Практическая работа на тему: «Работа и мощность при вращательном движении»

Цель работы: закрепить изучение материал по теме, научиться решать задачи.

Ход работы:

    Изучить материал по теме.

    Записать краткую теорию.

    Решить задачи.

    Оформить работу.

    Ответить на контрольные вопросы.

    Написать вывод.

Краткая теория:

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ работа силы F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени
t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение
φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Вариант №1

    На двух шнурах одинаковой длины, равной 0,8 м, подвешены два свинцовых шара массами 0,5 и 1 кг. Шары соприкасается между собой. Шар меньшей массы отвели в сторону так, что шнур отклонился на угол α= 60°, и отпустили. На какую высоту поднимутся оба шара после столкновения? Удар считать центральным и неупругим. Определить энергию, израсходованную на деформацию шаров при ударе.

    Маховик массой 4 кг свободно вращается вокруг горизонтальной оси, проходящей через его центр, с частотой 720 мин-1. Массу маховика можно считать распределенной по его ободу радиусом 40 см. Через 30 с под действием тормозящего мо­мента маховик остановился. Найти тормозящий момент и число оборотов, которое делает маховик до полной остановки.

    Тело массой m=1,0 кг падает с высоты h=20 м. Пренебрегая сопротивлением воздуха найти среднюю мощность, развиваемую силой тяжести на пути h, и мгновенную мощность на высоте h/2.

Вариант №2

    Маховик вращается по закону, выражаемому уравнением, где А = 2 рад, В = 32 рад/с, С = -4 рад/с2. Найти среднюю мощность N , развиваемую силами, действующими на маховик при его вращении, до остановки, если момент инерции I = 100 кг·м 2 .

    Тело массы m вращается на горизонтальной поверхности по окружности радиуса r=100мм. Найти работу силы трения при повороте тела на угол α=30. Коэффициент трения между телом и поверхностью равен k=0,2.

    Первый шар массой m1 = 2 кг движется со скоростью, величина которой v1 = 3 м/с. Второй шар массой m2 = 8 кг движется со скоростью, величина которой v2 = 1 м/с. Найти скорость v 1 первого шара и скорость v 2 второго шара сразу после удара, если: а) шары движутся навстречу друг другу; б) первый шар догоняет второй. Удар считать центральным и абсолютно упругим.

Работа сил вычисляется по формулам, полученным в § 87 и 88. Рассмотрим дополнительно следующие случаи.

1. Работа сил тяжести, действующих на систему. Работа силы тяжести, действующей на частицу весом будет равна где - координаты, определяющие начальное и конечное положения частицы (см. § 88). Тогда, учтя, что (см. § 32), найдем для суммы работ всех сил тяжести, действующих на систему, значение

Этот результат можно еще представить в виде

где Р - вес системы, - вертикальное перемещение центра масс (или центра тяжести). Следовательно, работа сил тяжести, действующих на систему, вычисляется как работа их главного вектора (в случае твердого тела равнодействующей) Р на перемещении центра масс системы (или центра тяжести тела).

2. Работа сил, приложенных к вращающемуся телу. Элементарная работа приложенной к телу силы F (рис. 307) будет равна (см. § 87)

так как , где - элементарный угол поворота тела.

Но, как легко видеть,

Будем называть величину вращающим моментом. Тогда получим

Следовательно, в рассматриваемом случае элементарная работа равна произведению вращающего момента на элементарный угол поворота. Формула (46) справедлива и при действии нескольких сил, если считать

При повороте на конечный угол работа

а в случае постоянного момента

Если на тело действует пара сил, лежащая в плоскости, перпендикулярной оси Oz, то в формулах (46)-(47) будет, очевидно, означать момент этой пары.

Укажем еще, как в данном случае определяется мощность (см. § 87). Пользуясь равенством (46), находим

Следовательно, при действии сил на вращающееся тело мощность равна произведению вращающего момента на угловую скорость тела. При той же самой мощности вращающий момент будет тем больше, чем меньше угловая скорость.

