CTLA-4 и PD-1, они механически их закрывают и мешают взаимодействовать с B7 и PD-L1, при этом Т-клетка не получает ингибирующих сигналов (рис. 6).

Прошло не меньше 15 лет между открытиями чекпоинтов и одобрением лекарств на основе их ингибиторов. На данный момент применяют уже шесть таких препаратов: один блокатор CTLA-4 и пять блокаторов PD-1. Почему блокаторы PD-1 оказались удачнее? Дело в том, что клетки многих опухолей тоже несут на своей поверхности PD-L1, чтобы блокировать активность Т-клеток. Таким образом, CTLA-4 активирует Т-киллеры в целом, а PD-L1 более специфично действуют на опухоль. И осложнений в случае блокаторов PD-1 возникает несколько меньше.

Современные методы иммунотерапии пока, увы, не являются панацеей. Во-первых, ингибиторы чекпоинтов всё равно не обеспечивают стопроцентной выживаемости пациентов. Во-вторых, они действуют не на все опухоли. В-третьих, их эффективность зависит от генотипа пациента: чем более разнообразны его молекулы MHC, тем выше шанс на успех (о разнообразии белков MHC см.: Разнообразие белков гистосовместимости повышает репродуктивный успех у самцов камышовок и снижает у самок , «Элементы», 29.08.2018). Тем не менее получилась красивая история о том, как теоретическое открытие сначала меняет наши представления о взаимодействии иммунных клеток, а затем рождает лекарства, которые можно применять в клинике.

А нобелевским лауреатам есть над чем работать дальше. Точные механизмы работы ингибиторов чекпоинтов всё еще не известны до конца. Например, в случае CTLA-4 так и непонятно, с какими именно клетками взаимодействует лекарство-блокатор: с самими Т-киллерами, или с дендритными-клетками, или вообще с Т-регуляторными клетками - популяцией Т-лимфоцитов, отвечающей за подавление иммунного ответа. Поэтому эта история, на самом деле, еще далека от завершения.

Полина Лосева

Нобелевский комитет сегодня определился с лауреатами премии по физиологии и медицине 2017 года. В этом году премия снова отправится в США: награду разделили Майкл Янг из Рокфеллеровского университета в Нью-Йорке, Майкл Росбаш из Университета Брэндейса и Джеффри Холл из Университета штата Мэн. Согласно решению Нобелевского комитета, эти исследователи награждены «за открытия молекулярных механизмов, контролирующих циркадные ритмы»..

Нужно сказать, что за всю 117-летнюю историю Нобелевской премии это, пожалуй, первая премия за изучение цикла «сон-бодрствование», как и вообще за что-либо связанное с сном. Не получил премию знаменитый сомнолог Натаниэль Клейтман, а совершивший самое выдающееся открытие в этой области Юджин Азеринский, открывший REM-сон (REM - rapid eye movement, фаза быстрого сна), вообще получил за свое достижение лишь степень PhD. Неудивительно, что в многочисленных прогнозах (о них мы писали в своей заметке) звучали какие угодно фамилии и какие угодно темы исследований, но не те, которые привлекли внимание Нобелевского комитета.

За что дали премию?

Итак, что же такое циркадные ритмы и что конкретно открыли лауреаты, которые, по словам секретаря Нобелевского комитета, встретили известие о награде словами «Are you kidding me?».

Джеффри Холл, Майкл Росбаш, Майкл Янг

Circa diem с латинского переводится как «вокруг дня». Так уж сложилось, что мы живем на планете Земля, на которой день сменяется ночью. И в ходе приспособления к разным условиям дня и ночи у организмов и появились внутренние биологические часы - ритмы биохимической и физиологической активности организма. Показать, что у этих ритмов исключительно внутренняя природа, удалось только в 1980-х, отправив на орбиту грибы Neurospora crassa . Тогда стало ясно, что циркадные ритмы не зависят от внешних световых или других геофизических сигналов.

Генетический механизм циркадных ритмов обнаружили в 1960–1970-х годах Сеймур Бензер и Рональд Конопка, которые изучали мутантные линии дрозофил с отличающимися циркадными ритмами: у мушек дикого типа колебания циркадного ритма имели период 24 часа, у одних мутантов - 19 часов, у других - 29 часов, а у третьих ритм вообще отсутствовал. Оказалось, что ритмы регулируются геном PER - period . Следующий шаг, который помог понять, как появляются и поддерживаются такие колебания циркадного ритма, сделали нынешние лауреаты.

