В каждой области науки есть своя «синяя птица»; кибернетики мечтают о «думающих» машинах, физики - об управляемых термоядерных реакциях, химики - о синтезе «живого вещества» - белка. Синтез белка долгие годы был темой фантастических романов, символом грядущего могущества химии. Это объясняется и той огромной ролью, какая принадлежит белку в мире живого, и теми трудностями, которые неизбежно вставали перед каждым смельчаком, отважившимся «сложить» из отдельных аминокислот замысловатую мозаику белка. И даже еще не самого белка, а только .

Разница между белками и пептидами не только терминологическая, хотя молекулярные цепи и тех и других состоят из аминокислотных остатков. На каком-то этапе количество переходит в качество: пептидная цепь - первичная структура - обретает способность сворачиваться в спирали и клубки, образуя вторичную и третичную структуры, характерные уже для живой материи. И тогда пептид становится белком. Четкой границы здесь не существует - на полимерной цепи нельзя поставить демаркационный знак: досель - пептид, отсель - белок. Но известно, например, что адранокортикотропный гормон, состоящий из 39 остатков аминокислот,- это полипептид, а гормон инсулин, состоящий из 51 остатка в виде двух цепей,- это уже белок. Простейший, но все же белок.

Способ соединения аминокислот в пептиды был открыт в начале прошлого века немецким химиком Эмилем Фишером. Но еще долго после этого химики не могли всерьез помышлять не только о синтезе белка или 39-членных пептидов, но даже значительно более коротких цепей.

Процесс синтеза белка

Для того, чтобы соединить между собой две аминокислоты, надо преодолеть немало трудностей. Каждая аминокислота, подобно двуликому Янусу, имеет два химических лица: карбоксильную кислотную группу на одном конце и аминную основную группу - на другом. Если от карбоксила одной аминокислоты отнять группу ОН, а от аминной группы другой - атом , то образовавшиеся при этом два аминокислотных остатка могут соединиться друг с другом пептидной связью, и в результате возникнет простейший из пептидов - дипептид. И отщепится молекула воды. Повторяя эту операцию, можно наращивать длину пептида.

Однако эта, казалось бы, на первый взгляд несложная операция практически трудноосуществима: аминокислоты очень неохотно соединяются друг с другом. Приходится их активировать, химически, и «подогревать» один из концов цепи (чаще всего карбоксильный), и вести реакцию, строго соблюдая необходимые условия. Но это еще не все: вторая сложность состоит в том, что соединяться друг с другом могут не только остатки разных аминокислот, но и две молекулы одной кислоты. При этом строение синтезируемого пептида будет уже отличаться от желаемого. Больше того, каждая аминокислота может иметь не две, а несколько «ахиллесовых пят» - боковых химически активных групп, способных присоединять аминокислотные остатки.

Чтобы не дать реакции свернуть с заданного пути, необходимо закамуфлировать эти ложные мишени - «запечатать» на время осуществляемой реакции все реакционноспособные группы аминокислоты, кроме одной, присоединив к ним так называемые защитные группировки. Если этого не сделать, то цель будет расти не только с обоих концов, но и вбок, и аминокислоты уже не удастся соединить в заданной последовательности. А ведь именно в этом и заключается смысл всякого направленного синтеза.

Но, избавляясь таким образом от одной неприятности, химики столкнулись с другой: защитные группировки после окончания синтеза нужно удалить. Во времена Фишера в качестве «защиты» применялись группировки, которые отщеплялись гидролизом. Однако реакция гидролиза обычно оказывалась слишком сильным «потрясением» для полученного пептида: с трудом построенная его «конструкция» разваливалась как только с нее снимали «строительные леса» - защитные группировки. Лишь в 1932 году ученик Фишера М. Бергманн нашел выход из этого положения: он предложил защищать аминогруппу аминокислоты карбобензоксигруппой, которую можно было удалить без повреждения пептидной цепи.

Синтез белка из аминокислот

В течение последующих лет был предложен ряд так называемых мягких методов «сшивки» аминокислот друг с другом. Однако все они фактически были лишь вариациями на тему метода Фишера. Вариациями, в которых иногда даже трудно было уловить исходную мелодию. Но сам принцип оставался все тем же. И все теми же оставались трудности, связанные с защитой уязвимых групп. За преодоление этих трудностей приходилось расплачиваться увеличением числа стадий реакции: один элементарный акт - соединение двух аминокислот - распадался на четыре этапа. А каждая лишняя стадия - это неизбежные потери.

Если даже предположить, что каждая стадия идет с полезным выходом в 80% (а это хороший выход), то через четыре этапа эти 80% «растают» до 40%. И это при синтезе только дипептида! А если аминокислот будет 8? А если 51, как в инсулине? Прибавьте к этому сложности, связанные с существованием двух оптических «зеркальных» форм молекул аминокислот, из которых в реакции нужна только одна, приплюсуйте проблемы отделения образующихся пептидов от побочных продуктов, особенно в тех случаях, когда они одинаково растворимы. Что же получится в сумме: Дорога в никуда?

И все же эти трудности не останавливали химиков. Погоня за «синей птицей» продолжалась. В 1954 году были синтезированы первые биологически активные гормоны-полипептиды - вазопрессин и окситоцин. В них было по восемь аминокислот. В 1963 году был синтезирован 39-членный полипептид АКТГ - адренокортикотропный гормон. Наконец, химики США, Германии и Китая синтезировали первый белок - гормон инсулин.

Как же так, скажет читатель, трудная дорога, оказывается, привела не в никуда и не куда-нибудь, а к осуществлению мечты многих поколений химиков! Это же эпохальное событие! Верно, это - эпохальное событие. Но давайте оценим его трезво, отрешившись от сенсационности, восклицательных знаков и чрезмерных эмоций.

Никто не спорит: синтез инсулина - огромная победа химиков. Это колоссальный, титанический труд, достойный всякого восхищения. Но вместе с тем эго, по существу, и потолок старой химии полипептидов. Это победа на грани поражения.

Синтез белков и инсулин

В инсулине 51 аминокислота. Чтобы соединить их в нужной последовательности, химикам потребовалось провести 223 реакции. Когда спустя три года после начала первой из них была закончена последняя, выход продукта составлял меньше одной сотой процента. Три года, 223 стадии, сотая доля процента - согласитесь, победа носит чисто символический характер. Говорить о практическом применении этого метода очень трудно: слишком велики связанные с его реализацией расходы. А ведь в конечном счете речь идет о синтезе не драгоценных реликвий славы органической химии, а о выпуске жизненно важного лекарственного препарата, который необходим тысячам людей во всем мире. Так классический метод синтеза полипептидов исчерпал себя на первом же, самом простом белке. Значит, «синяя птица» вновь ускользнула из рук химиков?

Новый метод синтеза белка

Примерно за полтора года до того, как мир узнал о синтезе инсулина, в печати промелькнуло еще одно сообщение, которое вначале не привлекло особого внимания: американский ученый Р. Мэрифилд предложил новый метод синтеза пептидов. Поскольку сам автор поначалу не дал методу должной оценки, и в нем было много недоработок, выглядел он в первом приближении даже хуже существовавших. Однако уже в начале 1964 года, когда Мэрифилду удалось с помощью своего метода осуществить полный синтез 9-членного гормона с полезным выходом в 70%, ученые изумились: 70% после всех этапов - это 9% полезного выхода на каждой стадии синтеза.