3. Работа сил трения, действующих на катящееся тело. На колесо радиусом R (рис. 308), катящееся по некоторой плоскости (поверхности) без скольжения, действует приложенная в точке В сила трения , препятствующая скольжению точки вдоль плоскости. Элементарная работа этой силы . Но точка В в данном случае совпадает с мгновенным центром скоростей (см. § 56) и

Так как то и для каждого элементарного перемещения .

Следовательно, при качении без скольжения работа силы трения, препятствующей скольжению, на любом перемещении тела равна нулю. По той же причине в этом случае равна нулю и работа нормальной реакции N, если считать тела недеформируемыми в силу N приложенной в точке В (как на рис. 308, а).

Вычисляя сумму элементарных работ двух внутренних сил F 1 J и F 2 J ,

получаем

F1 J dS1 cos(P1 J ,υ 1 ) + F2 J dS2 cos(P2 J ,υ 2 ) = F1 ′ M1 M1 ′ − F1 M 2 M 2 ′

т.к. каждой внутренней силе соответствует другая, равная ей по модулю и противоположная по направлению, то сумма элементарных работ всех внутренних сил тоже равна нулю.

δ A J = ∑ δ A i J = 0

Конечное перемещение является совокупностью элементарных переме-

щений, поэтому AJ = 0, т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

2.5.2. Работа внешних сил, приложенных к поступательно движущемуся телу

К каждой точке тела приложены внешние и внутренние силы (рис. 18). Так как работа внутренних сил на любом перемещении равна нулю, то следует вычислить работу лишь внешних сил F 1 E , F 2 E … F n E . При поступательном

движении траектории всех точек идентичны, а вектора элементарных перемещений геометрически равны, т.е.

dri = dr = drc .

Элементарная работа силы F i E

δ A iE = F i E dr c .

Элементарная работа всех внешних сил

δ AE = ∑ δ Ai E = ∑ F i E drc = drc ∑ Fi E = R E dr c ,

где R E - главный вектор внешних сил.

Работа на конечном перемещении

AE = ∫ R E drc .

Работа сил при поступательном перемещении твердого тела равна работе главного вектора внешних сил на элементарном перемещении центра масс.

2.5.3. Работа внешних сил, приложенных к вращающемуся телу

Предположим, что к твердому телу, вращающемуся вокруг неподвижной оси Z , приложены внешние силы F 1 E , F 2 E … F i E … F n E (рис. 19).

Вычислим работу одной силы F i E , приложенной к точке M i , описывающей окружность радиуса R i . Разложим силу F i E на три составляющие, направленные по естественным осям траектории точки M i .

E F 1

F ib

F in

Mi dSi

F iτ

Z M1 (x1 ,y1, z1 )

M2 (x2 ,y2 , z2 )

При элементарном повороте тела на угол d ϕ точка M i описывает дугу dS i = R i d ϕ . На этом перемещении работу составляет только касательная составляющая силы, а работа перпендикулярных к вектору скорости составляющих силы F in E и F ib E равна нулю.

δ A i E = F i τ E dS i = F i τ E R i d ϕ = M i E τ d ϕ = M iz E d ϕ , т.к. моменты нормальной и бинормальной составляющих силы F i E относительно оси Z равны нулю эле-

ментарная работа всех сил, приложенных к твердому телу

δ AE = ∑ δ Ai E = ∑ M iz E dϕ = dϕ ∑ Miz E = M z E dϕ .

Таким образом, элементарная работа внешних сил, приложенных к вращающемуся твердому телу равна

δ AE = M z E dϕ .

При конечном повороте тела работа внешних сила равна

AE = ∫ M z E dϕ .

Если главный момент внешних сил M z E = const , то работа внешних сил на конечном перемещении равна A = M z E (ϕ 2 − ϕ 1 ) .

