1. Цилиндрические координаты представляют соединение полярных координат в плоскости xy с обычной декартовой аппликатой z (рис. 3).

Пусть M(x, y, z) - произвольная точка в пространстве xyz, P - проекция точки M на плоскость xy. Точка M однозначно определяется тройкой чисел - полярные координаты точки P, z - аппликата точки M. Формулы, связывающие их с декартовыми, имеют вид

Якобиан отображения (8)

Пример 2 .

Вычислить интеграл

где T - область, ограниченная поверхностями

Решение. Перейдём в интеграле к сферическим координатам по формулам (9). Тогда область интегрирования можно задать неравенствами

А, значит,

Пример 3 Найти объём тела, ограниченного:

x 2 +y 2 +z 2 =8,

Имеем: x 2 +y 2 +z 2 =8 - сфера радиуса R= v8 с центром в точке O(000),

Верхняя часть конуса z 2 =x 2 +y 2 с осью симметрии Оz и вершиной в точке O (рис. 2.20).

Найдем линию пересечения сферы и конуса:

И так как по условию z ? 0, то

Окружность R=2, лежащая в плоскости z=2.

Поэтому согласно (2.28)

где область U ограничена сверху

(часть сферы),

(часть конуса);

область U проектируется на плоскости Оху в область D - круг радиуса 2.

Следовательно, целесообразно перейти в тройном интеграле к цилиндрическим координатам, используя формулы (2.36):

Пределы изменения ц, r находим по области D v полный круг R=2 с центром в точке О, тем самым: 0?ц?2р, 0?r?2. Таким образом, область U в цилиндрических координатах задается следующими неравенствами:


Заметим, что


Пусть имеем две прямоугольные системы координат в пространстве и
, и систему функций

(1)

которые устанавливают взаимно-однозначное соответствие между точками некоторых областей
и
в этих системах координат. Предположим, что функции системы (1) имеют в
непрерывные частные производные. Определитель, составленный из этих частных производных

,

называют якобианом (или определителем Якоби) системы функций (1). Мы будем предполагать, что
в
.

В сделанных выше предположениях имеет место следующая общая формула замены переменных в тройном интеграле:

Как и в случае двойного интеграла, взаимная однозначность системы (1) и условие
могут нарушаться в отдельных точках, на отдельных линиях и на отдельных поверхностях.

Система функций (1) каждой точке
ставит в соответствие единственную точку
. Эти три числа
называют криволинейными координатами точки. Точки пространства
, для которых одна из этих координат сохраняет постоянное значение, образуют т.н. координатную поверхность.

II Тройной интеграл в цилиндрических координатах

Цилиндрическая система координат (ЦСК) определяется плоскостью
, в которой задана полярная система координат и осью
, перпендикулярной этой плоскости. Цилиндрическими координатами точки
, где
– полярные координаты точки– проекции точкина плоскость
, а– это координаты проекции точкина ось
или
.

В плоскости
введем обычным образом декартовы координаты, ось аппликат направим по оси
ЦСК. Теперь нетрудно получить формулы, связывающие цилиндрические координаты с декартовыми:

(3)

Эти формулы отображают областьна все пространство
.

Координатными поверхностями в рассматриваемом случае будут:

1)
– цилиндрические поверхности с образующими, парал-лельными оси
, направляющими которых служат окружности в плоскости
, с центром в точке;

2)

;

3)
– плоскости, параллельные плоскости
.

Якобиан системы (3):

.

Общая формула в случае ЦСК принимает вид:

Замечание 1 . Переход к цилиндрическим координатам рекомендуется в случае, когда область интегрирования – это круговые цилиндр или конус, или параболоид вращения (или их части), причем ось этого тела совпадает с осью аппликат
.

Замечание 2. Цилиндрические координаты можно обобщить так же, как и полярные координаты на плоскости.

Пример 1. Вычислить тройной интеграл от функции

по области
, представляющей собой внутреннюю часть цилиндра
, ограниченную конусом
и параболоидом
.

Решение. Эту область мы уже рассматривали в §2, пример 6, и получили стандартную запись в ДПСК. Однако, вычисление интеграла в этой области затруднительно. Перейдем в ЦСК:

.