Основная идея нового метода заключается в том, что растущие цепочки пептидов, которые раньше были брошены на произвол хаотического движения в растворе, теперь привязывались одним концом к твердому носителю - их как бы заставляли стать на якорь в растворе. Мэрифилд брал твердую смолу и к ее активным группам «привязывал» за карбонильный конец первую из собираемых в пептид аминокислоту. Реакции шли внутри отдельных частичек смолы. В «лабиринтах» ее молекул сначала появлялись первые короткие ростки будущего пептида. Затем в сосуд вводили вторую аминокислоту, ее молекулы сшивались своими карбонильными концами со свободными аминными концами «привязанной» аминокислоты, и в частицах вырастал еще один «этаж» будущего «здания» пептида. Так, этап за этапом, постепенно наращивался весь пептидный полимер.

Новый метод имел несомненные преимущества: прежде всего в нем была решена проблема отделения ненужных продуктов после присоединения каждой очередной аминокислоты - эти продукты легко смывались, а пептид оставался пришитым к гранулам смолы. Одновременно исключалась проблема растворимости растущих пептидов - один из главных бичей старого метода; раньше они нередко выпадали в осадок, практически переставая участвовать в процессе роста. Пептиды, «снимаемые» после окончания синтеза с твердой подложки, получались почти все одинакового размера и строения, во всяком случае, разброс в структуре был меньше, чем при классическом методе. И соответственно больше полезный выход. Благодаря этому методу синтез пептидов - кропотливый, трудоемкий синтез - легко поддается автоматизации.

Мэрифилд соорудил несложный автомат, который сам по заданной программе проделывал все положенные операции - подачу реагентов, смешивание, слив, промывку, отмер дозы, добавление новой порции и так далее. Если по старому методу на присоединение одной аминокислоты приходилось травить 2-3 дня, то Мэрифилд на своем автомате соединял за день 5 аминокислот. Разница - в 15 раз.

В чем состоят трудности синтеза белков

Метод Мэрифилда, названный твердофазным, или гетерогенным, сразу же был принят на вооружение химиками всего мира. Однако уже через короткое время стало ясно: новый метод вместе с крупными достоинствами имеет и ряд серьезных недостатков.

По мере роста пептидных цепей может случиться так, что в какой-то из них окажется пропущенным, скажем, третий «этаж» - третья по счету аминокислота: ее молекула не дойдет до места соединения, застряв где-нибудь по дороге в структурных «дебрях» твердого полимера. И тогда, даже если все остальные аминокислоты, начиная с четвертой, выстроятся в должном порядке, это уже не спасет положения. Полученный полипептид по своему составу, а следовательно, и по своим свойствам не будет иметь ничего общего с получаемым веществом. Произойдет то же самое, что и при наборе телефонного номера; стоит пропустить одну цифру - и нам уже не поможет тот факт, что все остальные мы набрали правильно. Отделить же такие ложные цепи от «настоящих» практически невозможно, и препарат оказывается засоренным примесями. Кроме того, оказывается, что синтез нельзя вести на какой угодно смоле - ее нужно тщательно подбирать, так как свойства растущего пептида зависят в какой-то мере от свойств смолы. Поэтому ко всем этапам синтеза белка необходимо подходить максимально тщательно.

Синтез белка ДНК, видео

И под конец, предлагаем вашему вниманию образовательное видео о том, как происходит синтез белка в молекулах ДНК.

Белки составляют материальную основу химической деятельности клетки. Функции белков в природе универсальны. Названию белки, наиболее принятому в отечественной литературе, соответствует термин протеины (от греч. proteios - первый). К настоящему времени достигнуты большие успехи в установлении соотношения структуры и функций белков, механизма их участия в важнейших процессах жизнедеятельности организма и в понимании молекулярных основ патогенеза многих болезней.

В зависимости от молекулярной массы различают пептиды и белки. Пептиды имеют меньшую молекулярную массу, чем белки. Для пептидов более свойственна регуляторная функция (гормоны, ингибиторы и активаторы ферментов, переносчики ионов через мембраны, антибиотики, токсины и др.).

12.1. α -Аминокислоты

12.1.1. Классификация

Пептиды и белки построены из остатков α-аминокислот. Общее число встречающихся в природе аминокислот превышает 100, но некоторые из них обнаружены лишь в определенном сообществе орга- низмов, 20 наиболее важных α-аминокислот постоянно встречаются во всех белках (схема 12.1).

α-Аминокислоты - гетерофункциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу у одного и того же атома углерода.

Схема 12.1. Важнейшие α-аминокислоты*

* Сокращенные обозначения применяются только для записи аминокислотных остатков в молекулах пептидов и белков. ** Незаменимые аминокислоты.

Названия α-аминокислот могут быть построены по заместительной номенклатуре, но чаще используются их тривиальные названия.

Тривиальные названия α-аминокислот обычно связаны с источниками выделения. Серин входит в состав фиброина шелка (от лат. serieus - шелковистый); тирозин впервые выделен из сыра (от греч. tyros - сыр); глутамин - из злаковой клейковины (от нем. Gluten - клей); аспарагиновая кислота - из ростков спаржи (от лат. asparagus - спаржа).

Многие α-аминокислоты синтезируются в организме. Некоторые аминокислоты, необходимые для синтеза белков, в организме не образуются и должны поступать извне. Такие аминокислоты называют незаменимыми (см. схему 12.1).

К незаменимым α-аминокислотам относятся:

валин изолейцин метионин триптофан

лейцин лизин треонин фенилаланин

α-Аминокислоты классифицируют несколькими способами в зависимости от признака, положенного в основу их деления на группы.

Одним из классификационных признаков служит химическая природа радикала R. По этому признаку аминокислоты делятся на алифатические, ароматические и гетероциклические (см. схему 12.1).

Алифатические α-аминокислоты. Это наиболее многочисленная группа. Внутри нее аминокислоты подразделяют с привлечением дополнительных классификационных признаков.

В зависимости от числа карбоксильных групп и аминогрупп в молекуле выделяют:

Нейтральные аминокислоты - по одной группе NH 2 и СООН;

Основные аминокислоты - две группы NH 2 и одна группа

СООН;

Кислые аминокислоты - одна группа NH 2 и две группы СООН.

Можно отметить, что в группе алифатических нейтральных аминокислот число атомов углерода в цепи не бывает больше шести. При этом не существует аминокислоты с четырьмя атомами углерода в цепи, а аминокисоты с пятью и шестью атомами углерода имеют только разветвленное строение (валин, лейцин, изолейцин).

В алифатическом радикале могут содержаться «дополнительные» функциональные группы:

Гидроксильная - серин, треонин;

Карбоксильная - аспарагиновая и глутаминовая кислоты;

Тиольная - цистеин;

Амидная - аспарагин, глутамин.

Ароматические α-аминокислоты. К этой группе относятся фенилаланин и тирозин, построенные таким образом, что бензольные кольца в них отделены от общего α-аминокислотного фрагмента метиленовой группой -СН 2-.

