Называют диссимиляцией. Он представляет собой совокупность органических соединений, при которых выделяется определенное количество энергии.

Диссимиляция проходит в два или три этапа, что зависит от вида живых организмов. Так, у аэробов состоит из подготовительного, бескислородного и кислородного этапов. У анаэробов (организмы, которые способны функционировать в бескислородной среде) диссимиляция не требует последнего этапа.

Конечная стадия энергетического обмена у аэробов заканчивается полным окислением. При этом происходит расщепление молекул глюкозы с образованием энергии, которая частично идет на образование АТФ.

Стоит отметить, что синтез АТФ происходит в процессе фосфорилирования, когда к АДФ присоединяется неорганический фосфат. При этом синтезируется в митохондриях при участии АТФ-синтазы.

Какая реакция происходит при образовании данного энергетического соединения?

Аденозиндифосфат и фосфат соединяются с образованием АТФ и на образование которой затрачивается около 30,6 кДж / моль. Аденозинтрифосфат поскольку значительное его количество высвобождается при гидролизе именно макроэргических связей АТФ.

Молекулярной машиной, которая отвечает за синтез АТФ, является специфическая синтаза. Она состоит из двух частей. Одна из них находится в мембране и представляет собой канал, по которому протоны попадают внутрь митохондрии. При этом высвобождается энергия, которая улавливается другой структурной частью АТФ под названием F1. Она содержит статор и ротор. Статор в мембране размещается неподвижно и состоит из дельта-области, а также альфа- и бета-субъединиц, которые отвечают за химический синтез АТФ. Ротор содержит гамма-, а также эпсилон-субъединицы. Эта часть крутится, используя энергию протонов. Данная синтаза обеспечивает синтез АТФ, если протоны с внешней мембраны направлены к середине митохондрий.

Необходимо отметить, что в клетке свойственна пространственная упорядоченность. Продукты химических взаимодействий веществ распределяются асимметрично (положительно заряженные ионы идут в одну сторону, а отрицательно заряженные частицы направляются в другую сторону), создавая на мембране электрохимический потенциал. Он состоит из химической и электрической компоненты. Следует сказать, что именно этот потенциал на поверхности митохондрий становится универсальной формой запасания энергии.

Данная закономерность была обнаружена английским ученым П. Митчеллом. Он предположил, что вещества после окисления имеют вид не молекул, а положительно и отрицательно заряженных ионов, которые размещаются на противоположных сторонах мембраны митохондрий. Данное предположение позволило выяснить природу образования макроэргических связей между фосфатами в процессе синтеза аденозинтрифосфата, а также сформулировать хемиосмотическую гипотезу этой реакции.

    Основным способом получения АТФ в клетке является окислительное фосфорилирование , протекающее в структурах внутренней мембраны митохондрий. При этом энергия атомов водорода молекул НАДН и ФАДН 2 , образованных в гликолизе, ЦТК, окислении жирных кислот,в ходе окислительно-восстановительных процессов преобразуется в энергию связей АТФ.

    Однако также есть другой способ фосфорилирования АДФ до АТФ – субстратное фосфорилирование . Этот способ связан спередачей энергии макроэргической связи какого-либо вещества (субстрата) на АДФ. К таким веществам относятся:

    1. метаболиты гликолиза (1,3-дифосфоглицерат ,фосфоенолпируват ),

      метаболиты цикла трикарбоновых кислот (сукцинил-КоА ) и

      креатинфосфат .

Пируват окисляется до ацетил-КоА.

Пировиноградная кислота (ПК, пируват) является продуктом окисления глюкозы и некоторых аминокислот. Ее судьба различна в зависимости от доступности кислорода в клетке. Ванаэробных условиях она восстанавливается домолочной кислоты . Ваэробных условиях пируват симпортом с ионами Н + , движущимися по протонному градиенту, проникает в митохондрии. Здесь происходит его превращение в ацетил-коэнзим А (ацетил-КоА ) с помощьюпируватдегидрогеназного мульферментного комплекса.

