• Повторить материал и проконтролировать знания учащихся по теме «селекция животных»
  • Сформировать у учащихся представление об основных методах селекционной работы с микроорганизмами.
  • Научить обосновывать значение метода искусственного мутагенеза для процесса выведения новых штаммов микроорганизмов.
  • Познакомить с основными направлениями биотехнологии.
  • Убедить учащихся в том, что биотехнология является гармоничным соединением современных научных знаний и практической деятельности, нацеленных на оптимальное решение народнохозяйственных проблем и задач.
  • Продолжить развитие познавательного интереса у старшеклассников к изучению проблем современной селекции.

Ход урока:

I . Организационный момент

II . Актуализация опорных знаний

III . Изучение новой темы

IV. Закрепление изученного материала

V . Домашнее задание


ОСНОВНЫЕ МЕТОДЫ СЕЛЕКЦИИ ЖИВОТНЫХ

гибридизация

НЕРОДСТВЕННОЕ

ИНДИВИДУАЛЬНЫЙ

МАССОВЫЙ

РОДСТВЕННОЕ

ВНУТРИПОРОДНОЕ

МЕЖПОРОДНОЕ

ОТДАЛЕННАЯ ГИБРДИЗАЦИЯ


  • Каким методом селекции были получены эти животные?
  • Какими признаками они характеризуются?
  • В чем недостаток этих гибридов?
  • Лошак = ослица х жеребец
  • Бестер = белуга х стерлядь
  • Мул = кобылица х осел
  • Хонорик = хорек х норка
  • Архаромеринос = архар х овца
  • Лигр = лев + тигр
  • Индоутка = индюк + утка
  • Кама = лама + верблюд
  • Зеброид = зебра + пони(лошадь, осел)

  • КТО ЯВЛЯЕТСЯ РОДОНАЧАЛЬНИКОМ РАЗЛИЧНЫХ ПОРОД КОРОВ?
  • НАЗОВИТЕ ПОРОДЫ КОРОВ, РАЗВОДИМЫХ У НАС В РЕСПУБЛИКЕ?
  • КТО ЯВЛЯЕТСЯ РОДОНАЧАЛЬНИКОМ РАЗЛИЧНЫХ ПОРОД ЛОШАДЕЙ?
  • НАЗОВИТЕ ПОРОДЫ ЛОШАДЕЙ, РАЗВОДИМЫХ У НАС В РЕСПУБЛИКЕ?

  • КТО ЯВЛЯЕТСЯ РОДОНАЧАЛЬНИКОМ РАЗЛИЧНЫХ ПОРОД СВИНЕЙ?
  • НАЗОВИТЕ ПОРОДЫ СВИНЕЙ, РАЗВОДИМЫЕ У НАС В РЕСПУБЛИКЕ?
  • КТО ЯВЛЯЕТСЯ РОДОНАЧАЛЬНИКОМ РАЗЛИЧНЫХ ПОРОД ОВЕЦ?
  • НАЗОВИТЕ ПОРОДЫ СВИНЕЙ, РАЗВОДИМЫЕ У НАС В РЕСПУБЛИКЕ

  • НАЗОВИТЕ РОДОНАЧАЛЬНИКОВ ПОРОД ЭТИХ ХИВОТНЫХ?
  • НАЗОВИТЕ ПОРОДЫ, РАЗВОДИМЫЕ У НАС В РЕСПУБЛИКЕ?

15. Индюков

17. Страусов

  • Коров
  • Оленей
  • Свиней
  • Буйволов
  • Лошадей
  • Кроликов
  • Нутрий

Прочитайте текст и укажите на ошибки

  • В 1973 году Н.И. Вавилов методом самоопыления вывел тонкорунный сорт овец, из которых впоследствии академик Цицин, методом гетерозиса, создал чистую линию.

Численность популяции любых видов живых организмов держится примерно на одном уровне, потому что на них действуют ограничивающие факторов.

Факторы

Приспособление

Пищевые ресурсы

Разведение с/х животных и растений, производство консервов и др.продуктов питания

Территориальные ресурсы

Строительство многоэтажных домов

Лекарства, вакцины, хирургическое вмешательство

Климатические условия

Сезонная одежда, отапливаемое помещение

Контроль над рождаемостью

Специальные средства и др.возможности


УДВОЕНИЕ ЧИСЛЕННОСТИ ПОПУЛЦИИ ЛЮДЕЙ ПО ЭРАМ:

Палеолит

Новый палеолит

за 170000лет

Охота и собирательство

за 15000 лет

После начала нашей эры

За время с 1830г.