Гетероциклические α-аминокислоты. Относящиеся к этой группе гистидин и триптофан содержат гетероциклы - имидазол и индол соответственно. Строение и свойства этих гетероциклов рассмотрены ниже (см. 13.3.1; 13.3.2). Общий принцип построения гетероциклических аминокислот такой же, как и ароматических.

Гетероциклические и ароматические α-аминокислоты можно рассматривать как β-замещенные производные аланина.

К героциклическим относится также аминокислота пролин, в которой вторичная аминогруппа включена в состав пирролидинового

В химии α-аминокислот большое внимание уделяется строению и свойствам «боковых» радикалов R, которые играют важную роль в формировании структуры белков и выполнении ими биологических функций. Большое значение имеют такие характеристики, как полярность «боковых» радикалов, наличие в радикалах функциональных групп и способность этих функциональных групп к ионизации.

В зависимости от бокового радикала выделяют аминокислоты с неполярными (гидрофобными) радикалами и аминокислоты c поляр- ными (гидрофильными) радикалами.

К первой группе относятся аминокислоты с алифатическими боковыми радикалами - аланин, валин, лейцин, изолейцин, метионин - и ароматическими боковыми радикалами - фенилаланин, триптофан.

Ко второй группе принадлежат аминокислоты, у которых в радикале имеются полярные функциональные группы, способные к иони- зации (ионогенные) или не способные переходить в ионное состояние (неионогенные) в условиях организма. Например, в тирозине гидроксильная группа ионогенная (имеет фенольный характер), в серине - неионогенная (имеет спиртовую природу).

Полярные аминокислоты с ионогенными группами в радикалах в определенных условиях могут находиться в ионном (анионном или катионном) состоянии.

12.1.2. Стереоизомерия

Основной тип построения α-аминокислот, т. е. связь одного и того же атома углерода с двумя разными функциональными группами, радикалом и атомом водорода, уже сам по себе предопределяет хираль- ность α-атома углерода. Исключение составляет простейшая аминокислота глицин H 2 NCH 2 COOH, не имеющая центра хиральности.

Конфигурация α-аминокислот определяется по конфигурационному стандарту - глицериновому альдегиду. Расположение в стандартной проекционной формуле Фишера аминогруппы слева (подобно группе ОН в l-глицериновом альдегиде) соответствует l-конфи- гурации, справа - d-конфигурации хирального атома углерода. По R, S-системе α-атом углерода у всех α-аминокислот l-ряда имеет S-, а у d-ряда - R-конфигурацию (исключение составляет цистеин, см. 7.1.2).

Большинство α-аминокислот содержит в молекуле один асимметрический атом углерода и существует в виде двух оптически активных энантиомеров и одного оптически неактивного рацемата. Почти все природные α-аминокислоты принадлежат к l-ряду.

Аминокислоты изолейцин, треонин и 4-гидроксипролин содержат в молекуле по два центра хиральности.

Такие аминокислоты могут существовать в виде четырех стереоизомеров, представляющих собой две пары энантиомеров, каждая из которых образует рацемат. Для построения белков животных организмов используется только один из энантиомеров.

Стереоизомерия изолейцина аналогична рассмотренной ранее стереоизомерии треонина (см. 7.1.3). Из четырех стереоизомеров в состав белков входит l-изолейцин с S-конфигурацией обоих асимметрических атомов углерода С-α и С-β. В названиях другой пары энантиомеров, являющихся диастереомерами по отношению к лейцину, используется приставка алло-.

Расщепление рацематов. Источником получения α-аминокислот l-ряда служат белки, которые подвергают для этого гидролитическому расщеплению. В связи с большой потребностью в отдельных энантиомерах (для синтеза белков, лекарственных веществ и т. п.) разработаны химические методы расщепления синтетических рацемических аминокислот. Предпочтителен ферментативный способ расщепления с использованием ферментов. В настоящее время для разделения рацемических смесей используют хроматографию на хиральных сорбентах.

12.1.3. Кислотно-основные свойства

Амфотерность аминокислот обусловлена кислотными (СООН) и основными (NH 2) функциональными группами в их молекулах. Аминокислоты образуют соли как со щелочами, так и с кислотами.

В кристаллическом состоянии α-аминокислоты существуют как диполярные ионы H3N+ - CHR-COO- (обычно используемая запись

строения аминокислоты в неионизированной форме служит лишь для удобства).

В водном растворе аминокислоты существуют в виде равновесной смеси диполярного иона, катионной и анионной форм.

Положение равновесия зависит от рН среды. У всех аминокислот преобладают катионные формы в сильнокислых (рН 1-2) и анион- ные - в сильнощелочных (рН >11) средах.

Ионное строение обусловливает ряд специфических свойств аминокислот: высокую температуру плавления (выше 200 ?С), растворимость в воде и нерастворимость в неполярных органических растворителях. Способность большинства аминокислот хорошо растворяться в воде является важным фактором обеспечения их биологического функционирования, с нею связаны всасывание аминокислот, их транспорт в организме и т. п.

Полностью протонированная аминокислота (катионная форма) с позиций теории Брёнстеда является двухосновной кислотой,

Отдавая один протон, такая двухосновная кислота превращается в слабую одноосновную кислоту - диполярный ион с одной кислотной группой NH 3 + . Депротонирование диполярного иона приводит к получению анионной формы аминокислоты - карбоксилат-иона, являющегося основанием Брёнстеда. Значения характеризую-

щие кислотные свойства карбоксильной группы аминокислот, обычно лежат в интервале от 1 до 3; значения рK а2 характеризующие кислотность аммониевой группы, - от 9 до 10 (табл. 12.1).

Таблица 12.1. Кислотно-основные свойства важнейших α-аминокислот

Положение равновесия, т. е. соотношение различных форм аминокислоты, в водном растворе при определенных значениях рН существенно зависит от строения радикала, главным образом от присутствия в нем ионогенных групп, играющих роль дополнительных кислотных и основных центров.

Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм аминокислоты равны, называется изоэлектрической точкой (p/).

Нейтральные α-аминокислоты. Эти аминокислоты имеют значения рI несколько ниже 7 (5,5-6,3) вследствие большей способности к ионизации карбоксильной группы под влиянием -/-эффекта группы NH 2 . Например, у аланина изоэлектрическая точка находится при рН 6,0.

Кислые α-аминокислоты. Эти аминокислоты имеют в радикале дополнительную карбоксильную группу и в сильнокислой среде находятся в полностью протонированной форме. Кислые аминокислоты являются трехосновными (по Брёндстеду) с тремя значениями рК а, как это видно на примере аспарагиновой кислоты (р/ 3,0).

У кислых аминокислот (аспарагиновой и глутаминовой) изоэлектрическая точка находится при рН много ниже 7 (см. табл. 12.1). В организме при физиологических значениях рН (например, рН крови 7,3-7,5) эти кислоты находятся в анионной форме, так как у них ионизированы обе карбоксильные группы.

Основные α-аминокислоты. В случае основных аминокислот изоэлектрические точки находятся в области рН выше 7. В сильно- кислой среде эти соединения также представляют собой трехосновные кислоты, этапы ионизации которых показаны на примере лизина (р/ 9,8).

В организме основные аминокислоты находятся в виде катионов, т. е. у них протонированы обе аминогруппы.

