Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций


Понятие функции является основным и первоначальным, как и понятие множества. Пусть X - некоторое множество действительных чисел х. Если каждому х € X по некоторому закону поставлено в соответствие определенное действительное число у, то говорят, что на множестве X задана функция и пишут Введенную таким образом функцию называют числовой. При этом множество X называют областью onределения функции, а независимую переменную х - аргументом. Для указания функции иногда используют только символ, которым обозначен закон соответствия, т. е. вместо f(x) п и шут просто /. Таким образом, функция задана, если указаны 1) область определения 2) правило /, которое каждому значению а: € X ставит в соответствие определенное число у = /(х) - значение функции, отвечающее этому значению аргумента х. Функции / и g называют равными, если их области определения совпадают и равенство f(x) = g(x) верно для любого значения аргумента х из их обшей области определения. Так, функции у, не являются равными; они равны только на отрезке [О, I]. Примеры функций. 1. Последовательность {о„} есть функция целочисленного аргумента, определенная на множестве натуральных чисел, такая, что /(п) = ап (п = 1,2,...). 2. Функция у = п? (читается «эн-факториал»). Задана на множестве натуральных чисел: каждому натуральному числу п ставится в соответствие произведение всех натуральных чисел от 1 до п включительно: причем условно полагают 0! = 1. Обозначение sign происходит от латинского слова signum - знак. Эта функция определена на всей числовой прямой множество ее значений состоит из трех чисел -1,0, I (рис. 1). у = |х), где (х) обозначает целую часть действительного числа х, т. е. [х| - наибольшее целое число, не превосходящее Читается: -игрек равно антье икс» (фр. entier). Эта функция задана на всей числовой оси, а множество всех ее значений состоит из целых чисел (рис. 2). Способы задания функции Аналитическое задание функции Функция у = f(x) называется заданной аналитически, если она определяется с помощью формулы, указывающей, какие действия надо произвести над каждым значением х, чтобы получить соответствующее значение у. Например, функция задана аналитически. При этом под областью определения функции (если она заранее не указана) понимается множество всех действительных значений аргумента х, при которых аналитическое выражение, определяющее функцию, принимает лишь действительные и конечные значения. В этом смысле область определения функции называют также ее областью существования. Для функции областью определения является отрезок Для функции у - sin х область определения - вся числовая ось. Заметим, что не всякая формула определяет функцию. Например, формула никакую функцию не определяет, так как нет ни одного действительного значения х, при котором имели б ы действительные значения оба написанных выше корня. Аналитическое задание функции может выглядеть достаточно сложно. В частности, функция может быть задана различными формулами на различных частях своей области определения. Например, функция может быть определена так: 1.2. Графический способ задания функции Функция у = f(x) называется заданной графически, если задан ее график, т.е. множество точек (ху/(х)) на плоскости хОу, абсциссы которых принадлежат области определения функции, а ординаты равны соответствующим значениям функции (рис.4). Не для каждой функции ее график можно изобразить на рисунке. Например, функция Дирихле если х - рациональное, если х - иррациональное, ZX \о, не допускает такого изображения. Функция Я(х) задана на всей числовой оси, а множество ее значений состоит из двух чисел 0 и 1. 1.3. Табличный способ задания функции Функция называется заданной таблично, если приведена таблица, в которой указаны численные значения функции для некоторых значений аргумента. При табличном задании функции ее область определения состоит только из значений x\t x2i..., хп, перечисленных в таблице. §2. Предел функции в точке Понятие предела функции является центральным в математическом анализе. Пусть функция f(x) определена в некоторой окрестности Q точки xq, кроме, быть может, самой точки доопределение (Коши). Число А называется пределом функции f(x) в точке хо, если для любого числа е > 0. которое может быть как угодно малым, существует число <5 > 0, такое, что для всех iGH.i^ ж0, удовлетворяющих условию верно неравенство Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Обозначение: С помощьюлогическихсимволов это определение выражается следующим образом Примеры. 1. Пользуясь определением предела функции в точке, показать, что Функция определена всюду, включая точку zo = 1: /(1) = 5. Возьмем любое. Для того, чтобы неравенство |(2х + 3) - 5| имело место, необходимо выполнение следующих неравенств Следовательно, если взять будем иметь. Это означает, что число 5 есть предел функции: в точке 2. Пользуясь определением предела функции, показать, что Функция не определена в точке хо = 2. Рассмотрим /(х) в некоторой окрестности точки-Xq = 2, например, на интервале (1, 5), не содержащем точку х = 0, в которой функция /(х) также не определена. Возьмем произвольное число с > 0 и преобразуем выражение |/(х) - 2| при х ф 2 следующим образом Для х б (1, 5) получаем неравенство Отсюда видно, что если взять 6 = с, то для всех х € (1,5), подчиненных условию будет верно неравенство Это означает, что число Л - 2 является