Одомашнивание

Разведение

Селекция


В 1980 г. на Земле насчитывалось 4,5 млрд. человек, от которых ежегодно рождается 80 млн. детей.

В настоящее время на планете – 6 млрд. человек.

10 млрд. человек Земля не прокормит, и встанет вопрос о регуляции численности населения!

Чтобы этого не произошло, нужно удовлетворять возрастающие потребности людей в продуктах питания.


Наука об использовании живых организмов, их биологических особенностей, а так же процессов жизнедеятельности в производстве необходимых человеку веществ

Микроорганизмы – это группа прокариотических и эукариотических одноклеточных организмов.

Наука, изучающая микроорганизмы – микробиология.


Микроорганизмы

Бактерии

Простейшие

Сине-зеленые водоросли

Микроорганизмы - мельчайшие организмы, различаемые только под микроскопом


  • 1 ГРИБЫ - себорея, парша, дерматомикозы
  • 2 ПРОСТЕЙШИЕ - дизентерия, токсоплазмоз, трихомониаз, лямблиоз, малярия, трихомониаз и др.
  • БАКТЕРИИ - ботулизм, сибирская язва, туберкулез, холера, дифтерия, тиф, чума, сифилис, столбняк и др.
  • ВИРУСЫ - грипп, гепатит, СПИД, энцефалит, желтая, лихорадка, оспа, корь, бешенство, палеомелит, ОРЗ, ящур и др..

Особенности микроорганизмов

1. Повсеместное распространение

2. Высокая скорость роста и размножения

3. Высокая степень выживаемости в условиях, которые непригодны для жизни других организмов (t=70-105 С, радиация, NaCl=25-30%, высушивание, отсутствие кислорода, t =(-), и др.

4. Способы питания: автотрофы (фото- и хемо-), гетеротрофы (разлагают все виды органических веществ, неприродные соединения, нитраты. Сероводород и другие токсичные вещества)


5. Невероятная продуктивность. Например: корова весом в500 кг. за сутки образует 0,5 кг. белка, а 500кг.растений сои продуцируют за тот же срок 5 кг. белка, равная же масса дрожжей способна выработать в биореакторе за сутки 50 тонн белка, что в 100 раз превышает их собственную массу и равно массе 5 взрослых слонов).

6. Чрезвычайная приспособленность микробов даёт возможность легко и быстро их селекционировать. Чтобы вывести породу животных или сорт растений нужны сотни лет, а для выведения штамма микроорганизма нужно несколько лет.


Использование микроорганизмов

Получение синтетических вакцин

Разработка новых методов переработки и хранения пищевых продуктов с использованием микроорганизмов

Производство кормовых белков

Для домашних животных

Получение органических кислот, использование ферментов в моющих средствах, создание клеев, волокон, желатинизирующих веществ, загустителей, ароматизаторов и др.

Удаление серосодержащих соединений из угля


Выщелачивание руд

Использование микроорганизмов в нефтедобывающей промышленности

Применение ферментных препаратов для совершенствования диагностики, создания новых лекарств и лечебных препаратов. Микробиологический синтез ферментов, антибиотиков, интерферона, гормонов (инсулин, соматотропин и др.)

Усовершенствование методов переработки промышленных и бытовых отходов

Использование клеточной технологии в сельском хозяйстве

Получение бактериальных удобрений



Особенности селекции микроорганизмов

У селекционера имеется неограниченное количество материала для работы: за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток;

Более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении;

Простота генетической организации бактерий: значительно меньшее количество генов, их генетическая регуляция более простая, взаимодействия генов просты или отсутствуют.


Селекция микроорганизмов

Традиционные методы

Новейшие методы

Искусственный

мутагенез

Отбор по продуктивности

Генная инженерия

Основан на выделении нужного гена из генома одного организма и введение его в геном другого

Синтез гена искусственным путем и введение в геном бактерий




Экспериментальный мутагенез – это воздействие на организм различных

мутагенов, с целью получения мутаций (химические вещества и радиация)

Например:

  • Штамм гриба пеницилла повысил свою продуктивность в 1000 раз.
  • Штамм, образующий аминокислоту – в 300 раз.

Но возможности традиционной селекции ограничены.