Пируватдегидрогеназный мульферментный комплекс

Суммарное уравнение окисления пировиноградной кислоты

Пируватдегидрогеназный мульферментный комплекс расположен в матриксе митохондрий эукариотов. Состоит у человека из96 субъединиц , организовавнных в три функциональных белка. Гигантское образование, имеет50 нм в диаметре, что впять раз!!! больше, чемрибосома .

Процесс проходит пять последовательных реакций, в которых принмает участие 5 коферментов:

    Пируватдегидрогеназа (Е 1 , ПК-дегидрогеназа), коферментом служиттиаминдифосфат (ТДФ), катализирует 1-ю реакцию.

    Дигидролипоил трансацетилаза (в русскоязычной литературе встречаются названия -дигидролипоат-ацетилтрансфераза илипоамид редуктаза трансацетилаза (Е 2), кофермент -липоевая кислота , катализирует 2-ю и 3-ю реакции.

    Дигидролипоил дегидрогеназа (дигидролипоат-дегидрогеназа) (Е 3), кофермент –ФАД , катализирует 4-ю и 5-ю реакции.

Помимо указанных коферментов, которые прочно связаны с соответствующими ферментами, в работе комплекса принимают участие коэнзим А иНАД .

Суть первых трех реакций сводится к декарбоксилированию пирувата (катализируется пируватдегидрогеназой, Е 1), окислению пирувата до ацетила и переносу ацетила на коэнзим А (катализируетсядигидролипоил трансацетилазой , Е 2).

Реакции синтеза ацетил-sКоА

Оставшиеся 2 реакции необходимы для окисления дигидролипоата обратно в липоат с образованием ФАДН 2 и восстановления НАДН (катализируютсядигидролипоил дегидрогеназой , Е 3).

Реакции образования надн Регуляция пируватдегидрогеназного комплекса

Регулируемым ферментом ПВК-дегидрогеназного комплекса является первый фермент – пируватдегидрогеназа (Е 1). Этому служат два вспомогательных фермента –киназа ифосфатаза, обеспечивая еефосфорилирования идефосфорилирования .

Киназа активируется при избытке конечного продукта биологического окисленияАТФ и продуктов ПВК-дегидрогеназного комплекса –НАДН иацетил-КоА . Активная киназа фосфорилирует пируватдегидрогеназу и инактивирует ее.

Фермент фосфатаза , активируясь ионамикальция или гормономинсулином , дефосфорилирует и активирует пируватдегидрогеназу.

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ - одного из основных источников энергии.

АТФ - универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков

Рибоза - углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин - азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты . К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже - 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ - одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы - это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата - это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза - анаэробный этап В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С 6 Н 12 О 6 + 2АДФ + 2Фн --> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

Дыхание клетки

Окислительное фосфорилирование - это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования - это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза - основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

В клетке около 1 млрд молекул АТФ.

Каждая молекула живет не больше 1 минуты.

Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал ->глюкоза

II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.

III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+

2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

Продолжение. См. № 11, 12, 13, 14, 15, 16/2005

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

Урок 19. Химическое строение и биологическая роль АТФ

Оборудование: таблицы по общей биологии, схема строения молекулы АТФ, схема взаимосвязи пластического и энергетического обменов.

I. Проверка знаний

Проведение биологического диктанта «Органические соединения живой материи»

Учитель читает тезисы под номерами, учащиеся записывают в тетрадь номера тех тезисов, которые подходят по содержанию их варианту.

Вариант 1 – белки.
Вариант 2 – углеводы.
Вариант 3 – липиды.
Вариант 4 – нуклеиновые кислоты.

1. В чистом виде состоят только из атомов С, Н, О.

2. Кроме атомов С, Н, О содержат атомы N и обычно S.

3. Кроме атомов С, Н, О содержат атомы N и Р.

4. Обладают относительно небольшой молекулярной массой.

5. Молекулярная масса может быть от тысяч до нескольких десятков и сотен тысяч дальтон.

6. Наиболее крупные органические соединения с молекулярной массой до нескольких десятков и сотен миллионов дальтон.

7. Обладают различными молекулярными массами – от очень небольшой до весьма высокой, в зависимости от того, является ли вещество мономером или полимером.

8. Состоят из моносахаридов.