В целом ни одна α -аминокислота in vivo не находится в своей изоэлектрической точке и не попадает в состояние, отвечающее наименьшей растворимости в воде. Все аминокислоты в организме находятся в ионной форме.

12.1.4. Аналитически важные реакции α -аминокислот

α-Аминокислоты как гетерофункциональные соединения вступают в реакции, характерные как для карбоксильной, так и для аминогруппы. Некоторые химические свойства аминокислот обусловлены функциональными группами в радикале. В настоящем разделе рассматриваются реакции, имеющие практическое значение для идентификации и анализа аминокислот.

Этерификация. При взаимодействии аминокислот со спиртами в присутствии кислотного катализатора (например, газообразный хлороводород) с хорошим выходом получаются сложные эфиры в виде гидрохлоридов. Для выделения свободных эфиров реакционную смесь обрабатывают газообразным аммиаком.

Сложные эфиры аминокислот не имеют диполярного строения, поэтому, в отличие от исходных кислот, они растворяются в органических растворителях и обладают летучестью. Так, глицин - крис- таллическое вещество с высокой температурой плавления (292 ?С), а его метиловый эфир - жидкость с температурой кипения 130 ?С. Анализ эфиров аминокислот можно проводить с помощью газожидкостной хроматографии.

Реакция с формальдегидом. Практическое значение имеет реакция с формальдегидом, которая лежит в основе количественного определения аминокислот методом формольного титрования (метод Сёренсена).

Амфотерность аминокислот не позволяет проводить непосредственно титрование их щелочью в аналитических целях. При взаимодействии аминокислот с формальдегидом получаются относительно устойчивые аминоспирты (см. 5.3) - N-гидроксиметильные производные, свободную карбоксильную группу которых затем титруют щелочью.

Качественные реакции. Особенность химии аминокислот и белков заключается в использовании многочисленных качественных (цветных) реакций, составлявших ранее основу химического анализа. В настоящее время, когда исследования проводятся с помощью физико-химических методов, многие качественные реакции продолжают применять для обнаружения α-аминокислот, например, в хроматографическом анализе.

Хелатообразование. С катионами тяжелых металлов α-аминокислоты как бифункциональные соединения образуют внутрикомплексные соли, например, со свежеприготовленным гидроксидом меди(11) в мягких условиях получаются хорошо кристаллизующиеся хелатные

соли меди(11) синего цвета (один из неспецифических способов обнаружения α-аминокислот).

Нингидринная реакция. Общая качественная реакция α-аминокислот - реакция с нингидрином. Продукт реакции имеет синефиолетовый цвет, что используется для визуального обнаружения аминокислот на хроматограммах (на бумаге, в тонком слое), а также для спектрофотометрического определения на аминокислотных анализаторах (продукт поглощает свет в области 550-570 нм).

Дезаминирование. В лабораторных условиях эта реакция осуществляется при действии азотистой кислоты на α-аминокислоты (см. 4.3). При этом образуется соответствующая α-гидроксикислота и выделяется газообразный азот, по объему которого судят о количестве вступившей в реакцию аминокислоты (метод Ван-Слайка).

Ксантопротеиновая реакция. Эта реакция используется для обнаружения ароматических и гетероциклических аминокислот - фенилаланина, тирозина, гистидина, триптофана. Например, при действии концентрированной азотной кислоты на тирозин образуется нитропроизводное, окрашенное в желтый цвет. В щелочной среде окраска становится оранжевой в связи с ионизацией фенольной гидроксильной группы и увеличением вклада аниона в сопряжение.

Существует также ряд частных реакций, позволяющих обнаруживать отдельные аминокислоты.

Триптофан обнаруживают при помощи реакции с п-(диметиламино)бензальдегидом в среде серной кислоты по появляющемуся красно-фиолетовому окрашиванию (реакция Эрлиха). Эта реакция используется для количественного анализа триптофана в продуктах расщепления белков.

Цистеин обнаруживают с помощью нескольких качественных реакций, основанных на реакционной способности содержащейся в нем меркаптогруппы. Например, при нагревании раствора белка с ацетатом свинца (СНзСОО)2РЬ в щелочной среде образуется черный осадок сульфида свинца PbS, что указывает на присутствие в белках цистеина.

12.1.5. Биологически важные химические реакции

В организме под действием различных ферментов осуществляется ряд важных химических превращений аминокислот. К таким пре- вращениям относятся трансаминирование, декарбоксилирование, элиминирование, альдольное расщепление, окислительное дезаминирование, окисление тиольных групп.

Трансаминирование является основным путем биосинтеза α-ами- нокислот из α-оксокислот. Донором аминогруппы служит аминокислота, имеющаяся в клетках в достаточном количестве или избытке, а ее акцептором - α-оксокислота. Аминокислота при этом превращается в оксокислоту, а оксокислота - в аминокислоту с соответствующим строением радикалов. В итоге трансаминирование представляет обратимый процесс взаимообмена амино- и оксо- групп. Пример такой реакции - получение l-глутаминовой кислоты из 2-оксоглутаровой кислоты. Донорной аминокислотой может служить, например, l-аспарагиновая кислота.

α-Аминокислоты содержат в α-положении к карбоксильной группе электроноакцепторную аминогруппу (точнее, протонированную аминогруппу NH 3 +), в связи с чем способны к декарбоксилированию.

Элиминирование свойственно аминокислотам, у которых в боковом радикале в β-положении к карбоксильной группе содержится электроноакцепторная функциональная группа, например гидроксильная или тиольная. Их отщепление приводит к промежуточным реакционноспособным α-енаминокислотам, легко переходящим в таутомерные иминокислоты (аналогия с кето-енольной таутомерией). α-Иминокислоты в результате гидратации по связи C=N и последующего отщепления молекулы аммиака превращаются в α-оксокислоты.

Такой тип превращений имеет название элиминирование-гидратация. Примером служит получение пировиноградной кислоты из серина.

Альдольное расщепление происходит в случае α-аминокислот, у которых в β-положении содержится гидроксильная группа. Например, серин расщепляется с образованием глицина и формальдегида (последний не выделяется в свободном виде, а сразу связывается с коферментом).

Окислительное дезаминирование может осуществляться с участием ферментов и кофермента НАД+ или НАДФ+ (см. 14.3). α-Аминокислоты могут превращаться в α-оксокислоты не только через трансаминирование, но и путем окислительного дезаминирования. Например, из l-глутаминовой кислоты образуется α-оксоглутаровая кислота. На первой стадии реакции осуществляется дегид- рирование (окисление) глутаминовой кислоты до α-иминоглутаровой

кислоты. На второй стадии происходит гидролиз, в результате которого получаются α-оксоглутаровая кислота и аммиак. Стадия гидролиза протекает без участия фермента.

В обратном направлении протекает реакция восстановительного аминирования α-оксокислот. Всегда содержащаяся в клетках α-оксоглутаровая кислота (как продукт метаболизма углеводов) превращается этим путем в L-глутаминовую кислоту.

Окисление тиольных групп лежит в основе взаимопревращений цистеиновых и цистиновых остатков, обеспечивающих ряд окислительно-восстановительных процессов в клетке. Цистеин, как и все тиолы (см. 4.1.2), легко окисляется с образованием дисульфида - цистина. Дисульфидная связь в цистине легко восстанавливается с образованием цистеина.