Успехи таких наук, как молекулярная биология и генетика в изучении микроорганизмов, а так же возрастающие потребности практического применения микробных продуктов привели к созданию новых методов целенаправленного и контролируемого получения микроорганизмов с заданными свойствами






  • Изучить текст параграфа.
  • Составить чайнворд, используя термины параграфов 34 - 37.

ОТКРЫТИЯ В ОБЛАСТИ БИОЛОГИИ В ЭПОХУ НТР

Введение
Современное состояние биотехнологии
Биотехнология и её роль в практической деятельности человека
Биотехнологии в растениеводстве

Метод культуры тканей

Клонирование

Новые открытия в области медицины

Генная инженерия

Трансгенные продукты: за и против
Генно-модифицированные продукты


Последствия развития биотехнологии в эпоху НТР

Введение

Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с необходимыми человеку свойствами. Отдельные биотехнологические процессы (хлебопечение, виноделие) известны с древних времен. Но наибольших успехов биотехнология достигла во второй половине XX века и приобретает всё большее значение для человеческой цивилизации.

Современное состояние биотехнологии

С древних времен известны отдельные биотехнологические процессы, используемые в сферах практической деятельности человека. К ним относятся хлебопечение, виноделие, пивоварение, приготовление кисломолочных продуктов и т. д. Наши предки не имели представления о сути процессов, лежащих в основе таких технологий, но в течение тысячелетий, используя метод проб и ошибок, совершенствовали их. Биологическая сущность этих процессов была выявлена лишь в XIX в. благодаря научным открытиям Л. Пастера. Его работы послужили основой для развития производств с использованием разнообразных видов микроорганизмов. В первой половине XX в. стали применять микробиологические процессы для промышленного получения ацетона и бутанола, антибиотиков, органических кислот, витаминов, кормового белка.
Успехи, достигнутые во второй половине XX в. в области цитологии, биохимии, молекулярной биологии и генетики, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что способствовало бурному развитию биотехнологии. Благодаря селекции высокопродуктивных штаммов микроорганиз­мов, эффективность биотехнологических процессов увеличилась в десятки и сотни раз.

Биотехнология и её роль в практической деятельности человека

Особенностью биотехнологии является то, что она сочетает в себе самые передовые достижения научно-технического прогресса с накопленным опытом прошлого, выражающимся в использовании природных источников для создания полезных для человека продуктов. Любой биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование полученных продуктов. Многоэтапность и сложность процесса обусловливает необходимость привлечения к его осуществлению самых разных специалистов: генетиков и молекулярных биологов, цитологов, биохимиков, вирусологов, микробиологов и физиологов, инженеров-технологов, конструкторов биотехнологического оборудования.

Биотехнология в растениеводстве

Метод культура тканей

Всё шире на промышленной основе применяется метод вегетативного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножать новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал.

Биотехнологии в животноводстве

В последние годы повышается интерес к дождевым червям как к источнику животного белка для сбалансирования кормовых рационом животных, птиц, рыб, пушных зверей, а также белковой добавки, обладающей лечебно-профилактическими свойствами.
Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов - бактерий, грибов, дрожжей, водорослей. Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна. Это имеет большое значение, поскольку 80% площадей сельскохо­зяйственных угодий в мире отводятся для производства корма скоту и птице.

Клонирование

Клонирование овцы Долли в 1996 году Яном Вильмутом и его коллегами в Рослинском институте в Эдинбурге вызвало бурную реакцию во всем мире. Долли была зачата из клетки молочной железы овцы, которой уже давно не было в живых, а ее клетки хранились в жидком азоте. Методика, с помощью которой была создана Долли, известна под названием «перенос ядра», то есть из неоплодотворенной яйцеклетки было удалено ядро, а вместо него помещено ядро из соматической клетки. Из 277 яйцеклеток с пересаженным ядром лишь одна развивалась в относительно здоровое животное. Этот метод размножения является «асексуальным», так как он не требует наличия представителя каждого пола, чтобы создать ребенка. Успех Вильмута стал международной сенсацией.
В декабре 1998 года стало известно об удачных закончившихся попытках клонирования крупного рогатого скота, когда японцам И. Като, Т. Тани и сотр. удалось получить 8 здоровых телят после переноса 10 реконструированных эмбрионов в матку коров-реципиентов.