9. Состоят из аминокислот.

10. Состоят из нуклеотидов.

11. Являются сложными эфирами высших жирных кислот.

12. Основная структурная единица: «азотистое основание–пентоза–остаток фосфорной кислоты».

13. Основная структурная единица: «аминокислот».

14. Основная структурная единица: «моносахарид».

15. Основная структурная единица: «глицерин–жирная кислота».

16. Молекулы полимеров построены из одинаковых мономеров.

17. Молекулы полимеров построены из сходных, но не вполне одинаковых мономеров.

18. Не являются полимерами.

19. Выполняют почти исключительно энергетическую, строительную и запасающую функции, в некоторых случаях – защитную.

20. Помимо энергетической и строительной выполняют каталитическую, сигнальную, транспортную, двигательную и защитную функции;

21. Осуществляют хранение и передачу наследственных свойств клетки и организма.

Вариант 1 – 2; 5; 9; 13; 17; 20.
Вариант 2 – 1; 7; 8; 14; 16; 19.
Вариант 3 – 1; 4; 11; 15; 18; 19.
Вариант 4 – 3; 6; 10; 12; 17; 21.

II. Изучение нового материала

1. Строение аденозинтрифосфорной кислоты

Кроме белков, нуклеиновых кислот, жиров и углеводов в живом веществе синтезируется большое количество других органических соединений. Среди них важнуую роль в биоэнергетике клетки играет аденозинтрифосфорная кислота (АТФ). АТФ содержится во всех клетках растений и животных. В клетках чаще всего аденозинтрифосфорная кислота присутствует в виде солей, называемых аденозинтрифосфатами . Количество АТФ колеблется и в среднем составляет 0,04% (в клетке в среднем находится около 1 млрд молекул АТФ). Наибольшее количество АТФ содержится в скелетных мышцах (0,2–0,5%).

Молекула АТФ состоит из азотистого основания – аденина, пентозы – рибозы и трех остатков фосфорной кислоты, т.е. АТФ – особый адениловый нуклеотид. В отличие от других нуклеотидов АТФ содержит не один, а три остатка фосфорной кислоты. АТФ относится к макроэргическим веществам – веществам, содержащим в своих связях большое количество энергии.

Пространственная модель (А) и структурная формула (Б) молекулы АТФ

Из состава АТФ под действием ферментов АТФаз отщепляется остаток фосфорной кислоты. АТФ имеет устойчивую тенденцию к отделению своей концевой фосфатной группы:

АТФ 4– + Н 2 О ––> АДФ 3– + 30,5 кДж + Фн,

т.к. это приводит к исчезновению энергетически невыгодного электростатического отталкивания между соседними отрицательными зарядами. Образовавшийся фосфат стабилизируется за счет образования энергетически выгодных водородных связей с водой. Распределение заряда в системе АДФ + Фн становится более устойчивым, чем в АТФ. В результате этой реакции высвобождается 30,5 кДж (при разрыве обычной ковалентной связи высвобождается 12 кДж).

Для того, чтобы подчеркнуть высокую энергетическую «стоимость» фосфорно-кислородной связи в АТФ, ее принято обозначать знаком ~ и называть макроэнергетической связью. При отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорная кислота), а если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорная кислота). Отщепление третьего фосфата сопровождается выделением всего 13,8 кДж, так что собственно макроэргических связей в молекуле АТФ только две.

2. Образование АТФ в клетке

Запас АТФ в клетке невелик. Например, в мышце запасов АТФ хватает на 20–30 сокращений. Но ведь мышца способна работать часами и производить тысячи сокращений. Поэтому наряду с распадом АТФ до АДФ в клетке должен непрерывно идти обратный синтез. Существует несколько путей синтеза АТФ в клетках. Познакомимся с ними.