Благодаря способности тиольной группы к легкому окислению цистеин выполняет защитную функцию при воздействии на орга- низм веществ с высокой окислительной способностью. Кроме того, он был первым лекарственным средством, проявившим противолучевое действие. Цистеин используется в фармацевтической практике в качестве стабилизатора лекарственных препаратов.

Превращение цистеина в цистин приводит к образованию дисульфидных связей, например, в восстановленном глутатионе

(см. 12.2.3).

12.2. Первичная структура пептидов и белков

Условно считают, что пептиды содержат в молекуле до 100 (что соответствует молекулярной массе до 10 тыс.), а белки - более 100 аминокислотных остатков (молекулярная масса от 10 тыс. до нескольких миллионов).

В свою очередь, в группе пептидов принято различать олигопептиды (низкомолекулярные пептиды), содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, в состав цепи которых входит до 100 аминокислотных остатков. Макромолекулы с числом аминокислотных остатков, приближающимся или немного превышающим 100, не разграничивают по понятиям полипептиды и белки, эти термины часто используют как синонимы.

Пептидную и белковую молекулу формально можно представить как продукт поликонденсации α-аминокислот, протекающей с обра- зованием пептидной (амидной) связи между мономерными звеньями (схема 12.2).

Конструкция полиамидной цепи одинакова для всего многообразия пептидов и белков. Эта цепь имеет неразветвленное строение и состоит из чередующихся пептидных (амидных) групп -СО-NH- и фрагментов -CH(R)-.

Один конец цепи, на котором находится аминокислота со свободной группой NH 2, называют N-концом, другой - С-концом,

Схема 12.2. Принцип построения пептидной цепи

на котором находится аминокислота со свободной группой СООН. Пептидные и белковые цепи записывают с N-конца.

12.2.1. Строение пептидной группы

В пептидной (амидной) группе -СО-NH- атом углерода находится в состоянии sp2-гибридизации. Неподеленная пара электронов атома азота вступает в сопряжение с π-электронами двойной связи С=О. С позиций электронного строения пептидная группа представляет собой трехцентровую p,π-сопряженную систему (см. 2.3.1), электронная плотность в которой смещена в сторону более электроотрицательного атома кислорода. Атомы С, Ои N, образующие сопряженную систему, находятся в одной плоскости. Распределение электронной плотности в амидной группе можно представить с по- мощью граничных структур (I) и (II) или смещения электронной плотности в результате +M- и - M-эффектов групп NH и C=O соответственно (III).

В результате сопряжения происходит некоторое выравнивание длин связей. Двойная связь С=О удлиняется до 0,124 нм против обычной длины 0,121 нм, а связь С-N становится короче - 0,132 нм по сравнению с 0,147 нм в обычном случае (рис. 12.1). Плоская сопряженная система в пептидной группе служит причиной затруднения вращения вокруг связи С-N (барьер вращения составляет 63-84 кДж/моль). Таким образом, электронное строение предопре- деляет достаточно жесткую плоскую структуру пептидной группы.

Как видно из рис. 12.1, α-атомы углерода аминокислотных остатков располагаются в плоскости пептидной группы по разные стороны от связи С-N, т. е. в более выгодном тpанс-положении: боковые радикалы R аминокислотных остатков в этом случае будут наиболее удалены друг от друга в пространстве.

Полипептидная цепь имеет удивительно однотипное строение и может быть представлена в виде ряда расположенных под углом друг

Рис. 12.1. Плоскостное расположение пептидной группы -CO-NH- и α-атомов углерода аминокислотных остатков

к другу плоскостей пептидных групп, соединенных между собой через α-атомы углерода связями Сα-N и Сα-Сsp 2 (рис. 12.2). Вращение вокруг этих одинарных связей весьма ограничено вследствие затруднений в пространственном размещении боковых радикалов аминокислотных остатков. Таким образом, электронное и пространственное строение пептидной группы во многом предопределяет структуру полипептидной цепи в целом.

Рис. 12.2. Взаимное положение плоскостей пептидных групп в полипептидной цепи

12.2.2. Состав и аминокислотная последовательность

При единообразно построенной полиамидной цепи специфичность пептидов и белков определяется двумя важнейшими характе- ристиками - аминокислотным составом и аминокислотной последовательностью.

Аминокислотный состав пептидов и белков - это природа и количественное соотношение входящих в них α-аминокислот.

Аминокислотный состав устанавливается путем анализа пептидных и белковых гидролизатов в основном хроматографическими методами. В настоящее время такой анализ осуществляется с помощью аминокислотных анализаторов.

Амидные связи способны гидролизоваться как в кислой, так и щелочной среде (см. 8.3.3). Пептиды и белки гидролизуются с образованием либо более коротких цепей - это так называемый частичный гидролиз, либо смеси аминокислот (в ионной форме) - полный гидролиз. Обычно гидролиз осуществляют в кислой среде, так как в условиях щелочного гидролиза многие аминокислоты неустойчивы. Следует отметить, что гидролизу подвергаются также амидные группы аспарагина и глутамина.

Первичная структура пептидов и белков - это аминокислотная последовательность, т. е. порядок чередования α-аминокислотных остатков.

Первичную структуру определяют путем последовательного отщепления аминокислот с какого-либо конца цепи и их идентификации.

12.2.3. Строение и номенклатура пептидов

Названия пептидов строят путем последовательного перечисления аминокислотных остатков, начиная с N-конца, с добавлением суффикса -ил, кроме последней С-концевой аминокислоты, для которой сохраняется ее полное название. Другими словами, названия

аминокислот, вступивших в образование пептидной связи за счет «своей» группы СООН, оканчиваются в названии пептида на -ил: аланил, валил и т. п. (для остатков аспарагиновой и глутаминовой кислот используют названия «аспартил» и «глутамил» соответствен- но). Названия и символы аминокислот означают их принадлежность к l -ряду, если не указано иное (d или dl ).

Иногда в сокращенной записи символами Н (как часть аминогруппы) и ОН (как часть карбоксильной группы) уточняется незамещенность функциональных групп концевых аминокислот. Этим способом удобно изображать функциональные производные пептидов; например, амид приведенного выше пептида по С-концевой аминокислоте записывается Н-Asn-Gly-Phe-NH2.

Пептиды содержатся во всех организмах. В отличие от белков они имеют более разнородный аминокислотный состав, в частнос- ти, довольно часто включают аминокислоты d -ряда. В структурном отношении они также более разнообразны: содержат циклические фрагменты, разветвленные цепи и т. д.

Один из наиболее распространенных представителей трипептидов - глутатион - содержится в организме всех животных, в растениях и бактериях.

Цистеин в составе глутатиона обусловливает возможность существования глутатиона как в восстановленной, так и окисленной форме.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию протектора белков, т. е. вещества, предохраняющего белки со свободными тиольными группами SH от окисления с образованием дисульфидных связей -S-S-. Это касается тех белков, для которых такой процесс нежелателен. Глутатион в этих случаях принимает на себя действие окислителя и таким образом «защищает» белок. При окислении глутатиона происходит межмолекулярное сшивание двух трипептидных фрагментов за счет дисульфидной связи. Процесс обратим.

12.3. Вторичная структура полипептидов и белков

Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны и более высокие уровни организа- ции, которые называют вторичной, третичной и четвертичной струк- турами.