Слайд №10

Новые открытия
в области медициныОсобенно широко успехи биотехнологии применяются в медицине. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны.
Например, гормоны раньше, как правило, получали из органов и тканей животных. Даже для получения небольшого количества ле­чебного препарата требовалось много исходного материала. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог.
Так, инсулин, гормон поджелудочной железы, - основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей. В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина. С помощью генной инженерии этот ген был введен в бактериальную клетку, которая в результате приобрела способность синтезировать инсулин человека.
Помимо получения лечебных средств, биотехнология позволяет проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, ДНК/РНК -проб.
С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.

Слайд №11

Метод стволовых клеток: лечит или калечит?

Японские ученые под руководством профессора Синья Яманака из Университета Киото впервые выделили стволовые клетки из человеческой кожи, предварительно внедрив в них набор определенных генов. По их мнению, это может послужить альтернативой клонированию и позволит создать препараты, сравнимые с теми, что получаются при клонировании человеческих эмбрионов. Американские ученые практически одновременно получили аналогичные результаты. Но это не означает, что через несколько месяцев можно будет полностью уйти от клонирования эмбрионов и восстанавливать работоспособность организма при помощи стволовых клеток, полученных из кожи пациента.
Сначала специалистам придется убедиться в том, что «кожные» столовые клетки на самом деле так многофункциональны, как кажутся, что их можно без опасений за здоровье пациента вживлять в различные органы и что они при этом будут работать. Главное опасение – как бы такие клетки не представляли риска в отношении развития рака. Потому что главная опасность эмбриональных стволовых клеток заключается в том, что они генетически нестабильны и обладают способностью развиваться в некоторые опухоли после трансплантации в организм.

Слайд №12

Генная инженерия

Приёмы генной инженерии позволяют выделять необходимый ген и вводить его в новое генетическое окружение с целью создания организма с новыми, заранее предопределёнными признаками.
Методы генной инженерии остаются ещё очень сложными и дорогостоящими. Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др.
Селекция микроорганизмов является важнейшим направлением в биотехнологии.
Развитие бионики позволяет эффективно применять для решения инженерных задач биологические методы, использовать в различных областях техники опыт живой природы.

Слайд №13

Трансгенные продукты:
за и противВ мире уже зарегистрировано несколько десятков съедобных трансгенных растений. Это сорта сои, риса и сахарной свеклы, устойчивых к гербицидам; кукурузы, устойчивой к гербицидам и вредителям; картофеля, устойчивого к колорадскому жуку; кабачков, почти несодержащих косточек; помидоров, бананов и дынь с удлиненным сроком хранения; рапса и сои с измененным жирнокислотным составом; риса с повышенным содержанием витамина А.
Генетически модернизированные источники могут встречаться в колбасе, сосисках, мясных консервах, пельменях, сыре, йогуртах, детском питании, кашах, шоколаде, конфетах мороженом.

Слайд №14

Генно-модифицированные продукты

Перечень продуктов, где могут быть генетически измененные продукты: Рибофлавины Е 101, Е 101А, карамель Е 150, ксантан Е 415, лецитин Е 322, Е 153, Е160d, Е 161с, Е 308q, Е 471, Е 472f, Е 473, Е 475, Е 476b, Е 477, Е 479а, Е 570, Е 572,Е 573, Е 620, Е 621, Е 622, Е 623, Е 623, Е 624, Е 625.
Генно - модифицированные продукты: шоколад Fruit Nut, Kit-kat, Milky Way, Twix; напитки: Nesquik, Coca-Cola, Sprite, Pepsi, чипсы Pringles, йогурт Danon.
Генетически измененные продукты производят такие компании: Новартиc (Novartis), Монсанто (Monsanto)-новое название компании Фармация (Pharmacia), куда входит и Кока-кола, а также Нестле (Nestle), Данон (Danone), Хенц, Хипп, Юниливер (Uniliver), Юнайтид Бисквитс (United Biscuits), рестораны Мак-Доналдс (Mac-Donalds).
В мире не зарегистрировано ни одного факта, что трансгенное растение нанесло вред человеку. Но бдительность терять не стоит. Пока не выяснено, не повлияют ли эти растения на потомство, не загрязнят ли окружающую среду.

Слайд №15

Перспективы развития биотехнологии

Все шире на промышленной основе применяется метод вегетатив- ного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножить новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал.
Биотехнология позволяет получать экологически чистые виды топлива путем биопереработки отходов промышленного и сельскохозяйственного производств. Например, созданы установки, в которых используются бактерии для переработки навоза и других органических отходов. Из 1 т навоза получают до 500 м3 биогаза, что эквивалентно 350 л бензина, при этом качество навоза как удобрения улучшается.
Биотехнологические разработки находят все большее применение в добыче и переработке полезных ископаемых.