Саморегулирующийся часовой механизм

Джеффри Холл и Майкл Росбаш предположили, что кодируемый геном period белок PER блокирует работу собственного гена, и такая петля обратной связи позволяет белку предотвращать собственный синтез и циклически, непрерывно регулировать свой уровень в клетках.

Картинка показывает последовательность событий за 24 часа колебаний. Когда ген активен, производится м-РНК PER. Она выходит из ядра в цитоплазму, становясь матрицей для производства белка PER. Белок PER накапливается в ядре клетки, когда активность гена period заблокирована. Это и замыкает петлю обратной связи.

Модель была очень привлекательной, но для полной картины не хватало нескольких деталей паззла. Чтобы заблокировать активность гена, белку нужно пробраться в ядро клетки, где хранится генетический материал. Джеффри Холл и Майкл Росбаш показали, что белок PER накапливается в ядре за ночь, но не понимали, как ему удается попадать туда. В 1994 году Майкл Янг открыл второй ген циркадного ритма, timeless (англ. «безвременный»). Он кодирует белок TIM, который нужен для нормальной работы наших внутренних часов. В своем изящном эксперименте Янг продемонстрировал, что, только связавшись друг с другом, TIM и PER в паре могут проникнуть в ядро клетки, где они и блокируют ген period .

Упрощенная иллюстрация молекулярных компонентов циркадных ритмов

Такой механизм обратной связи объяснил причину появления колебаний, но было непонятно, что же контролирует их частоту. Майкл Янг нашел другой ген, doubletime . В нем «записан» белок DBT, который может задержать накапливание белка PER. Так и происходит «отладка» колебаний, чтобы они совпадали с суточным циклом. Эти открытия совершили переворот в нашем понимании ключевых механизмов биологических часов человека. В течение последующих лет были найдены и другие белки, которые влияют на этот механизм и поддерживают его стабильную работу.

Сейчас премия по физиологии и медицине традиционно присуждается в самом начале нобелевской недели, в первый понедельник октября. Впервые ее вручили в 1901 году Эмилю фон Берингу за создание сывороточной терапии дифтерии. Всего за всю историю премия была вручена 108 раз, в девяти случаях: в 1915, 1916, 1917, 1918, 1921, 1925, 1940, 1941 и 1942 годах - премия не присуждалась.

За 1901–2017 годы премия присуждена 214 ученым, дюжина из которых - женщины. Пока что не было случая, чтобы кто-то получил премию по медицине дважды, хотя случаи, когда номинировали уже действующего лауреата, были (например, наш Иван Павлов). Если не учитывать премию 2017 года, то средний возраст лауреата составил 58 лет. Самым молодым нобелиатом в области физиологии и медицины стал лауреат 1923 года Фредерик Бантинг (премия за открытие инсулина, возраст - 32 года), самым пожилым - лауреат 1966 года Пейтон Роус (премия за открытие онкогенных вирусов, возраст - 87 лет).

В 2016 году Нобелевский комитет присудил премию по физиологии и медицине японскому ученому Ёсинори Осуми за открытие аутофагии и расшифровку ее молекулярного механизма. Аутофагия - процесс переработки отработавших органелл и белковых комплексов, он важен не только для экономного ведения клеточного хозяйства, но и для обновления клеточной структуры. Расшифровка биохимии этого процесса и его генетической основы предполагает возможность контроля и управления всем процессом и его отдельными стадиями. И это дает исследователям очевидные фундаментальные и прикладные перспективы.

Наука несется вперед такими невероятными темпами, что неспециалист не успевает осознать важность открытия, а за него уже присуждается Нобелевская премия. В 80-х годах прошлого века в учебниках биологии в разделе о строении клетки можно было среди прочих органелл узнать о лизосомах - мембранных пузырьках, заполненных внутри ферментами. Эти ферменты нацелены на расщепление различных крупных биологических молекул на более мелкие блоки (нужно отметить, что тогда наша учительница по биологии еще не знала, зачем нужны лизосомы). Их открыл Кристиан де Дюв , за что в 1974 году ему была присуждена Нобелевская премия по физиологии и медицине.