Вторичная структура описывается пространственной ориентацией основной полипептидной цепи, третичная - трехмерной архитектурой всей белковой молекулы. Как вторичная, так и третичная структура связана с упорядоченным расположением макромолекулярной цепи в пространстве. Третичная и четвертичная структура белков рассматривается в курсе биохимии.

Расчетным путем было показано, что для полипептидной цепи одной из наиболее выгодных конформаций является расположение в пространстве в виде правозакрученной спирали, названной α-спиралью (рис. 12.3, а).

Пространственное расположение α-спирализованной полипептидной цепи можно представить, вообразив, что она обвивает некий

Рис. 12.3. α-Спиральная конформация полипептидной цепи

цилиндр (см. рис. 12.3, б). На один виток спирали в среднем приходится 3,6 аминокислотного остатка, шаг спирали составляет 0,54 нм, диаметр - 0,5 нм. Плоскости двух соседних пептидных групп располагаются при этом под углом 108?, а боковые радикалы аминокислот находятся на наружной стороне спирали, т. е. направлены как бы от поверхности цилиндра.

Основную роль в закреплении такой конформации цепи играют водородные связи, которые в α-спирали образуются между кар- бонильным атомом кислорода каждого первого и атомом водорода NН-группы каждого пятого аминокислотного остатка.

Водородные связи направлены почти параллельно оси α-спирали. Они удерживают цепь в закрученном состоянии.

Обычно белковые цепи спирализованы не полностью, а лишь частично. В таких белках, как миоглобин и гемоглобин, содержатся довольно длинные α-спиральные участки, например цепь миоглобина

спирализована на 75%. Во многих других белках доля спиральных участков в цепи может быть небольшой.

Другим видом вторичной структуры полипептидов и белков является β-структура, называемая также складчатым листом, или складчатым слоем. В складчатые листы укладываются вытянутые полипептидные цепи, связываемые множеством водородных связей между пептидными группами этих цепей (рис. 12.4). Во многих белках одновременно содержатся α-спиральные и β-складчатые структуры.

Рис. 12.4. Вторичная структура полипептидной цепи в виде складчатого листа (β-структура)

Разработаны методы полимеризации аминокислот (в некоторых случаях ди- или трипептидов), приводящие к образованию полипептидов с большим молекулярным весом. Эти продукты являются очень важными модельными веществами для изучения, например, вопроса о характере рентгенограмм или ИК-спектров для пептидов известного и сравнительно простого строения.

Однако цель большей части работ по синтезу пептидов заключается в получении соединений, идентичных природным. Метод, пригодный для осуществления этой цели, должен позволять соединять оптически активные аминокислоты в цепи заданной длины и с заданной последовательностью звеньев. Синтезы такого рода не только подтвердили конкретные структуры, приписанные природным пептидам, но и позволили окончательно доказать (и это имеет

фундаментальное значение), что пептиды и белки действительно являются полиамидами.

Первым осуществил синтез пептидов Эмиль Фишер (полученный им пептид содержал 18 аминокислотных остатков). Тем самым он подтвердил свое предположение о том, что белки содержат амидную связь. Отметим, что в химии пептидов и белков Фишер сыграл ту же основополагающую роль, что и в химии углеводов, что неоспоримо свидетельствует о гениальной одаренности этого ученого.

Основная проблема при синтезе пептида - проблема защиты аминогруппы. При взаимодействии карбоксильной группы одной аминокислоты и аминогруппы другой аминокислоты необходимо исключить возможность реакции между карбоксильной группой и аминогруппой молекул одной и той же аминокислоты. Например, при получении глицилаланина необходимо предотвращать одновременное образование глицилглицина. Реакцию можно направить в нужную сторону, если в одну из аминогрупп ввести заместитель, который сделает эту аминогруппу нереакционноспособной. Существует большое число подобных защитных групп; из их числа необходимо выбрать такую группу, которую можно в дальнейшем удалить без разрушения пептидных связей.

Мы можем, например, пробензоилировать глицин, затем превратить его в хлорангидрид, ввести хлорангидрид в реакцию с аланином и получить таким образом бензоилглицилаланин. Но если мы попытаемся удалить бензоильную группу гидролизом, то одновременно подвергнем гидролизу другие амидные связи (пептидные связи) и тем самым разрушим тот пептид, который хотели синтезировать.

Из многочисленных методов, которые разработаны для защиты аминогруппы, рассмотрим лишь один: ацилирование бензилхлоркарбонатом, называемым также карбобензоксихлоридом. (Этот метод был разработан в 1932 г. М. Бергманом и Л. Зервасом в Берлинском университете, позднее в институте Рокфеллера.) Реагент является одновременно и сложным эфиром и хлорангидридом угольной кислоты он легко получается при взаимодействии бензилового спирта с фосгеном . (В какой последовательности нужно смешивать спирт и фосген?)

Подобно любому хлорангидриду, реагент может превращать амин в амид

Подобные амиды, однако, отличаются от большинства амидов в одном отношении, которое очень существенно для синтеза пептидов. Карбобензоксигруппу можно отщепить действием реагентов, не затрагивающих пептидной связи: каталитическим гидрированием или гидролизом раствором бромистого водорода в уксусной кислоте.

Проиллюстрируем метод ацилирования карбобензоксихлоридом на примере синтеза глицилаланина (Gly-Ala):

(см. скан)

Выдающимся достижением явился синтез пептидного гормона окситоцина, выполненный в Корнелльском медицинском колледже В. Дю Виньо, получившим в 1955 г. Нобелевскую премию за эту и другие работы. В 1963 г. был опубликован полный синтез инсулина, содержащего 51 аминокислоту в последовательности, расшифрованной ранее Сэнджером.


Полипептидные цепи, как известно, являются основой белков. Полипептидная цепь может быть представлена обобщенной структурой (83):

Концевое звено с группой NH 2 называют N-концом, другое концевое звено с группой СООН – С-концом. Полипептиды – частный случай полиамидов , связи CO-NH, соединяющие элементарные звенья полипептидной цепи, называют пептидными связями.

Мономеры для синтеза полипептидных цепей - α-аминокислоты; все они, кроме одной могут быть представлены формулами (84)-(84’); одна – пролин – формулами (85)-(85’):

В средах, близких к нейтральным, аминокислоты существуют почти целиком в форме биполярных ионов (84’) и (85’). Радикалы R I могут быть алифатическими, ароматическими, гетероциклическими, многие из них содержат разнообразные функциональные группы: ОН, NH 2 , COOH, SH и др. Для обозначения α-аминокислот в литературе используют три буквы (латинские) названия (чаще всего три первые, но не всегда), например Gly (глицин), Val (валин), Trp (триптофан).

Нематричные синтезы полипептидных цепей из α-аминокислот основаны на нескольких целенаправленных модификациях функциональных групп; эти модификации обеспечивают протекание на каждой стадии единственной реакции – взаимодействия карбоксильной функции предыдущего звена с аминогруппой последующего (если считать с N-конца). Необходимость такой модификации можно проиллюстрировать на простейшем примере синтеза димера – дипептида, для которого дан формальный синтез из мономеров:

Для препаративного синтеза дипептида (88) необходимо: А. Защитить группу NH 2 аминокислоты (86), чтобы избегнуть вариантов взаимодействия (86)-(86) и (87)-(86); Б. Активировать карбоксильную функцию аминокислоты (86), т.к. сама карбоксильная группа малоактивна в реакциях с нуклеофилами; В. Защитить группу СООН аминокислоты (87); это нужно для того, чтобы эта аминокислота не находилась в виде биполярного иона типа (84’); в такой форме аминогруппа не нуклеофильна и, следовательно, неактивна.