Работа при вращательном движении твердого тела равна работе главного момента внешних сил относительно оси вращения на элементарном угловом перемещении.

2.6. Работа силы тяжести

Пусть точка массой m перемещается под действием силы тяжести из положения M 1 (x 1 , y 1 ,z 1 ) в положение M 2 (x 2 , y 2 ,z 2 ) (рис. 20).

Элементарная работа силы вычисляется как скалярное произведение вектора силы F (X ,Y ,Z ) на вектор элементарного перемещения dr (dx,dy,dz )

δ A = F dr = Xdx + Ydy + Zdz ,

где X ,Y ,Z - проекции силы F ,

dx,dy,dz - проекции вектора перемещения dr на оси x, y,z . При движении под действием силы тяжести

А= ± mgh .

Если точка опускается (независимо от вида траектории), т.е. z 2 < z 1 , работа силы тяжести положительна, если точка поднимается, работа силы тя-

жести отрицательна. Если точка перемещается горизонтально (z 2 = z 1 ) , работа силы тяжести равна 0.

3. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ

Рассмотрим материальную точку M массой m , движущуюся под дей-

ствием сил

F 2 … F n (рис. 21) со скоростью υ

Модуль которой равен

υ = dS , где S - дуговая координата.

Проекция ускорения на касательную равна a τ =

Учитывая, что скорость υ

Сложная функция времени, т.е. υ = f (S (t )) ,

a τ = d υ

D υ

= υ d υ .

Основное уравнение динамики в проекции на касательную имеет вид

maτ = ∑ Fi τ

υd υ

= ∑ F i τ .

Умножим обе части уравнения на dS и проинтегрируем обе части равенства в пределах, соответствующих начальному и конечному положениям

точки M 1

и M 2

mυ dυ = dS∑ Fi τ

m ∫ υ d υ = ∑ ∫ F i τ dS , откуда

mυ 2

= ∑ A i .

mυ 2

Половина произведения массы материальной точки на квадрат скорости

называется кинетической энергией точки.

mυ 2 2

− кинетическая энергия точки после перемещения,

− кинетическая энергия точки до перемещения,

mυ 2

V i 2

Просмотр: эта статья прочитана 49920 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Два случая преобразования механического движения материальной точки или системы точек:

  1. механическое движение переносится с одной механической системы на другую в качестве механического движения;
  2. механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоту, электричество и т.д.).

Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки или механической системы. Мерой действия силы в этом случае является вектор импульса силы.

Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы. Мерой действия силы при превращении механического движения в другую форму движения является работа силы

Кинетическая энергия

Кинетическая энергия это способность тела преодолевать препятствование во время движения.

Кинетическая энергия материальной точки

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия:

  • характеризует и поступательное, и вращательное движения;
  • не зависит от направления движения точек системы и не характеризует изменение этих направлений;
  • характеризует действие и внутренних, и внешних сил.

Кинетическая энергия механической системы

Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.

Определение кинетической энергии твердого тела при разных видах движения движениях.

Кинетическая энергия поступательного движения
При поступательном движении кинетическая энергия тела равна Т =m V 2 /2.

Мерой инертности тела при поступательном движении является масса.

Кинетическая энергия вращательного движения тела

При вращательном движении тела кинетическая энергия равняется половине произведения момента инерции тела относительно оси вращения и квадрата его угловой скорости.

Мерой инертности тела при вращательном движении является момент инерции.

Кинетическая энергия тела не зависит от направления вращения тела.

Кинетическая энергия плоскопаралельного движения тела

При плоскопаралельном движении тела кинетическая энергия равна

Работа силы

Работа силы характеризует действие силы на тело при некотором перемещении и определяет изменение модуля скорости подвижной точки.

Элементарная работа силы

Элементарная работа силы определяется как скалярная величина, равная произведению проекции силы на касательную к траектории, направленную в направлении движения точки, и бесконечно малого перемещения точки, направленного вдоль этой касательной.