Кристиан де Дюв с коллегами отделял лизосомы и пероксисомы от других клеточных органелл с помощью нового тогда метода - центрифугирования , позволяющего рассортировать частицы по массе. Лизосомы теперь широко используются в медицине. Например, на их свойствах основана адресная доставка лекарств к поврежденным клеткам и тканям: молекулярный препарат помещают внутрь лизосомы за счет разницы в кислотности внутри и снаружи нее, а затем лизосома, снабженная специфическими метками, отправляется в пораженные ткани.

Лизосомы по роду своей деятельности неразборчивы - они дробят на составные части любые молекулы и молекулярные комплексы. Более узкие «специалисты» - протеасомы , которые нацелены только на расщепление белков (см.: , «Элементы», 05.11.2010). Их роль в клеточном хозяйстве трудно переоценить: они следят за отслужившими свой срок ферментами и уничтожают их по мере необходимости. Этот срок, как мы знаем, определен весьма точно - ровно столько времени, сколько клетка выполняет конкретную задачу. Если бы ферменты не уничтожались по ее выполнении, то идущий синтез трудно было бы остановить вовремя.

Протеасомы имеются во всех без исключения клетках, даже в тех, где нет лизосом. Роль протеасом и биохимический механизм их работы был исследован Аароном Чехановером , Аврамом Гершко и Ирвином Роузом в конце 1970-х - начале 1980-х годов. Они открыли, что протеасомы узнают и уничтожают те белки, которые помечены белком убиквитином . Реакция связывания с убиквитином идет с затратами АТФ . В 2004 году эти трое ученых получили Нобелевскую премию по химии за исследования убиквитин-зависимой деградации белков. В 2010 году, просматривая школьную программу для одаренных английских детей, я усмотрела на картинке строения клетки ряд черных точек, которые были помечены как протеасомы. Однако школьная учительница в той школе не смогла объяснить ученикам, что это такое и для чего эти загадочные протеасомы нужны. С лизосомами на той картинке уже никаких вопросов не возникло.

Еще в начале исследования лизосом было замечено, что внутри некоторых из них заключены части клеточных органелл. Значит, в лизосомах разбираются на части не только крупные молекулы, но и части самой клетки. Процесс переваривания собственных клеточных структур получил название аутофагия - то есть «поедание самого себя». Как в лизосому, содержащую гидролазы, попадают части клеточных органелл? Этим вопросом еще в 80-е годы начал заниматься , изучавший устройство и функции лизосом и аутофагосом в клетках млекопитающих. Он со своими коллегами показал, что в клетках в массе появляются аутофагосомы, если их выращивать на малопитательной среде. В связи с этим появилась гипотеза, что аутофагосомы формируются, когда необходим резервный источник питания - белки и жиры, входящие в состав лишних органелл. Как формируются эти аутофагосомы, нужны ли они в качестве источника дополнительного питания или для иных клеточных целей, как их находят лизосомы для переваривания? Все эти вопросы в начале 90-х годов не имели ответов.

Взявшись за самостоятельные исследования, Осуми сфокусировал усилия на изучении аутофагосом дрожжей. Он рассудил, что аутофагия должна быть консервативным клеточным механизмом, следовательно, ее удобнее изучать на простых (относительно) и удобных лабораторных объектах.

У дрожжей аутофагосомы находятся внутри вакуолей, а затем там распадаются. Их утилизацией занимаются различные ферменты-протеиназы . Если в клетке протеиназы дефектные, то аутофагосомы накапливаются внутри вакуолей и не растворяются. Осуми воспользовался этим свойством для получения культуры дрожжей с повышенным числом аутофагосом. Он выращивал культуры дрожжей на бедных средах - в этом случае аутофагосомы появляются в изобилии, доставляя голодающей клетке пищевой резерв. Но в его культурах использовались мутантные клетки с неработающими протеиназами. Так что в результате клетки быстро накапливали в вакуолях массу аутофагосом.

Аутофагосомы, как следовало из его наблюдений, окружены однослойными мембранами, внутри которых может находиться самые разнообразное содержимое: рибосомы, митохондрии, гранулы липидов и гликогена. Добавляя или убирая ингибиторы протеаз в культуры немутантных клеток, можно добиться увеличения или уменьшения числа аутофагосом. Так что в этих экспериментах было продемонстрировано, что эти клеточные тельца перевариваются с помощью ферментов-протеиназ.