Использование микробов В хлебопечении В виноделии В производстве кормового белка В производстве молочнокислых продуктов В производстве биологически активных веществ (антибиотиков, гормонов, витаминов, аминокислот, ферментов) В сельском хозяйстве (при производстве силоса) Для биологической защиты растений и очистки сточных вод



Из более чем 100 тыс. видов известных в природе микроорганизмов человеком используется несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние десятилетия, когда были установлены многие генетические механизмы регуляции биохимических процессов в клетках микроорганизмов.


Особенности селекции микроорганизмов 1) у селекционера имеется неограниченное количество материала для работы: за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток; 2) более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении; 3) простота генетической организации бактерий: значительно меньшее количество генов, их генетическая регуляция более простая, взаимодействия генов просты или отсутствуют.




Методы селекции микроорганизмов Широко используют различные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм Pseudomonas putida, способный утилизировать углеводороды нефти.




Методы селекции микроорганизмов Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания высокопродуктивных штаммов. Вероятность возникновения мутаций у микроорганизмов (1x х) ниже, чем у всех других организмов (1x x10 -4). Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и сделать это можно быстро.




















4 Главным звеном биотехнологического процесса является биологический объект, способный осуществлять определенную модификацию исходного сырья и образовывать тот или иной необходимый продукт. В качестве таких объектов биотехноло­гии могут выступать клетки микроорганизмов, животных и расте­ний, трансгенные животные и растения, грибы, а также многокомпонент­ные ферментные системы клеток и отдельные ферменты. Основой большинства современных биотехнологических произ­водств является микробный синтез, т. е. синтез разно­ образных биологически активных веществ с помощью микроорганизмов. К сожалению, объекты растительного и животного происхождения в си­лу ряда причин еще не нашли столь широкого применения. Поэтому в дальнейшем целе­ сообразно рассматривать микроорганизмы как основные объекты биотехнологии.


1 Микроорганизмы - основные объекты биотехнологии В настоящее время известно более 100 тысяч различных видов микроорганизмов. Это в первую очередь бактерии, актиномицеты, цианобактерии. При столь большом разнообразии микроорганизмов весьма важной, а зачастую и сложной проблемой является правильный выбор именно того организма, который способен обеспечить получение требуемого продукта, т.е. служить про­мышленным целям. 5


Во многих биотехнологических процессах используется ограничен­ное число микроорганизмов, которые классифицируются как GRAS ("generally recognized as safe" обычно считаются безопасными). К таким микроорганизмам относят бактерии Васillus subtilis, Васillus amyloliquefaciens, другие виды бацилл и лактобацилл, виды Streptomyces. Сюда также относят виды грибов Aspergillus, Penicillium, Mucor, Rhizopus, дрожжей Saccharomyces и др. GRAS-микроорганизмы непатогенные, не­токсичные и в основном не образуют антибиотики, поэтому при разра­ботке нового биотехнологического процесса следует ориентироваться на данные микроорганизмы, как базовые объекты биотехнологии. 6


Микробиологическая промышленность в настоящее время использует тысячи штаммов микроорганизмов, которые первично были вы­делены из природных источников на основании их полезных свойств, а затем улучшены с помощью различных методов. В связи с расширением производства и ассортимента выпускаемой про­дукции в микробиологическую промышленность вовлекаются все новые и новые представители мира микробов. Следует отметить, что в обозримом будущем ни один из них не будет изучен в той же степени, как Е. соli и Вас. subtilis. Причина этого - колоссальная трудоемкость и высокая стоимость подобного рода исследований. 7


Следовательно, возникает проблема разработки стратегии и тактики исследований, которые обусловили бы с разумной затратой труда из­влечь из потенциала новых микроорганизмов все наиболее ценное при создании промышленно важных штаммов- продуцентов, пригодных к ис­пользованию в биотехнологических процессах. Классический подход заключается в выделении нужного микроорганизма из природных условий. Из естественных мест обитания предполагаемого продуцента отби­рают образцы материала (берут пробы материала) и производят посев в селективную среду, обеспечивающую преимущественное развитие инте­ ресующего микроорганизма, т.е. получают так называемые накопитель­ные культуры. 8