пределом данной функции в точке Дадим геометрическое пояснение понятия предела функции в точке, обратившись к ее графику (рис. 5). При х значения функции /(х) определяются ординатами точек кривой М\М,при х > хо - ординатами точек кривой ММ2. Значение /(х0) определяется ординатой точки N. График данной функции получается, если взять «хорошую» кривую М\ММг и точку М(х0, А) на кривой заменитьточкой jV. Покажем, что в точке хо функция /(х) имеет предел, равный числу А (ординате точки М). Возьмем любое (как угодно малое) число е > 0. Отметим на оси Оу точки с ординатами А, А - е, А + е. Обозначим через Р и Q точки пересечения графика функции у = /(х) с прямыми у = А- епу = А + е. Пусть абсциссы этих точек есть х0 - Ль х0 + hi соответственно (ht > 0, /12 > 0). Из рисунка видно, что для любого х Ф х0 из интервала (х0 - h\, х0 + hi) значение функции /(х) заключено между. для всех х ^ хо, удовлетворя ющих условию верно неравенство Положим Тогда интервал будет содержаться в интервале и, следовательно, неравенство или, что тоже, будет выполнено для всех х, удовлетворяющих условию Это доказывает, что Таким образом, функция у = /(х) имеетпредел А вточкехо, если, какой быузкой ни была е-полоска между прямыми у = А- ену = А + е, найдется такое «5 > 0, что для всех х из проколотой окрестности точки х0 точки графика функции у = /(х) оказываются внутри указанной е-полоски. Замечание 1. Величина б зависитот е: 6 = 6(e). Замечание 2. В определении предела функции в точке Xq сама точка хо из рассмотрения исключается. Таким образом, значение функции в точке Хо нс влияет на предел функции в этой точке. Более того, функция может быть даже не определена в точке Xq. Поэтому две функции, равные в окрестности точки Xq, исключая, быть может, саму точку хо (в ней они могут иметь разные значения, одна из них или обе вместе могут быть не определены), имеют при х - Xq один и тот же предел или обе не имеют предела. Отсюда, в частности, следует, чтодля отыскания вточке хо предела дроби законно сокращать эту дробь на равные выражения, обращающиеся в нуль при х = Xq. Пример 1. Найти Функция /(х) = j для всех х Ф 0 равна единице, а в точке х = 0 не определена. Заменив /(х) на равную ей при х 0 функцию д(х) = 1, получаем Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Пример 2. Найти lim /(х), где Функция, совпадает с функцией /(х) всюду, исключая точку х = 0, и имеет в точке х = 0 предел, равный нулю: lim д(х) = 0 (покажите это!). Поэтому lim /(х) = 0. Задача. Сформулировать с помощью неравенств (на языке е -6), что означает Пусть функция /(я) определена в некоторой окрестности П точки х0, кроме, быть может, самой точки х0. Определение (Гейне). Число А называется пределом функции /(х) в точке х0, если для любой последовательности {хп} значений аргумента х 6 П, z„ / х0), сходящейся к точке х0, соответствующая последовательность значений функции {/(х„)} сходится к числу А. Приведенным определением удобно пользоваться, когда надо установить, что функция /(х) не имеет предела в точке х0. Для этого достаточно найти какую-нибудь последовательность {/(хп)}, не имеющую предела, или же указать две последовательности {/(хп)} и {/(х"п)}, имеющие различные пределы. Покажем, например, чтофунк-иия /(х) = sin j (рис.7), определенная ВСЮДУ, Кроме ТОЧКИ X = О, Рис.7 н е имеет предела в точке х = 0. Рассмотрим две последовательности {, сходящиеся к точке х = 0. Соответствующие последовательности значений функции /(х) сходятся к разным пределам: последовательность {sinnTr} сходится к нулю, а последовательность {sin(5 + - к единице. Это означает, что функция /(х) = sin j в точке х = 0 предела не имеет. Замечание. Оба определения предела функии» в точке (определение Коши и определение Гейне) равносильны. §3. Теоремы о пределах Теорема 1 (единственность предела). Если функция f(x) имеет предел в точке хо, то этот предел единственный. А Пусть lim /(х) = А. Покажем, что никакое число В ф А не может быть пределом х-х0 функции /(х) вточкех0. Тотфакт,что lim /(х) ф Вспомощьюлогическихсимволов ХО формулируется так: Воспользовавшись неравенством получаем, Возьмем е = > 0. Поскольку lim /(х) = А, для выбранного е > 0 найдется 6 > 0 такое, что Из соотношения (1) для указанных значений х имеем Итак, нашлось такое, что каким бы малым ни было существуют х Ф xQ, такие, что и вместе с тем ^ е. Отсюда В Определение. Функция /(х) называется ограниченной в окрестности точки х0> если существуют числа М > 0 и 6 > 0 такие, что Теорема 2 (ограниченность функции, имеющей предел). Если функция f{x) определена в окрестности точки х0 и имеет в точке х0 конечный предел, то она ограничена в некоторой окрестности этой точки. м Пусть Тогда для любого например, для е = 1, найдется такое 6 > О, что для всех х Ф х0, удовлетворяющих условию будет верно неравенство Замечая, что всегда получим Положим. Тогда в каждой точке х интервала будем иметь Это означает, согласно определению, что функция /(х) ограничена в окрестности Напротив, из ограниченности функции /(х) в окрестности точки х0 не следует существования предела функции /(х) в точке х0. Например, функция /(х) = sin офаничена в окрестности точки но не имеет предела в точке х = 0. Сформулируем еще две теоремы, геометрический смысл которыхдостаточноясен. Теорема 3 (переход к пределу в неравенстве). Если /(х) ^ ip(x) для всех х из некоторой окрестности точки х0, кроме, быть может, самой точки х0, и каждая из функций /(х) и ip(x) в точке х0 имеет предел, то Заметим, что из строгого неравенства для функций не обязательно следует строгое неравенство для их пределов. Если эти пределы существуют, то мы можем утверждать лишь, что Так, например, для функций выполнено неравенство в то время как Теорема 4 (предел промежуточной функции). Если для всех х в некоторой окрестности точки Xq, кроме, быть может, самой точки х0 (рис.9), и функции f{x) и ip(x) в точке хо имеют один и тот же предел А, то и функция f(x) в точке х0 имеет предел, равный этому же чиыу А. § 4. Предел функции в бесконечности Пусть функция /(х) определена либо на всей числовой оси, либо по крайней мерс для всех х, удовлетворяющих условию jx| > К при некотором К > 0. Определение. Число А называют пределом функции f(x) при х, стремящемся к бесконечности, и пишут если для любого е > 0 существует число jV > 0 такое, что для всех х, удовлетворяющих условию |х| > Лг, верно неравенство Заменив в этом определении условие соответственно, получим определения Из этих определений следует, что тогда и только тогда, когда одновременно Тот факт, геометрически означает следующее: какой бы узкой ни была е-полоска между прямыми у = А- еиу = А + е, найдется такая прямая х = N >0, что правее нес график функции у = /(ж) целиком содержится в указанной е-полоске (рис. 10). В этом случае говорят, что при х +оо график функции у = /(ж) асимптотически приближается к прямой у = А. Пример, Функция /(х) = jtjj- определена на всей числовой оси и представляет собой дробь, у которой числитель постоянен, а знаменатель неограниченно возрастает при |х| +оо. Естественно ожидать, что lim /(х)=0. Покажем это. М Возьмем любое е > 0, подчиненное условию Чтобы имело место соотношение должно выполняться неравенство с или, что то же, откуда Таким образом. если взять будем иметь. Это означает, что число есть предел данной функции при Заметим, что подкоренное выражение лишь для t ^ 1. В случае, когда, неравенство с выполняется автоматически для всех График четной функции у = - асимптотически приближается к прямой Задача. Сформулировать с помощью неравенств, что означает §5. Бесконечно малые функции Пусть функция а(х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки х0. Определение. Функция а(х) называется бесконечно малой функцией (сокращенно б. м. ф.) при х, стремящемся к хо, если Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Например, функция а(х) = х - 1 является б. м. ф. при х 1,таккак lim(x-l) = 0. График функции у = х-1 1-1 изображен на рис. II. Вообще, функция а(х)=х-х0 является простейшим примером б. м. ф. при х-»хо. Принимая во внимание определение предела функции вточке, определение б. м. ф. можно сформулировать так. Определение. Функция а(х) называется бесконечно малой при х -* хо, если для любого £ > 0 существует такое «5 > 0, что для всех х, удовлетворяющих условию, верно неравенство Наряду с понятием бесконечно малой функции при х хо вводится понятие бесконечно малой функции при Определение. Функция а(х) называется бесконечно малой при х -» оо, если то функция а(х) называется бесконечно малой соответственно при или при Например, функция является бесконечно малой при х -» оо, поскольку lim j = 0. Функция а(х) = е~х естьбесконечно малая функция при х-* +оо, так как В дальнейшем все понятия и теоремы, связанные с пределами функций, мы будем, как правило, рассматривать только применительнок случаю предела функции в точке, предоставляя читателю самому сформулировать соответствующие понятия и доказать аналогичные теоремы дня случаев, когда Свойства бесконечно малых функций Теорема 5. Если а{х) и Р(х) - б. м. ф. при х -* хо, то их сумма а(х) + Р(х) есть также б.м. ф. при х -» хо. 4 Возьмем любое е > 0. Так как а(х) - б.м.ф. при х -* хо, то найдется «51 > 0 такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство По условию Р{х) также б.м.ф. при х хо, поэтому найдется такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство Положим 6 = min{«5j, 62}. Тогда для всех х Ф хо, удовлетворяющих условию будут одновременно верны неравенства (1) и (2). Поэтому Это означает, что сумма а(х) +/3(х) есть б.м.ф. при х xq. Замечание. Теорема остается справедливой для суммы любого конечного числа функций, б. м. при х zo. Теорема б (произведение б. м. ф. на ограниченную функцию). Если функция а(х) является б. м. ф. при х -* х0, а функция f(x) ограничена в окрестности точки Хо, то произведение а(х)/(х) есть б. м. ф. при х -» х0. По условию функция /(х) ограничена в окрестности точки х0. Это означает, что существуют такие числа 0 и М > 0, что Возьмем любое е > 0. Так как по условию, то найдется такое 62 > 0, что для всех х ф х0, удовлетворяющих условию |х - xol , будет верно неравенство Положим я всех х ф х0, удовлетворяющих условию |х - х0|, будут одновременно верны неравенства Поэтому Это означает, что произведение а(х)/(х) есть б. м.ф. при Пример. Функцию у = xsin - (рис.12) можно рассматривать как произведение функций a(ar) = х и f(x) = sin j. Функция а(аг) есть б. м. ф. при х - 0, а функция f = m~\forall {x \in . А если бы речь шла об отыскании области определения аналитически заданной функции Тогда пришлось бы, как мы это делали в § 7, тратить время и силы на решение неравенства Потому-то обычно и стараются работать одновременно и с аналитическим, и с графическим способами задания функций. Впрочем, за два года изучения курса алгебры в школе вы к этому уже привыкли.