Работа силы на конечном перемещении

Работа силы на конечном перемещении равна сумме ее работ на элементарных участках.

Работа силы на конечном перемещении М 1 М 0 равняется интегралу вдоль этого перемещения от элементарной работы.

Работа силы на перемещении М 1 М 2 изображается площадью фигуры, ограниченной осью абсцисс, кривой и ординатами, соответствующими точкам М 1 и М 0 .

Единица измерения работы силы и кинетической энергии в системе СИ 1 (Дж).

Теоремы о работе силы

Теорема 1 . Работа равнодействующей силы на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении.

Теорема 2. Работа постоянной силы на результирующем перемещении равна алгебраической сумме работ этой силы на составляющих перемещениях.

Мощность

Мощность - это величина, которая определяет работу силы за единицу времени.

Единицей измерения мощности есть 1Вт = 1 Дж/с.

Случаи определения работы сил

Работа внутренних сил

Сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Работа силы тяжести

Работа силы упругости

Работа силы трения

Работа сил, приложенных к вращающемуся телу

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота.

Сопротивление качению

В зоне контакта неподвижого цилиндра и плоскости возникает местная деформация контактного сжатия, напряжение распределяются по эллиптическому закону и линия действия равнодействующей N этих напряжений совпадает с линией действия силы нагрузки на цилиндр Q. При перекатывании цилиндра распределение нагрузки становится несимметричным с максимумом, смещенным в сторону движения. Равнодействующая N смещается на величину k - плечо силы трения качения, которая еще назвается коэффициентом трения качения и имеет размерность длины (см)

Теорема об изменении кинетической энергии материальной точки

Изменение кинетической энергии материальной точки на некотором ее перемещении равняется алгебраической сумме робот всех действующих на точку сил на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Изменение кинетической энергии механической системы на некотором перемещении равняется алгебраической сумме робот внутренних и внешних сил, действующих на материальные точки системы на том же перемещении.

Теорема об изменении кинетической энергии твердого тела

Изменение кинетической энергии твердого тела (неизменной системы) на некотором перемещении равняется сумме робот внешних сил, действующих на точки системы на том же перемещении.

КПД

Силы, действующие в механизмах

Силы и пары сил (моменты), которые приложены к механизму или машине, можно разделить на группы:

1.Движущие силы и моменты, совершающие положительную работу (приложенные к ведущим звеньям, например, давление газа на поршень в ДВС).

2. Силы и моменты сопротивления, совершающие отрицательную работу:

  • полезного сопротивления (совершают требуемую от машины работу и приложены к ведомым звеньям, например сопротивление поднимаемого машиной груза),
  • силы сопротивления (например, силы трения, сопротивление воздуха и т.п.).

3. Силы тяжести и силы упругости пружин (как положительная, так и отрицательная работа, при этом работа за полный цикл равна нулю).

4. Силы и моменты, приложенные к корпусу или стойке извне (реакция фундамента и т.п.), которые не совершают работу.

5. Силы взаимодействия между звеньями, действующие в кинематических парах.

6. Силы инерции звеньев, обусловленные массой и движением звеньев с ускорением, могут осуществлять положительную, отрицательную работу и не совершать работы.

Работа сил в механизмах

При установившемся режиме работы машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю.

Работа, затрачиваемая на приведение машины в движение, расходуется на преодоление полезных и вредных сопротивлений.

КПД механизмов

Механический коэффициент полезного действия при установившемся движении равен отношению полезной работы машины к работе, затраченной на приведение машины в движение:

Элементы машины могут соединяться последовательно, параллельно и смешанно.

КПД при последовательном соединении

При последовательном соединении механизмов общий КПД меньше с наименьшего КПД отдельного механизма.