Следующим этапом является выделение чистой культуры с даль­нейшим изучением изолированного микроорганизма и, в случае необходимости, ориентировочным опреде­лением его продукционной способности. Существует и другой путь подбора микроорганизмов-продуцентов - это выбор нужного вида из имеющихся коллекций хорошо изученных и досконально охарактеризованных микроорганизмов. При этом, естест­венно, устраняется необходимость выполнения ряда трудоемких опе­раций. 9


Главным критерием при выборе биотехнологического объекта является способность синте­зировать целевой продукт. Однако помимо этого, в технологии самого процесса могут закладываться дополнительные требования, которые по­рой бывают очень и очень важными, чтобы не сказать решающими. В общих словах микроорганизмы должны обладать высокой скоростью роста, утилизировать необходимые для их жизнедеятельности дешевые субстраты, быть резидентными к посторонней микрофлоре, т. е, обладать высокой конкурентоспособностью. Все вышеперечисленное обеспечивает значительное снижение за­трат на производство целевого продукта. 10


Приведем некоторые примеры, доказывающие роль микроорганизмов как объектов биотехнологии: 1. Одноклеточные организмы, как правило, характеризуются более высокими скоростями роста и синтетических процессов, чем высшие организмы. Тем не менее, это присуще не всем микроор­ганизмам. Некоторые из них растут крайне медленно, однако представляют из­вестный интерес, поскольку способны продуцировать различные очень ценные вещества. 11


2. Особое внимание как объекты биотехнологических разработок представляют фотосинтезирующие микроорганизмы, исполь­зующие в своей жизнедеятельности энергию солнечного света. Часть из них (цианобактерии и фотосинтезирующие эукариоты) в качестве источника углерода утилизируют СО 2, а некоторые представители цианобактерий, ко всему сказанному, обладают способностью усваивать атмосферный азот (т.е. являются крайне неприхотливыми к питательным веществам). Фотосинтезирую­щие микро- организмы перспективны как продуценты аммиака, водорода, белка и ряда органических соединений. Однако прогресса в их использовании вследствие ограниченности фун­даментальных знаний об их генетической организации и молекулярно-биологических механизмах жизнедеятельности, по всей видимости, не следует ожидать в ближайшем будущем. 12


3. Определенное внимание уделяется таким объектам биотехноло­гии, как термофильные микроорганизмы, растущие при °С. Это их свойство является практически непреодолимым препятст­вием для развития посторонней микрофлоры при относительно не стерильном культивировании, т.е. является надежной защитой от загрязнений. Среди термофилов обнаружены продуценты спиртов, аминокислот, ферментов, молекулярного водорода. Кроме того, скорость их роста и метаболическая активность в 1,5-2 раза выше, чем у мезофилов. Ферменты, синтезируемые термофилами, характеризуются повышенной устойчивостью к нагреванию, некоторым окислителям, детер­гентам, органическим растворителям и другим неблагоприятным факто­рам. В то же время они мало активны при обычных температурах. 13


Так, протеазы одного из представителей термофильных микроорганизмов при 20 °С в 100 раз менее активны, чем при 75 °С. Последнее является очень важным свойством для некоторых промышленных производств. Напри­мер, широкое применение в генетической инженерии нашел фермент Tag-полимераза из термофильной бактерии Thermus aquaticus. Ранее уже упоминалось о еще одном весьма существенном свойстве этих организмов, а именно, что при их культивировании температура среды, в которой они пребывают, значительно превышает температуру окружающей среды. Данный высокий перепад температур обеспечивает быстрый и эффективный обмен тепла, что позволяет использовать био­логические реакторы без громоздких охлаждающих устройств. А по­следнее, в свою очередь, облегчает перемешивание, аэрацию, пеногашение, что в совокупности значительно удешевляет процесс. 14


2 Выделение и селекция микроорганизмов Неотъемлемым компонентом в процессе создания наи­более ценных и активных продуцентов, т.е. при подборе объектов в био­технологии, является их селекция. Главным путем селекции явля­ется сознательное конструирование геномов на каждом этапе отбора нужного продуцента. Такая ситуация не всегда могла быть реализована, вследствие отсутствия эффективных методов изменения геномов селек­ тируемых организмов. В развитии микробных технологий сыграли важную роль мето­ды, базирующиеся на селекции спонтанно возникающих измененных ва­риантов, характеризующихся нужными полезными признаками. 15