Проекция
тела
на плоскость
– это круг
. Следовательно, координатаизменяется от 0 до
, а– от0 до R . Через произвольную точку
проведем прямую, параллельную оси
. Прямая войдет в
на конусе, а выйдет на параболоиде. Но конус
имеет в ЦСК уравнение
, а параболоид
– уравнение
. Итак, имеем

III Тройной интеграл в сферических координатах

Сферическая система координат (ССК) определяется плоскостью
, в которой задана ПСК, и осью
, перпендикулярной плоскости
.

Сферическими координатами точки пространства называют тройку чисел
, где– полярный угол проекции точки на плоскость
,– угол между осью
и вектором
и
.

В плоскости
введем декартовы координатные оси
и
обычным образом, а ось аппликат совместим с осью
. Формулы, связывающие сферические координаты с декартовыми таковы:

(4)

Эти формулы отображают область на всё пространство
.

Якобиан системы функций (4):

.

Координатные поверхности составляют три семейства:

1)
– концентрические сферы с центром в начале координат;

2)
– полуплоскости, проходящие через ось
;

3)
– круговые конусы с вершиной в начале координат, осью которых служит ось
.

Формула перехода в ССК в тройном интеграле:

Замечание 3. Переход в ССК рекомендуется, когда область интегрирования – это шар или его часть. При этом уравнение сферы
переходит в. Как и ЦСК, рассмотренная ранее, ССК «привязана» к оси
. Если центр сферы смещён на радиус вдоль координатной оси, то наиболее простое сферическое уравнение получим при смещении вдоль оси
:

Замечание 4. Возможно обобщение ССК:

с якобианом
. Эта система функций переведет эллипсоид

в «параллелепипед»

Пример 2. Найти среднее расстояние точек шара радиуса от его центра.

Решение. Напомним, что среднее значение функции
в области
– это тройной интеграл от функции по области деленный на объём области. В нашем случае

Итак, имеем

Скачать с Depositfiles

Тройной интеграл.

Контрольные вопросы.

    Тройной интеграл, его свойства.

    Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических координатах.

    Вычисление тройного интеграла в сферических координатах.

Пусть функция u = f (x,y ,z ) определена в ограниченной замкнутой области V пространства R 3 . Разобьём область V произвольным образом наn элементарных замкнутых областей V 1 , … , V n , имеющих объемы  V 1 , …, V n соответственно. Обозначим d – наибольший из диаметров областей V 1 , … , V n . В каждой области V k выберем произвольную точку P k (x k , y k , z k )и составим интегральную сумму функции f (x , y , z )

S =

Определение. Тройным интегралом от функции f (x , y , z ) по области V называется предел интегральной суммы
, если он существует.

Таким образом,



(1)

Замечание. Интегральная сумма S зависит от способа разбиения области V и выбора точек P k (k =1, …, n ). Однако, если существует предел, то он не зависит от способа разбиения области V и выбора точек P k . Если сравнить определения двойного и тройного интегралов, то легко увидеть в них полную аналогию.

Достаточное условие существования тройного интеграла. Тройной интеграл (13) существует, если функция f (x , y , z ) ограничена в V и непрерывна в V , за исключением конечного числа кусочно-гладких поверхностей, расположенных в V .

Некоторые свойства тройного интеграла.

1) Если С – числовая константа, то


3) Аддитивностьпо области. Если область V разбита на области V 1 и V 2 , то

4) Объем тела V равен


(2 )

Вычисление тройного интеграла в декартовых координатах.

Пусть D проекция тела V на плоскость xOy , поверхности z =φ 1 (x , y ), z =φ 2 (x , y ) ограничивают тело V снизу и сверху соответственно. Это значит, что

V = {(x , y , z ): (x , y )D , φ 1 (x , y ) ≤ z ≤ φ 2 (x , y )}.

Такое тело назовем z -цилиндрическим. Тройной интеграл (1) по z -цилиндрическому телу V вычисляется переходом к повторному интегралу, состоящему из двойного и определенного интегралов:




(3 )

В этом повторном интеграле сначала вычисляется внутренний определенный интеграл по переменной z , при этом x , y считаются постоянными. Затем вычисляется двойной интеграл от полученной функции по области D .