Кроме аналитического и графического, на практике применяют табличный способ задания функции. При этом способе приводится таблица, в которой указаны значения функции (иногда точные, иногда приближенные) для конечного множества значений аргумента. Примерами табличного задания функции могут служить таблицы квадратов чисел, кубов чисел, квадратных корней и т.д.

Во многих случаях табличное задание функции является удобным. Оно позволяет найти значение функции для имеющихся в таблице значений аргумента без всяких вычислений.

Аналитический, графический, табличный - наитабличный, более простые, а потому наиболее популярные словесный задания функции, для наших нужд этих способов вполне достаточно. На самом деле в математике имеется довольно много различных способов задания функции, но мы познакомим вас еще только с одним способом, который используется в весьма своеобразных ситуациях. Речь идет о словесном способе, когда правило задания функции описывается словами. Приведем примеры.

Пример 1.

Функция у = f(х) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х > 0 ставится в соответствие первый знак после запятой в десятичной записи числа х. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой - цифра 5); если х = 13,002, то f(х) = 0; если то, записав в виде бесконечной десятичной дроби 0,6666..., находим f(х) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000... , и мы видим, что первый десятичный знак после запятой есть 0 (вообще-то верно и равенство 15 = 14,999... , но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).

Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное значение первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. У этой функции
Пример 2.