Очень быстро, всего за год, используя метод случайного мутирования, Осуми выявил 13–15 генов (APG1–15) и соответствующих белковых продуктов, участвующих в образовании аутофагосом (M. Tsukada, Y. Ohsumi, 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae ). Среди колоний клеток с дефектной протеиназной активностью он под микроскопом отбирал такие, в которых не было аутофагосом. Затем, культивируя их по отдельности, выяснял, какие гены у них испорчены. Еще пять лет понадобилось его группе, чтобы расшифровать в первом приближении молекулярный механизм работы этих генов.

Удалось выяснить, как устроен этот каскад, в каком порядке и как эти белки друг с другом связываются, чтобы в результате получилась аутофагосома. К 2000 году прояснилась картина формирования мембраны вокруг испорченных органелл, подлежащих переработке. Одинарная липидная мембрана начинает растягиваться вокруг этих органелл, постепенно окружая их, пока концы мембраны не приблизятся друг к другу и не сольются, образовав двойную мембрану аутофагосомы. Затем этот пузырек транспортируется к лизосоме и сливается с ней.

В процессе образования мембраны участвуют APG-белки, аналоги которых Ёсинори Осуми с коллегами обнаружили и у млекопитающих.

Благодаря работам Осуми мы увидели весь процесс аутофагии в динамике. Стартовой точкой исследований Осуми был простой факт присутствия в клетках загадочных мелких телец. Теперь исследователи получили возможность, пусть и гипотетическую, управлять всем процессом аутофагии.

Аутофагия необходима для нормальной жизнедеятельности клетки, так как клетка должна уметь не только обновлять свое биохимическое и архитектурное хозяйство, но и утилизировать ненужное. В клетке тысячи износившихся рибосом и митохондрий, мембранных белков, отработанных молекулярных комплексов - всех их нужно экономно переработать и снова пустить в оборот. Это своего рода клеточный ресайклинг. Этот процесс не только обеспечивает известную экономию, но и предотвращает быстрое старение клетки. Нарушение клеточной аутофагии у человека приводит к развитию болезни Паркинсона, диабета II типа, раковых заболеваний и некоторых нарушений, свойственных пожилому возрасту. Управление процессом клеточной аутофагии, очевидно, имеет огромные перспективы, как в фундаментальном, так и в прикладном отношении.

Очень велика история Нобелевской премии. Постараюсь вкраце рассказать её.

Альфред Нобель оставил завещание, которым он официально подтвердил своё желание вложить все свои сбережения (около 33 233 792 шведских крон) в развитие и поддержку науки. По сути дела, это и явилось основным катализатором XX-ого века, который способствовал продвижению современных научных гипотез.

У Альфреда Нобеля был план, невероятный план, о котором стало известно только после того, как в январе 1897 года вскрыли его завещание. Первая часть содержала обычные для подобного случая распоряжения. Но после этих параграфов шли другие, в которых говорилось:

"Всё моё движимое и недвижимое имущество должно быть переведено моими душеприказчиками в ликвидные ценности, а собранный таким образом капитал должен быть помещён в надёжный банк. Эти средства будут принадлежать фонду, который ежегодно будет вручать доходы от них в виде премии тем, кто за прошедший год внёс наиболее существенный вклад в науку, литературу или дело мира и чья деятельность принесла наибольшую пользу человечеству Премии за достижения в области химии и физики должны вручаться Шведской академией наук, премия за достижение в области физиологии и медицины - Каролинским институтом , премия в области литературы - Стокгольмской академией, премии за вклад в дело мира - комиссией из пяти человек, назначаемой стортингом Норвегии. Моя окончательная воля состоит также в том, что премии должны присуждаться самым достойным кандидатам независимо от того, являются они скандинавами или нет. Париж, 27 ноября 1895 года"

Администраторы институтов избираются некоторыми организациями. Каждый член администрации держится в тайне вплоть до обсуждения. Он может принадлежать к любой национальности. Всего администраторов Нобелевской премии пятнадцать, по три на каждую премию. Они назначают административный совет. Президент и вице-президент этого совета назначаются королём Швеции соответственно.