Если V x- цилиндрическое или y- цилиндрическое тело, то верны соответственно формулы



В первой формуле D проекция тела V на координатную плоскость yOz , а во второй  на плоскость xOz

Примеры. 1) Вычислитьобъем тела V , ограниченного поверхностями z = 0, x 2 + y 2 = 4, z = x 2 + y 2 .

Решение. Вычислим объём при помощи тройного интеграла по формуле (2)

Перейдем к повторному интегралу по формуле (3).

Пусть D  круг x 2 + y 2 4, φ 1 (x , y ) = 0, φ 2 (x , y )= x 2 + y 2 . Тогда по формуле (3) получим


Для вычисления этого интеграла перейдем к полярным координатам. При этом круг D преобразуется во множество

D r = { (r , φ ) : 0 ≤ φ < 2 π , 0 ≤ r ≤ 2} .



2) Тело V ограничено поверхностямиz=y , z= –y , x= 0 , x= 2, y= 1. Вычислить

Плоскости z = y , z = –y ограничиваюттелосоответственно снизу и сверху, плоскости x= 0 , x= 2 ограничивают тело соответственно сзади и спереди, а плоскость y= 1 ограничиваетсправа. V – z- цилиндрическое тело, его проекцией D на плоскость хОу является прямоугольник ОАВС . Положим φ 1 (x , y ) = –y

Тройные интегралы. Вычисление объема тела.
Тройной интеграл в цилиндрических координатах

Три дня в деканате покойник лежал, в штаны Пифагора одетый,
В руках Фихтенгольца он томик держал, что сжил его с белого света,
К ногам привязали тройной интеграл, и в матрицу труп обернули,
А вместо молитвы какой-то нахал прочёл теорему Бернулли.


Тройные интегралы – это то, чего уже можно не бояться =) Ибо если Вы читаете сей текст, то, скорее всего, неплохо разобрались с теорией и практикой «обычных» интегралов , а также двойными интегралами . А там, где двойной, неподалёку и тройной:

И в самом деле, чего тут опасаться? Интегралом меньше, интегралом больше….

Разбираемся в записи:

– значок тройного интеграла;
– подынтегральная функция трёх переменных ;
– произведение дифференциалов.
– область интегрирования.

Особо остановимся на области интегрирования . Если в двойном интеграле она представляет собой плоскую фигуру , то здесь – пространственное тело , которое, как известно, ограничено множеством поверхностей . Таким образом, помимо вышеуказанного вы должны ориентироваться в основных поверхностях пространства и уметь выполнять простейшие трёхмерные чертежи.

Некоторые приуныли, понимаю…. Увы, статью нельзя озаглавить «тройные интегралы для чайников», и кое-что знать/уметь нужно. Но ничего страшного – весь материал изложен в предельно доступной форме и осваивается в кратчайшие сроки!

Что значит вычислить тройной интеграл и что это вообще такое?

Вычислить тройной интеграл – это значит найти ЧИСЛО :

В простейшем случае, когда , тройной интеграл численно равен объёму тела . И действительно, в соответствии с общим смыслом интегрирования , произведение равно бесконечно малому объёму элементарного «кирпичика» тела. А тройной интеграл как раз и объединяет все эти бесконечно малые частички по области , в результате чего получается интегральное (суммарное) значение объёма тела: .

Кроме того, у тройного интеграла есть важные физические приложения . Но об этом позже – во 2-й части урока, посвящённой вычислениям произвольных тройных интегралов , у которых функция в общем случае отлична от константы и непрерывна в области . В данной же статье детально рассмотрим задачу нахождения объёма, которая по моей субъективной оценке встречается в 6-7 раз чаще.

Как решить тройной интеграл?

Ответ логично вытекает из предыдущего пункта. Необходимо определить порядок обхода тела и перейти к повторным интегралам . После чего последовательно расправиться с тремя одиночными интегралами.

Как видите, вся кухня очень и очень напоминает двойные интегралы , с тем отличием, что сейчас у нас добавилась дополнительная размерность (грубо говоря, высота). И, наверное, многие из вас уже догадались, как решаются тройные интегралы.

Развеем оставшиеся сомнения:

Пример 1

Пожалуйста, перепишите столбиком на бумагу:

И ответьте на следующие вопросы. Знаете ли Вы, какие поверхности задают эти уравнения? Понятен ли Вам неформальный смысл этих уравнений? Представляете ли Вы, как данные поверхности расположены в пространстве?