Функция у = f(х) задана на множестве всех действительных чисел с помощью следующего правила: каждому числу х ставится в соответствие наибольшее из всех целых чисел, которые не превосходят х. Иными словами, функция у = f(х) определяется следующими условиями:

а) f(х) - целое число;
б) f(х) < х (поскольку f(х) не превосходит х);
в) f(х) + 1 > х (поскольку f(х) - наибольшее целое число, не превосходящее х, значит, f(х) + 1 уже больше, чем г). Если, скажем, х = 2,534, то f(х) = 2, поскольку, во-первых, 2 - целое число, во-вторых, 2 < 2,534 и, в-третьих, следующее целое число 3 уже больше, чем 2,534. Если х = 47, то /(х) = 47, поскольку, во-первых, 47 - целое число, во-вторых, 47< 47 (точнее, 47 = 47) и, в-третьих, следующее за числом 47 целое число 48 уже больше, чем 47. А чему равно значение f(-0,(23))? Оно равно -1. Проверяйте: -1 - наибольшее из всех целых чисел, которые не превосходят числа -0,232323....

У этой функции (множество целых чисел).

Функцию, о которой шла речь в примере 2, называют целой частью числа; для целой части числа х используют обозначение [х]. Например, = 2, = 47, [-0,(23)] = -1. Очень своеобразно выглядит график функции у = [х] (рис. 54).


Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Основной признак функциональной зависимости между двумя переменными величинами - это наличие соответствия между значениями этих величин: каждому допустимому значению одной переменной соответствует строго определённое значение другой.

Функция считается заданной, как только установлено соответствие между двумя переменными. Это соответствие может быть установлено различными способами. Рассмотрим подробнее три из них: аналитический, табличный и графический.

Аналитический способ

Аналитический способ - это способ задания функции с помощью формулы.

Например, формула y = x - 2 показывает, как с помощью значения аргумента x вычислить соответствующее ему значение функции y .

Табличный способ

Табличный способ - это способ задания функции с помощью таблицы со значениями.

Например, если измерять температуру воздуха каждый час в течении суток, то каждому часу (t ) будет соответствовать определённая температура (T ). Такое соответствие можно записать в виде таблицы:

Следовательно, T функция от t - T (t ) , определённая с помощью множества целых чисел от 0 до 24 и заданная таблицей. Соответствие между величинами двух переменных задаётся в данном случае не формулой, а таблицей.

Графический способ

Графический способ - это способ задания функции с помощью графика. В этом случае аргумент является абсциссой точки, а значение функции, соответствующее данному аргументу, ординатой.

Графики позволяют быстро находить значение функции по значению аргумента и наоборот - значение аргумента по значению функции. Например, рассмотрим уже готовый график функции:

Чтобы узнать, какое значение функции будет соответствовать аргументу x = 1, надо провести из соответствующей точки оси абсцисс (оси x ) перпендикуляр на график. Ордината точки пересечения перпендикуляра с графиком (точки M ) и будет соответствующим значением функции. Поэтому, так как точка M имеет координаты (1; 2), то запись этих значений в виде функции будет выглядеть так: y (1) = 2.

Для начала попробуй найти область определения функции:

Справился? Сравним​ ответы:

Все верно? Молодец!

Теперь попробуем найти область значений функции:

Нашел? Сравниваем:

Сошлось? Молодец!

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее - найти и область определения функции, и область значений функции.

Как найти и область определения и область значений функции (продвинутый вариант)

Вот что получилось:

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь как это сделать, прочитай раздел про ):

Справился? Сверим ответы :

  1. , так как подкоренное выражение должно быть больше или равно нулю.
  2. , так как на ноль делить нельзя и подкоренное выражение не может быть отрицательным.
  3. , так как, соответственно при всех.
  4. , так как на ноль делить нельзя.

Однако, у нас остался еще один не разобранный момент…

Еще раз повторю определение и сделаю на нем акцент:

Заметил? Слово «единственный» - это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. . При, мы подставляем данное значение в наше «правило» и получаем, что. Одному значению соответствует одно значение. Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

«Смотри! - скажешь ты, -« » встречается два раза!» Так быть может парабола не является функцией? Нет, является!

То, что « » встречается два раза далеко не повод обвинять параболу в неоднозначности!

Дело в том, что, при расчёте для, мы получили один игрек. И при расчёте с мы получили один игрек. Так что все верно, парабола является функцией. Посмотри на график:

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» - нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу множества ставится в соответствие несколько элементов множества. Соответственно, это не функция.