Каждый, кто предложит свою кандидатуру, дисквалифицируется. Кандидатуру в своей области может предложить лауреат премии за прежние годы, организация, ответственная за вручение премии, а также тот, кто выдвигает на премию беспристрастно. Президенты академий, литературные и научные сообщества, некоторые международные парламентские организации, учёные работающие в крупных университетах, и даже члены правительств тоже имеют право предложить своего кандидата. Здесь, впрочем, нужно уточнить: предлагать своего кандидата могут лишь знаменитые люди и крупные организации. Важно, чтобы кандидат не имел к ним никакого отношения.

Эти организации, которые могут показаться слишком жёсткими, являются прекрасным свидетельством того недоверия, которое испытывал Нобель к человеческим слабостям.

Состояние Нобеля, включающее имущество на более чем тридцать миллионов крон, было разделено на две части. Первая - 28 миллионов крон - стала основным фондом премии. На оставшиеся деньги для Нобелевского фонда было приобретено здание, в котором он до сих пор находится, кроме того, из этих денег были выделены средства в организационные фонды каждой премии и суммы на расходы для организаций, входящих в состав Нобелевс-

кого комитета.

С 1958 года Нобелевский фонд вкладывает деньги в облигации, недвижимость и акции. Существуют определённые ограничения на инвестиции за рубежом. Эти реформы были вызваны необходимостью защитить капитал от инфляции.Понятно, что в наше время это значит многое.

Давайте разберём несколько интересных примеров вручения премии за всю её историю.

Александер ФЛЕМИНГ.

Александер Флеминг удостоен премии за открытие, пенициллина и его целебного воздействия при различных инфекционных болезнях. Счастливая случайность – открытие Флемингом пенициллина – явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить, а пресса получила сенсационную историю, способную, поразить воображение любого человека. На мой взгляд он принёс неоценимый вклад (да я думаю все со мной согласятся насчёт того, что такие учёные, как Флеминг никогда не будут забыты, а их открытия будут всегда незримо защищать нас). Все мы знаем, что роль пеницилина в медицине трудно переоценить. Этот препарат спас жизни очень многих людей (в том числе и на войне, где от инфекционных заболеваний умирали тысячи человек).

Хоуард У. ФЛОРИ. Нобелевская премия по физиологии и медицине, 1945 г.

Хоуард Флори получил премию за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях. Открытый Флемингом пенициллин отличался химической нестабильностью и мог быть получен лишь в небольших количествах. Флори возглавил исследования по изучению препарата. Наладил производство пенициллина в США, благодаря огромным ассигнованиям выделенным для реализации проекта.

Илья МЕЧНИКОВ. Нобелевская премия по физиологии и медицине, 1908 г.

Русский учёный Илья Мечников был удостоен премии за труды по иммунитету. Наиболее важный вклад Мечникова в науку носил методологический характер: цель ученого состояла в том, чтобы изучать «иммунитет при инфекционных заболеваниях с позиций клеточной физиологии». Имя Мечникова связано с популярным коммерческим способом изготовления кефира. Конечно велико и очень полезно открытие М., он своими трудами заложил основы многих последующих открытий.

Иван ПАВЛОВ. Нобелевская премия по физиологии и медицине, 1904 г.

Иван Павлов удостоен премии за работу по физиологии пищеварения. Эксперименты, касающиеся пищеварительной системы, привели к открытию условных рефлексов. Мастерство Павлова в хирургии было непревзойденным. Он настолько хорошо владел обеими руками, что никогда не было известно, какой рукой он будет действовать в следующий момент.

Камилло ГОЛЬДЖИ. Нобелевская премия по физиологии и медицине, 1906 г.

В знак признания трудов о структуре нервной системы Камилло Гольджи удостоен премии. Гольджи классифицировал типы нейронов и сделал много открытий о строении отдельных клеток и нервной системы в целом. Аппарат Гольджи, тонкая сеть из переплетенных нитей внутри нервных клеток, признан и считается, что он участвует в модификации и секреции белков. Этого уникального учёного знают все, кто изучал структуру клетки. В том числе и я и весь наш класс.

Георг БЕКЕШИ . Нобелевская премия по физиологии и медицине, 1961 г.

Физик Георг Бекеши изучал мебраны телефонных аппаратов, которые искажали звуковые колебания в отличие от барабанной перепонки уха. В связи с этим начал исследовать физические свойства органов слуха. Воссоздал полную картину биомеханики улитки, современные отохирурги получили возможность вживлять искусственные барабанные перепонки и слуховые косточки. Эта работа Бекеши отмечена премией.Эти отккрытия становятся особенно актуальными в наше время, когда компьютерные технологии развились до невероятных масштабов и проблема вживления переходит на качественно иной уровень.Он своими открытиями дал возможность снова слышать многим людям.