Поликонденсацию, ведущую к синтезу пептидной цепи с заданной первичной структурой, можно представить следующей схемой:

где Z – защитная группа для аминогруппы; Х – активирующая группа для первой карбоксильной функции; Y – защитная группа для второй карбоксильной функции.

После образования защищенного с двух концов дипептида (89) снимают защитную группу либо с его N-конца (1 ), либо с его С-конца (2 ) (совмещая снятие защиты с активированием). Далее освободившуюся группу NH 2 в дипептиде (90) или активированную карбоксильную функцию в дипептиде (91) используют для проведения следующей стадии – реакции с очередным модифицированным мономером с образованием трипептида; эта схема повторяется. В варианте (1 ) пептидная цепь наращивается с С-конца, в варианте (2 ) - с N-конца. В реакции можно вводить не обязательно модифицированные мономеры, но и «сшивать» пептиды друг с другом.

Приведенная здесь схема упрощенная - реально приходится также защищать некоторые функциональные группы, находящиеся в боковых группах R i , например, группу NH 2 в боковом радикале лизина.

А. Защитные группы. Основные требования к защитным группам: а. Они должны полностью предотвращать участие защищаемой группы в проводимых реакциях (блокировать защищаемую группу); б. После проведения реакции они должны достаточно легко удаляться с регенерацией защищаемой группы и без затрагивания остальных фрагментов продукта реакции (в частности, при синтезе пептидов – без разрыва пептидных связей).

1. NH 2 -Защитные группы (группы Z). Сейчас известно большое число вариантов эффективной защиты группы NH 2 ; используются несколько типов защитных групп. Здесь ограничимся наиболее широко применяемым типом – уретановыми защитными группами. Для их постановки соединение, содержащее группу NH 2 , вводят в реакцию с производным моноэфира угольной кислоты, например, хлорангидридом (эфиром хлоругольной кислоты, хлоркарбонатом):

Кроме хлорангидридов, можно использовать азиды или ангидриды. Группировка RO-CO-NH- называется уретановой , откуда и название защиты. Постановка уретановой защиты – аналог ацилирования аминогруппы; обычное ацилирование производными карбоновых кислот неприменимо, т.к. ацильные защитные группы плохо удаляются; напротив, уретановая защита снимается легко, в мягких условиях, причем в различных, в зависимости от характера радикала R. Приведем три примера:

а. R=C 6 H 5 CH 2 ; защитная группа называется бензилоксикарбонильной (карбобензилокси-защита, Z-защита); это исторически первый пример уретановой защиты группы NH 2 (М. Бергман, Л. Зервас, 1932 г.). После проведения необходимой реакции бензилоксикарбонильная защита легко снимается мягким каталитическим гидрированием (точнее – гидрогенолизом):

Продукты гидрогенолиза защитной группы – толуол и СО 2 – легко удаляются из реакционной среды.

б. R = (CH 3) 3 C; защитная группа – трет- бутилоксикарбонильная, Вос-защита (B utyl- o xyc arbonyl); эта защита легко удаляется при мягкой кислотной обработке, например, при действии трифторуксусной кислоты:

Здесь оба продукта, образующиеся при снятии защиты, газообразны, что еще более облегчает их удаление.

В. R=CH 3 SO 2 CH 2 CH 2 – метилсульфонилэтилоксикарбонильная защита (Msc-защита); эта защита снимается NaOH в мягких условиях (рН 10-12, 0 о С).

Различие в условиях снятия приведенных защит позволяет по-разному защищать α-NH 2 -группу аминокислоты и NH 2 -группу в боковом радикале лизина. Тогда одну защиту (α-NH 2 -группы) можно снять, а другую (“лизиновую”) – оставить (защиту боковых групп обычно снимают после окончания формирования полипептидной цепи).

Известно еще несколько вариантов уретановой защиты, а также несколько иных типов защиты группы NH 2 - формильная, фталильная, трифторацетильная; сведения об этих способах можно найти в литературе по биоорганической химии.

2. СООН -Защитные группы. Чаще всего используют образование бензиловых или трет- бутиловых эфиров:

Б
ензиловые эфиры обычно получают прямой этерификацией,трет- бутиловые –присоединением изобутилена при кислотном катализе (этерификация трет- бутанолом пространственно затруднена). Защитные группы снимаются в мягких условиях, сходными с условиями снятия соответствующих уретановых защитных групп.

Иногда для защиты группы СООН используют простое солеобразование:

СООН → -СОО‾.

Б. Активирующие группы (группы Х). Реакции образования пептидной связи относятся к реакциям ацилирования; главной стадией таких реакций является нуклеофильное присоединение (в данном случае группы NH 2) к связи С=О карбоксильной функции. Как уже упоминалось, группа СООН довольно малоактивна в реакциях ацилирования, т.к. неподеленная пара электронов атома кислорода группы ОН в значительной степени компенсирует дефицит электронной плотности на карбонильном атоме углерода:

Активирующая группа (Х) должна быть электроноакцепторной, чтобы сделать атом углерода карбоксильной группы более электрофильным и облегчить атаку аминогруппы для образования пептидной связи.

Известно достаточно много производных карбоновых кислот, содержащих электроноакцепторные группы, но не все они могут быть использованы; например, непригодна самая очевидная активирующая группа – С1 (т.е. не используются хлорангидриды), т.к. в этом случае не сохраняется конфигурация аминокислоты (происходит рацемизация). Ниже приведены широко используемые варианты активации.

А. Образование активированных эфиров (Х = OR). В этом варианте получают ариловые сложные эфиры кислот, которые содержат в ароматическом радикале электроноакцепторные группы (например, пара -нитрофенильную или пентафторфенильную):

Б. Образование азидов кислот (Х = N 3):

Азиды кислот получают через сложные эфиры и гидразиды; азидная группа обладает сильным электроноакцепторным действием

В. Образование смешанных ангидридов. Обычно используют смешанные эфиры α-аминокислот и производных угольной (92) или фосфорной (93) кислот:

Получение смешанных ангидридов с производными угольной кислоты удобно тем, что при последующем образовании пептидной связи активирующая группа удаляется в виде спирта и СО 2 , что препаративно удобно:

Образование смешанных ангидридов α-аминокислот с производным фосфорной кислоты (аминоациладенилатов) – важная реакция, предшествующая процессу биосинтеза белков - трансляции.

Г. Использование карбодиимидов Применение карбодиимидов R-N=C=N-R 1 позволяет провести активацию карбоксильной группы и образование пептидной связи в одну стадию , без выделения активированной аминокислоты (или пептида). Если, допустим, прибавить карбодиимид к смеси NH 2 -защищенной первой аминокислоты и СООН-защищенной второй аминокислоты, то протекают две последовательные реакции:

Вначале карбодиимид реагирует с карбоксильной группой первой аминокислоты с образованием ее активированного производного (94) (напоминающего смешанный ангидрид); далее это производное реагирует с группойNH 2 второй аминокислоты, причем образуется пептид, а активирующая группа удаляется в виде симм. дизамещенной мочевины.