Если Вы склоняетесь к общему ответу «скорее нет, чем да», то обязательно проработайте урок , иначе дальше будет не продвинуться!

Решение : используем формулу .

Для того чтобы выяснить порядок обхода тела и перейти к повторным интегралам нужно (всё гениальное просто) понять, что это за тело. И такому пониманию во многих случаях здОрово способствуют чертёжи.

По условию тело ограничено несколькими поверхностями. С чего начать построение? Предлагаю следующий порядок действий:

Сначала изобразим параллельную ортогональную проекцию тела на координатную плоскость . Первый раз сказал, как эта проекция называется, lol =)

Коль скоро проецирование проводится вдоль оси , то в первую очередь целесообразно разобраться с поверхностями , которые параллельны данной оси. Напоминаю, что уравнения таких поверхностей не содержат буквы «зет» . В рассматриваемой задаче их три:

– уравнение задаёт координатную плоскость , которая проходит через ось ;
– уравнение задаёт координатную плоскость , которая проходит через ось ;
– уравнение задаёт плоскость «плоскую» прямую параллельно оси .

Скорее всего, искомая проекция представляет собой следующий треугольник:

Возможно, не все до конца поняли, о чём речь. Представьте, что из экрана монитора выходит ось и утыкается прямо в вашу переносицу (т.е. получается, что вы смотрите на 3-мерный чертёж сверху) . Исследуемое пространственное тело находится в бесконечном трёхгранном «коридоре» и его проекция на плоскость вероятнее всего представляет собой заштрихованный треугольник.

Обращаю особое внимание, что пока мы высказали лишь предположение о проекции и оговорки «скорее всего», «вероятнее всего» были не случайны. Дело в том, что проанализированы ещё не все поверхности и может статься так, что какая-нибудь из них «оттяпает» часть треугольника. В качестве наглядного примера напрашивается сфера с центром в начале координат радиусом мЕньшим единицы, например, сфера – её проекция на плоскость (круг ) не полностью «накроет» заштрихованную область, и итоговая проекция тела будет вовсе не треугольником (круг «срежет» ему острые углы) .

На втором этапе выясняем, чем тело ограничено сверху, чем снизу и выполняем пространственный чертёж. Возвращаемся к условию задачи и смотрим, какие поверхности остались. Уравнение задаёт саму координатную плоскость , а уравнение – параболический цилиндр , расположенный над плоскостью и проходящий через ось . Таким образом, проекция тела действительно представляет собой треугольник.

Кстати, здесь обнаружилась избыточность условия – в него было не обязательно включать уравнение плоскости , поскольку поверхность , касаясь оси абсцисс, и так замыкает тело. Интересно отметить, что в этом случае мы бы не сразу смогли начертить проекцию – треугольник «прорисовался» бы только после анализа уравнения .

Аккуратно изобразим фрагмент параболического цилиндра:

После выполнения чертежей с порядком обхода тела никаких проблем!

Сначала определим порядок обхода проекции (при этом ГОРАЗДО УДОБНЕЕ ориентироваться по двумерному чертежу). Это делается АБСОЛЮТНО ТАК ЖЕ , как и в двойных интегралах ! Вспоминаем лазерную указку и сканирование плоской области. Выберем «традиционный» 1-й способ обхода:

Далее берём в руки волшебный фонарик, смотрим на трёхмерный чертёж и строго снизу вверх просвечиваем пациента. Лучи входят в тело через плоскость и выходят из него через поверхность . Таким образом, порядок обхода тела:

Перейдём к повторным интегралам:

1) Начать следует с «зетового» интеграла. Используем формулу Ньютона-Лейбница :

Подставим результат в «игрековый» интеграл:

Что получилось? По существу решение свелось к двойному интегралу, и именно – к формуле объёма цилиндрического бруса ! Дальнейшее хорошо знакомо:

2)

Обратите внимание на рациональную технику решения 3-го интеграла.

Ответ :

Вычисления всегда можно записать и «одной строкой»:


Но с этим способом будьте осторожнее – выигрыш в скорости чреват потерей качества, и чем труднее пример, тем больше шансов допустить ошибку.

Ответим на важный вопрос:

Нужно ли делать чертёжи, если условие задачи не требует их выполнения?