1. Анаэробное фосфорилирование. Фосфорилированием называют процесс синтеза АТФ из АДФ и низкомолекулярного фосфата (Фн). В данном случае речь идет о бескислородных процессах окисления органических веществ (например, гликолиз – процесс бескислородного окисления глюкозы до пировиноградной кислоты). Примерно 40% выделяемой в ходе этих процессов энергии (около 200 кДж/моль глюкозы), расходуется на синтез АТФ, а остальная часть рассеивается в виде тепла:

С 6 Н 12 О 6 + 2АДФ + 2Фн ––> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

2. Окислительное фосфорилирование – это процесс синтеза АТФ за счет энергии окисления органических веществ кислородом. Этот процесс был открыт в начале 1930-х гг. XX в. В.А. Энгельгардтом. Кислородные процессы окисления органических веществ протекают в митохондриях. Примерно 55% выделяющейся при этом энергии (около 2600 кДж/моль глюкозы) превращается в энергию химических связей АТФ, а 45% рассеивается в виде тепла.

Окислительное фосфорилирование значительно эффективнее анаэробных синтезов: если в процессе гликолиза при распаде молекулы глюкозы синтезируется всего 2 молекулы АТФ, то в ходе окислительного фосфорилирования образуется 36 молекул АТФ.

3. Фотофосфорилирование – процесс синтеза АТФ за счет энергии солнечного света. Этот путь синтеза АТФ характерен только для клеток, способных к фотосинтезу (зеленые растения, цианобактерии). Энергия квантов солнечного света используется фотосинтетиками в световую фазу фотосинтеза для синтеза АТФ.

3. Биологическое значение АТФ

АТФ находится в центре обменных процессов в клетке, являясь связующим звеном между реакциями биологического синтеза и распада. Роль АТФ в клетке можно сравнить с ролью аккумулятора, так как в ходе гидролиза АТФ выделяется энергия, необходимая для различных процессов жизнедеятельности («разрядка»), а в процессе фосфорилирования («зарядка») АТФ вновь аккумулирует в себе энергию.

За счет выделяющейся при гидролизе АТФ энергии происходят почти все процессы жизнедеятельности в клетке и организме: передача нервных импульсов, биосинтез веществ, мышечные сокращения, транспорт веществ и др.

III. Закрепление знаний

Решение биологических задач

Задача 1. При быстром беге мы часто дышим, происходит усиленное потоотделение. Объясните эти явления.

Задача 2. Почему на морозе замерзающие люди начинают притопывать и подпрыгивать?

Задача 3. В известном произведении И.Ильфа и Е.Петрова «Двенадцать стульев» среди многих полезных советов можно найти и такой: «Дышите глубже, вы взволнованы». Попробуйте обосновать этот совет с точки зрения происходящих в организме энергетических процессов.

IV. Домашнее задание

Начать подготовку к зачету и контрольной работе (продиктовать вопросы зачета – см. урок 21).

Урок 20. Обобщение знаний по разделу «Химическая организация жизни»

Оборудование: таблицы по общей биологии.

I. Обобщение знаний раздела

Работа учащихся с вопросами (индивидуально) с последующими проверкой и обсуждением

1. Приведите примеры органических соединений, в состав которых входят углерод, сера, фосфор, азот, железо, марганец.

2. Как по ионному составу можно отличить живую клетку от мертвой?

3. Какие вещества находятся в клетке в нерастворенном виде? В какие органы и ткани они входят?

4. Приведите примеры макроэлементов, входящих в активные центры ферментов.

5. Какие гормоны содержат микроэлементы?

6. Какова роль галогенов в организме человека?

7. Чем белки отличаются от искусственных полимеров?

8. Чем отличаются пептиды от белков?

9. Как называется белок, входящий в состав гемоглобина? Из скольких субъединиц он состоит?

10. Что такое рибонуклеаза? Сколько аминокислот входит в ее состав? Когда она была синтезирована искусственно?

11. Почему скорость химических реакций без ферментов мала?

12. Какие вещества транспортируются белками через клеточную мембрану?

13. Чем отличаются антитела от антигенов? Содержат ли вакцины антитела?

14. На какие вещества распадаются белки в организме? Сколько энергии выделяется при этом? Где и как обезвреживается аммиак?

15. Приведите пример пептидных гормонов: как они участвуют в регуляции клеточного метаболизма?

16. Какова структура сахара, с которым мы пьем чай? Какие еще три синонима этого вещества вы знаете?