Проверим твои знания на практике.

Определи по рисункам, что является функцией, а что нет:

Разобрался? А вот и ответы :

  • Функцией является - В,Е.
  • Функцией не является - А, Б, Г, Д.

Ты спросишь почему? Да вот почему:

На всех рисунках кроме В) и Е) на один приходится несколько!

Уверена, теперь, ты с легкостью отличишь функцию от не функции, скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции. Приступаем к следующему разделу - как задать функцию?

Способы задания функции

Как ты думаешь, что означают слова «задать функцию» ? Правильно, это значит объяснить всем желающим, о какой функции в данном случае идет речь. Причем объяснить так, чтобы каждый понял тебя правильно и нарисованные людьми по твоему объяснению графики функций были одинаковы.

Как это можно сделать? Как задать функцию? Самый простой способ, который уже не раз применялся в этой статье - с помощью формулы. Мы пишем формулу, и, подставляя в нее значение, высчитываем значение. А как ты помнишь, формула - это закон, правило, по которому нам и другому человеку становится ясно, как икс превращается в игрек.

Обычно, именно так и делают - в заданиях мы видим уже готовые функции, заданные формулами, однако, существуют и другие способы задать функцию, про которые все забывают, в связи с чем вопрос «как еще можно задать функцию?» ставит в тупик. Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ задания функции

Аналитический способ это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ. Если у тебя есть формула, то ты знаешь о функции абсолютно все - ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию. Чему равно?

«Что это значит?» - спросишь ты. Сейчас объясню.

Напомню, что в записи выражение в скобках называется аргументом. И этот аргумент может быть любым выражением, не обязательно просто. Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении.

В нашем примере получится так:

Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене.

Найдите значение выражения, при.

Уверена, что сначала, ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Все как и в прошлом примере: каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении. Например, для функции.

Что же нужно сделать в нашем примере? Вместо надо написать, а вместо - :

сократить получившееся выражение:

Вот и все!

Самостоятельная работа

Теперь попробуй самостоятельно найти значение следующих выражений:

  1. , если
  2. , если

Справился? Сравним наши ответы: Мы привыкли, что функция имеет вид

Даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например.

Попробуй построить эту функцию самостоятельно.

Справился?

Вот как строила ее я.

Какое уравнение мы в итоге вывели?

Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

Вот как раз то, о чем мы говорили… Одному соответствует несколько.

Попробуем нарисовать то, что получилось:

Является ли то, что у нас получилось функцией?

Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

«Потому что одному значению соответствует несколько значений!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Здесь ты сразу подметил закономерность - игрек в три раза больше чем икс. А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоями способами:

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них. Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее. Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале - не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали - аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать. Как это? Да очень просто!

Словесное описание функции

Как же описать функцию словесно? Возьмем наш недавний пример - . Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного. Ты, конечно, возразишь - «есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой. Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа». Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Наибольшая цифра в данном числе - , соответственно, - уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному - рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику. Более подробно про каждую функцию читай в соответствующем разделе.

Линейная функция

Функция вида, где, - действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента.

Область определения функции (aka область допустимых значений аргумента) - .

Область значений - .

Квадратичная функция

Функция вида, где

Графиком функции является парабола, при ветви параболы направлены вниз, при — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле

Положение параболы на координатной плоскости относительно значения и коэффициента показаны на рисунке:

Область определения

Область значений зависит от экстремума данной функции (точки вершины параболы) и коэффициента (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой, где

Число называется коэффициентом обратной пропорциональности. В зависимости от того, какое значение, ветви гиперболы находятся в разных квадратах:

Область определения - .

Область значений - .

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Функцией называется правило, по которому каждому элементу множества ставится в соответствие единственный элемент множества.

  • - это формула, обозначающая функцию, то есть зависимость одной переменной от другой;
  • - переменная величина, или, аргумент;
  • - зависимая величина - изменяется при изменении аргумента, то есть согласно какой-либо определенной формуле, отражающей зависимость одной величины от другой.

2. Допустимые значения аргумента , или область определения функции - это то, что связано с возможными, при которых функция имеет смысл.

3. Область значений функции - это то, какие значения принимает, при допустимых значениях.

4. Существует 4 способа задания функции:

  • аналитический (с помощью формул);
  • табличный;
  • графический
  • словесное описание.

5. Основные виды функций:

  • : , где, - действительные числа;
  • : , где;
  • : , где.