КПД при параллельном соединении

При параллельном соединении механизмов общий КПД больше наименьшего и меньше наибольшего КПД отдельного механизма.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Рассмотрим две произвольные точки твердого тела М 1 и М 2 , являющиеся частью механической системы. Проведем построения (см. рис.14.13).

Внутренние силы P J 1 , P J 2 , действующие со стороны одной точки на другую, на основании закона равенства действия и противодействия равны по модулю и противонапралены P J 1 = - P J 2 .

Пусть в данное мгновение скорости точек равны соответственно u 1 и u 2 и за промежуток времени приращения вдоль векторов составляют ds 1 = u 1 dt , ds 2 = u 2 dt .

Т.к., на основании 1-го следствия теоремы о скоростях точек плоской фигуры проекции векторов скоростей на направление отрезка М 1 М 2 равны, то и проекции элементарных перемещений этих точек будут равны.

Поэтому, вычисляя сумму элементарных работ 2-х внутренних сил на рассматриваемом перемещении и учитывая их равенство и противонаправленность получим

P J 1 ds 1 cos(P J 1 , u 1) + P J 2 ds 1 cos(P J 2 , u 2)= P J 1 * M 1 M’ 1 - P J 1 *M 2 M’ 2 = 0.

Поскольку каждой внутренней силе соответствует другая, равная по модулю и противонапраленная, то сумма элементарных работ всех внутренних сил равна нулю.

Конечное перемещение является совокупностью элементарных перемещений, а поэтому

А j = 0 ,

т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Поступательное движение твердого тела .

При поступательном движении твердого тела траектории всех его точек тождественны и параллельны. Поэтому векторы элементарных перемещений геометрически равны.

Элементарная работа силы P E i

d A E i = P E i dr.

Для всех сил будет

d A=Sd A E i = S P E i dr= dr S P E = dr R E .

Следовательно,

d A=dr R E . (14-46)

Элементарная работа сил, приложенных к твердому телу, движущемуся поступательно, равна элементарной работе главного вектора сил .

А= . (14-47)

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота .

Работа на конечном перемещении

SA i = , (14-48)

где - главный момент внешних сил относительно оси вращения.

Если главный момент постоянен, то

SA i = E z = E z (j 2 - j 1). (14-49)

В этом случае сумма работ на конечном перемещении равна произведению главного момента внешних сил на конечное изменение угла поворота тела.

Тогда мощность

N= =M E z dj/dt= M E z w. (14-50)

В общем случае движения элементарная работа внешних сил, приложенных к свободному твердому телу, равна

dA= SdA i = R E dr O + M E W da, (14-51)

где M E W - главный момент внешних сил относительно мгновенной оси; da - элементарный угол поворота относительно мгновенной оси.

14.10. Сопротивление при качении .

На цилиндрический каток, находящийся на горизонтальной плоскости в состоянии покоя (рис.14.14,а) действуют две взаимно уравновешивающиеся силы: вес катка G и нормальная реакция плоскости N = -G .

Если под действием горизонтальной силы Р , приложенной в центре катка С, он катится по плоскости без скольжения, то силы G , N образуют пару сил, препятствующую качению (рис. 14.14,б).

Возникновение этой пары сил обусловлено деформацией контактирующих поверхностей катка и плоскости. Линия действия реакции N оказывается сдвинутой на некоторое расстояние d от линии действия силы G.

Момент пары сил G , N называется моментом сопротивления качению. Его величина определяется произведением

М сопр = Nd . (14-52)

Коэффициент качения выражается в линейных единицах, т.е. [d]= см. Например, стальной бандаж по стальному рельсу d = 0,005 см.; дерево по стали d = 0,03- 0,04 см.

Определим наименьшую горизонтальную силу Р , приложенную к центру катка.

Чтобы каток начал катиться, момент пары сил, составленный силой Р и силой сцепления F сц, должен стать больше момента сопротивления, т.е.

PR> Nd .

Откуда P> Nd/R .

Т.к. здесь N=G, то