Одним из наиболее широко применяемых реагентов этого типа является дициклогексилкарбодиимид (DCC) (R = R 1 =циклогексил); в ходе пептидного синтеза из него образуется симм. дициклогексилмочевина, нерастворимая в большинстве органических растворителей и легко отделяемая фильтрованием. Также широко используются водорастворимые карбодиимиды [например, R = Et, R 1 = (CH 2) 3 N(CH 3) 2 ].

Карбодиимиды используются не только в пептидном синтезе, но и при синтезе in vitro полинуклеотидов (см. ниже).

Д. Использование N -карбоксиангидридов. Этот вариант позволяет совместить защиту аминогруппы и активацию карбоксильной функции. N-Карбоксиангидриды (ангидриды Лейхса) образуются при взаимодействии α-аминокислот с фосгеном:

П
ри этом совмещаетсязащита группы NH 2 по уретановому типу и активация карбоксильной группы по типу образования смешанного ангидрида с производным угольной кислоты. Образование полипептидов при использовании N-карбоксиангидридов идет следующим образом:

Взаимодействие N-карбоксиангидрида с солью второй аминокислоты при точно установленном значении рН 10,2 приводит к образованию пептидной связи и получению соли производного дипептида (95), содержащей фрагмент соли карбаминовой кислоты. При слабом подкислении (рН 5) образующийся фрагмент карбаминовой кислоты немедленно декарбоксилируется (производные карбаминовой кислоты со свободной группой СООН весьма легко декарбоксилируются), т.е. происходит снятие защиты с N-конца дипептида. Далее полученный дипептид (96) вводят в реакцию с очередным N-карбоксиангидридом при рН 10,2 и т.д.

Этот вариант, в принципе, позволяет сократить число стадий пептидного синтеза, но он требует точного соблюдения условий, в частности, поддержания точного значения рН. В других условиях может произойти, в частности, образование гомополимеров гомополипептидов из N-карбоксиангидридов по схеме:

Такие гомополипептиды могут служить моделями (хотя и довольно приближенными) природных полипептидов, поэтому их получение имело практическое применение.

Пептидный синтез на полимерных носителях. Как видно из изложенного выше, синтез полипептидных цепей сколько-нибудь значительной длины включает большое число отдельно проводимых стадий десятки, а то и сотни). Это весьма трудоёмкий процесс; кроме того, требуется высочайшая эффективность каждой стадии, сведение к минимуму потерь образующихся пептидов. Эффективность во многом определяется сравнительной растворимостью пептидов и других продуктов реакций, которые нужно отделить от пептида: если растворимость разная, разделение и очистка упрощаются.

Методика пептидного синтеза на полимерном носителе значительно упрощает процедуру синтеза и, в частности, кардинально решает проблему растворимости, что позволяет повысить эффективность синтеза. Идея синтеза состоит в том, что формируемая полипептидная цепь с самого начала синтеза связана с макромолекулой полимера-носителя и лишь в конце синтеза отделяется от нее.

Наибольшее распространение имеет использование нерастворимого полимера-носителя (твердофазный пептидный синтез ); эта методика впервые была предложена Р. Меррифилдом в 1963 г. В качестве полимера-носителя обычно используется частично хлорметилированный сополимер стирола с небольшим количеством 1,4-дивинилбензола; это пространственный полимер с редкими поперечными сшивками между цепями и определенным количеством групп СН 2 С1:

П
ептидный синтез на носителе протекает по схеме:

Вначале первую аминокислоту (NH 2 -защищенную, чаще всего Вос-защитой) «прикрепляют» к полимеру-носителю за счет взаимодействия хлорметильной группы с карбоксильной группой аминокислоты (точнее карбоксилатной, в которую она превращается в присутствии триэтиламина); аминокислота прикрепляется к полимеру, образуя с ним сложный эфир типа бензилового (97). Далее снимают защиту с группы NH 2 , добавляют вторую NH 2 -защищенную аминокислоту (обычно в присутствии карбодиимида); образуется прикрепленный к полимеру N-защищенный дипептид (98). Далее цикл повторяют: снимают защиту Z, добавляют третью аминокислоту и т.д.; происходит наращивание пептидной цепи с С-конца по схеме линейного синтеза.

Растущая пептидная цепь с самого начала (с первого звена) нерастворима , т.к. ковалентно связана с пространственным полимером, который по определению нерастворим [в то же время пространственная сетка редкая ; поэтому полимер может набухать в раст-ворителе, и реагенты имеют свободный доступ к N-концу растущей цепи]. Поэтому все побочные продукты (прежде всего избыток реагента) легко удаляются промывкой, экстракцией или фильтрованием полимера [реагенты на каждой стадии берут в большом избытке, чтобы обеспечить полноту протекания каждой реакции]. Это существенно повышает эффективность синтеза.

По окончании формирования требуемой пептидной цепи ее отсоединяют от полимера-носителя (например, действием смеси HBr-CF 3 COOH в мягких условиях); одновременно снимается защита с N-конца (если это Вос-защита):

Твердофазный синтез пептидов автоматизирован и осуществляется на специальных устройствах – синтезаторах. Наибольшие успехи достигнуты при синтезе олигопептидов (порядка 8-15 звеньев); однако этим способом можно получать и высокомолекулярные полипептиды; в частности, одним из первых значительных достижений твердофазного синтеза был синтез фермента рибонуклеазы, содержащей 124 звена.

Одной из проблем, с которой сталкивается твердофазный синтез, является уменьшение степени набухания полимера по мере роста пептидной цепи; это затрудняет доступ к группам NH 2 растущей полимерной цепи. В этом случае реакция постановки очередного звена может пройти неполностью, частично образуется пептид с «пропуском» звена, который, как правило, уже не обладает нужной биологической активностью (пропуск хотя бы одного звена в полипептидной цепи меняет ее пространственную организацию, а, следовательно, и биологическую активность). Поэтому такие «ложные» пептиды необходимо отделять от «правильных», что достаточно трудно.

Проблема, по крайней мере, частично, решается при использовании в качестве носителей растворимых полимеров; в качестве таких носителей можно использовать линейные полимеры – полистирол, полиэтиленгликоли или полиуретаны. В этом варианте синтез ведется в растворе , где доступ реагентов к растущей цепи облегчен по сравнению с твердофазным синтезом. Затем полимер с «привязанной» к нему растущей пептидной цепью осаждают «плохим» растворителем, отфильтровывают от остальных продуктов, опять растворяют в «хорошем» растворителе и продолжают синтез. Этот вариант, предложенный М. М. Шемякиным, называют жидкофазным пептидным синтезом ; он используется для синтеза олигопептидов; при синтезе высокомолекулярных полипептидов меняется растворимость полимера, что создает ряд проблем.

Нематричный лабораторный синтез пептидов (во всех вариантах) используется в настоящее время преимущественно для синтеза природных олигопептидов; синтез природных белков более эффективно осуществляется биотехнологически – путем встраивания генов, кодирующих белки, в рекомбинантные ДНК, с последующими клонированием и экспрессией этих генов.