Эмиль фон БЕРИНГ . Нобелевская премия по физиологии и медицине, 1901 г.

За работу по сывороточной терапии, главным образом за ее применение при лечении дифтерии, что открыло новые пути в медицинской науке и дало в руки врачей победоносное оружие против болезни и смерти Эмиль фон Беринг удостоен премии. В ходе первой мировой войны созданная Берингом противостолбнячная вакцина сохранила жизнь многим немецким солдатам.Конечно это были лишь азы медицины. Но никто, наверно, не сомневается, что это открытие дало очень много для развития медицины и для всего человечества вцелом. Его имя навсегда останется запечатлено в истории человечества.

Джордж У. БИДЛ. Нобелевская премия по физиологии и медицине, 1958 г.

Джордж Бидл получил премию за открытия, касающиеся роли генов в специфических биохимических процессах. Опыты доказали, что определенные гены отвечают за синтез специфических клеточных веществ. Лабораторные методы, которые разработали Джордж Бидл и Эдуард Тейтем, оказались полезными для увеличения фармакологического производства пеницилина- важного вещества образуемого специальными грибками. Все, наверно, знают о существовании вышеупомянутого пеницилина,о его значении, поэтому роль открытия этих учёных неоценима в современном обществе.

Шведская королевская академия объявила первых лауреатов Нобелевских премий этого года. Премию по физиологии и медицине получили Джеймс Эллисон и Тасуку Хондзё. Согласно формулировке Нобелевского комитета, премия присуждена за «открытие противораковой терапии методом подавления негативной иммунной регуляции».

Открытия, легшие в основу этой научной работы, были сделаны еще в 1990-х годах. Джеймс Эллисон, работавший в Калифорнии, исследовал важный компонент иммунной системы - белок, который, подобно тормозу, сдерживает механизм иммунного ответа. Если освободить клетки иммунной системы от этого тормоза, организм будут гораздо активнее распознавать и уничтожать опухолевые клетки. Японский иммунолог Тасуку Хондзё открыл другой компонент этой регуляторной системы, действующий по несколько иному механизму. В 2010-х годах открытия иммунологов легли в основу эффективной терапии онкологических заболеваний.

Иммунная система человека вынуждена поддерживать баланс: она распознает и атакует все чужеродные для организма белки, однако не трогает собственные клетки тела. Этот баланс особенно тонок в случае раковых клеток: генетически они не отличаются от здоровых клеток тела. Функция белка CTLA4, c которым работал Джеймс Эллисон, состоит в том, чтобы служить контрольной точкой иммунного ответа и не позволять иммунной системе атаковать собственные белки. Белок PD1, предмет научных интересов Тасуку Хондзё - компонент системы «программируемой клеточной смерти». Его функции также состоять в том, чтобы не допустить аутоиммунной реакции, но действует он иным путем: запускает или контролирует механизм клеточной смерти Т-лимфоцитов.

Иммунотерапия рака - одно из самых перспективных направлений современной онкологии. Оно основано на том, чтобы подтолкнуть иммунную систему пациента к распознаванию и уничтожению клеток злокачественных опухолей. Научные открытия нобелевских лауреатов этого года легли в основу высокоэффективных противоопухолевых препаратов, уже одобренных к применению. В частности, препарат «Кейтруда» атакует белок PD1, рецептор запрограммированной клеточной гибели. Препарат одобрен к применению в 2014 году и применяется для лечения немелкоклеточного рака легких и меланомы. Другой препарат, «Ипилимумаб», атакует белок CTLA4 - тот самый «тормоз» иммунной системы - и тем самым активирует ее. Это средство применяется у пациентов с раком легкого или простаты на поздних стадиях, и больше чем в половине случаев позволяет остановить дальнейший рост опухоли.

Джеймс Эллисон и Тасуку Хондзё стали 109-м и 110-м лауреатами Нобелевской премии по медицине, которая присуждается с 1901 года. Среди лауреатов прежних лет двое российских ученых: Иван Павлов (1904) и Илья Мечников (1908). Интересно, что Илья Мечников получил свою премию с формулировкой «За труды по иммунитету», то есть за достижения в той же области биологической науки, что и лауреаты 2018 года.