17. Почему жир в молоке не собирается на поверхности, а находится в виде суспензии?

18. Какова масса ДНК в ядре соматической и половой клеток?

19. Какое количество АТФ используется человеком в сутки?

20. Из каких белков люди изготавливают одежду?

Первичная структура панкреатической рибонуклеазы (124 аминокислоты)

II. Домашнее задание.

Продолжить подготовку к зачету и контрольной работе по разделу «Химическая организация жизни».

Урок 21. Зачетный урок по разделу «Химическая организация жизни»

I. Проведение устного зачета по вопросам

1. Элементарный состав клетки.

2. Характеристика органогенных элементов.

3. Структура молекулы воды. Водородная связь и ее значение в «химии» жизни.

4. Свойства и биологические функции воды.

5. Гидрофильные и гидрофобные вещества.

6. Катионы и их биологическое значение.

7. Анионы и их биологическое значение.

8. Полимеры. Биологические полимеры. Отличия периодических и непериодических полимеров.

9. Свойства липидов, их биологические функции.

10. Группы углеводов, выделяемые по особенностям строения.

11. Биологические функции углеводов.

12. Элементарный состав белков. Аминокислоты. Образование пептидов.

13. Первичная, вторичная, третичная и четвертичная структуры белков.

14. Биологические функция белков.

15. Отличия ферментов от небиологических катализаторов.

16. Строение ферментов. Коферменты.

17. Механизм действия ферментов.

18. Нуклеиновые кислоты. Нуклеотиды и их строение. Образование полинуклеотидов.

19. Правила Э.Чаргаффа. Принцип комплементарности.

20. Образование двухцепочечной молекулы ДНК и ее спирализация.

21. Классы клеточной РНК и их функции.

22. Отличия ДНК и РНК.

23. Репликация ДНК. Транскрипция.

24. Строение и биологическая роль АТФ.

25. Образование АТФ в клетке.

II. Домашнее задание

Продолжить подготовку к контрольной работе по разделу «Химическая организация жизни».

Урок 22. Контрольный урок по разделу «Химическая организация жизни»

I. Проведение письменной контрольной работы

Вариант 1

1. Имеются три вида аминокислот – А, В, С. Сколько вариантов полипептидных цепей, состоящих из пяти аминокислот, можно построить. Укажите эти варианты. Будут ли эти полипептиды обладать одинаковыми свойствами? Почему?

2. Все живое в основном состоит из соединений углерода, а аналог углерода – кремний, содержание которого в земной коре в 300 раз больше, чем углерода, встречается лишь в очень немногих организмах. Объясните этот факт с точки зрения строения и свойств атомов этих элементов.

3. В одну клетку ввели молекулы АТФ, меченные радиоактивным 32Р по последнему, третьему остатку фосфорной кислоты, а в другую – молекулы АТФ, меченные 32Р по первому, ближайшему к рибозе остатку. Через 5 минут в обеих клетках померили содержание неорганического фосфат-иона, меченного 32Р. Где оно окажется значительно выше?

4. Исследования показали, что 34% общего числа нуклеотидов данной иРНК приходится на гуанин, 18% – на урацил, 28% – на цитозин и 20% – на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

Вариант 2

1. Жиры составляют «первый резерв» в энергетическом обмене и используются, когда исчерпан резерв углеводов. Однако в скелетных мышцах при наличии глюкозы и жирных кислот в большей степени используются последние. Белки же в качестве источника энергии всегда используются лишь в крайнем случае, при голодании организма. Объясните эти факты.

2. Ионы тяжелых металлов (ртути, свинца и др.) и мышьяка легко связываются сульфидными группировками белков. Зная свойства сульфидов этих металлов, объясните, что произойдет с белком при соединении с этими металлами. Почему тяжелые металлы являются ядами для организма?

3. В реакции окисления вещества А в вещество В освобождается 60 кДж энергии. Сколько молекул АТФ может быть максимально синтезировано в этой реакции? Как будет израсходована остальная энергия?

4. Исследования показали, что 27% общего числа нуклеотидов данной иРНК приходится на гуанин, 15% – на урацил, 18% – на цитозин и 40% – на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

Продолжение следует