При та­ких методах обычно используется ступенчатая селекция: на каждом эта­пе отбора из популяции микроорганизмов отбираются наиболее актив­ные варианты (спонтанные мутанты), из которых на следующем этапе отбирают новые, более эффективные штаммы, и так далее. Несмотря на явную ограниченность данного метода, заключающуюся в низ­кой частоте возникновения мутантов, его возможности рано считать полностью исчерпанными. 16


Процесс селекции наиболее эффективных продуцентов значительно ускоряется при использовании метода индуцированного мутагенеза. В качестве мутагенных воздействий применяются УФ, рентгенов­ское и гамма-излучения, определенные химические вещества и др. Одна­ко и этот прием также не лишен недостатков, главным из которых явля­ется его трудоемкость и отсутствие сведений о характере изменений, по­скольку экспериментатор ведет отбор по конечному результату. 17


Напри­мер, устойчивость организма к ионам тяжелых металлов может быть свя­зана с подавлением системы поглощения данных катионов бактериаль­ной клеткой, активацией процесса удаления катионов из клетки или пе­рестройкой системы (систем), которая подвергается ингибирующему действию катиона в клетке. Естественно, знание механизмов повышения устойчивости позволит вести направленное воздействие с целью получе­ния конечного результата за более короткое время, а также селектиро­вать варианты, лучше подходящие к конкретным условиям производства. Применение пере­численных подходов в сочетании с приемами классической селекции яв­ляется сутью современной селекции микроорганизмов- продуцентов. 18


Напри­мер, устойчивость организма к ионам тяжелых металлов может быть свя­зана с подавлением системы поглощения данных катионов бактериаль­ной клеткой, активацией процесса удаления катионов из клетки или пе­рестройкой системы (систем), которая подвергается ингибирующему действию катиона в клетке. Естественно, знание механизмов повышения устойчивости позволит вести направленное воздействие с целью получе­ния конечного результата за более короткое время, а также селектиро­вать варианты, лучше подходящие к конкретным условиям производства. Применение пере­численных подходов в сочетании с приемами классической селекции яв­ляется сутью современной селекции микроорганизмов- продуцентов. 19



Слайд 1

Селекция микроорганизмов Биотехнология

Слайд 2

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

Слайд 3

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Слайд 4

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Слайд 5

Биотехнология

Использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Слайд 6

Области применения

Слайд 7

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Слайд 8

Генная инженерия

Генная инженерия - совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы - трансформированными. Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Слайд 9

Процесс создания трансформированных бактерий включает этапы:

Рестрикция - «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов - рестриктаз. Создание вектора - специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов - лигаз. Вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Трансформация - внедрение вектора в бактерию. Скрининг - отбор тех бактерий, в которых внедренные гены успешно работают. Клонирование трансформированных бактерий.

Слайд 10

Образование рекомбинантных плазмид: 1 - клетка с исходной плазмидой 2 - выделенная плазмида 3 - создание вектора 4 - рекомбинантная плазмида (вектор) 5 - клетка с рекомбинантной плазмидой

Слайд 11

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

Слайд 12

Хромосомная инженерия

Хромосомная инженерия - совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или замещении одной пары гомологичных хромосом на другую (замещенные линии). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

Слайд 13

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга. Сюда же можно отнести и метод получения полиплоидных растений

Слайд 14

Клеточная инженерия

Клеточная инженерия - конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции. Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культуры. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Следовательно, можно размножать растения в пробирках, помещая клетки в определенные питательные среды. Это особенно актуально в отношении редких или ценных растений.

Слайд 15

С помощью клеточных культур можно получать ценные биологически активные вещества (культура клеток женьшеня). Получение и изучение гибридных клеток позволяет решить многие вопросы теоретической биологии (механизмы клеточной дифференцировки, клеточного размножения и др.). Клетки, полученные в результате слияния протопластов соматических клеток, относящихся к разным видам (картофеля и томата, яблони и вишни и др.), являются основой для создания новых форм растений. В биотехнологии для получения моноклональных антител используются гибридомы - гибрид лимфоцитов с раковыми клетками. Гибридомы нарабатывают антитела, как лимфоциты, и обладают возможностью неограниченного размножения в культуре, как раковые клетки.

Слайд 16

Метод пересадки ядер соматических клеток в яйцеклетки позволяет получить генетическую копию животного, то есть делает возможным клонирование животных. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.