Можно пойти четырьмя путями:

1) Изобразить проекцию и само тело. Это самый выигрышный вариант – если есть возможность выполнить два приличных чертежа, не ленитесь, делайте оба чертежа. Рекомендую в первую очередь.

2) Изобразить только тело. Годится, когда у тела несложная и очевидная проекция. Так, например, в разобранном примере хватило бы и трёхмерного чертежа. Однако тут есть и минус – по 3D-картинке неудобно определять порядок обхода проекции, и этот способ я бы советовал только людям с хорошим уровнем подготовки.

3) Изобразить только проекцию. Тоже неплохо, но тогда обязательны дополнительные письменные комментарии, чем ограничена область с различных сторон. К сожалению, третий вариант зачастую бывает вынужденным – когда тело слишком велико либо его построение сопряжено с иными трудностями. И такие примеры мы тоже рассмотрим.

4) Обойтись вообще без чертежей. В этом случае нужно представлять тело мысленно и закомментировать его форму/расположение письменно. Подходит для совсем простых тел либо задач, где выполнение обоих чертежей затруднительно. Но всё же лучше сделать хотя бы схематический рисунок, поскольку «голое» решение могут и забраковать.

Следующее тело для самостоятельного дела:

Пример 2

С помощью тройного интеграла вычислить объем тела, ограниченного поверхностями

В данном случае область интегрирования задана преимущественно неравенствами, и это даже лучше – множество неравенств задаёт 1-й октант, включая координатные плоскости, а неравенство – полупространство , содержащее начало координат (проверьте) + саму плоскость. «Вертикальная» плоскость рассекает параболоид по параболе и на чертеже желательно построить данное сечение. Для этого нужно найти дополнительную опорную точку, проще всего – вершину параболы (рассматриваем значения и рассчитываем соответствующее «зет») .

Продолжаем разминаться:

Пример 3

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Выполнить чертёж.

Решение : формулировка «выполнить чертёж» даёт нам некоторую свободу, но, скорее всего, подразумевает выполнение пространственного чертежа. Однако и проекция тоже не помешает, тем более, она здесь не самая простая.

Придерживаемся отработанной ранее тактики – сначала разберёмся с поверхностями , которые параллельны оси аппликат. Уравнения таких поверхностей не содержат в явном виде переменную «зет»:

– уравнение задаёт координатную плоскость , проходящую через ось (которая на плоскости определяется «одноимённым» уравнением ) ;
– уравнение задаёт плоскость , проходящую через «одноимённую» «плоскую» прямую параллельно оси .

Искомое тело ограниченно плоскостью снизу и параболическим цилиндром сверху:

Составим порядок обхода тела, при этом «иксовые» и «игрековые» пределы интегрирования, напоминаю, удобнее выяснять по двумерному чертежу:

Таким образом:

1)

При интегрировании по «игрек» – «икс» считается константой, поэтому константу целесообразно сразу вынести за знак интеграла.

3)

Ответ :

Да, чуть не забыл, в большинстве случаев полученный результат малополезно (и даже вредно) сверять с трёхмерным чертежом, поскольку с большой вероятностью возникнет иллюзия объёма , о которой я рассказал ещё на уроке Объем тела вращения . Так, оценивая тело рассмотренной задачи, лично мне показалось, что в нём гораздо больше 4 «кубиков».

Следующий пример для самостоятельного решения:

Пример 4

Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскость .

Примерный образец оформления задачи в конце урока.

Не редкость, когда выполнение трёхмерного чертежа затруднено:

Пример 5

С помощью тройного интеграла найти объём тела, заданного ограничивающими его поверхностями

Решение : проекция здесь несложная, но вот над порядком её обхода нужно подумать. Если выбрать 1-й способ, то фигуру придётся разделить на 2 части, что неиллюзорно грозит вычислением суммы двух тройных интегралов. В этой связи гораздо перспективнее выглядит 2-й путь. Выразим и изобразим проекцию данного тела на чертеже:

Прошу прощения за качество некоторых картинок, я их вырезаю прямо из собственных рукописей.

Выбираем более выгодный порядок обхода фигуры:

Теперь дело за телом. Снизу оно ограничено плоскостью , сверху – плоскостью , которая проходит через ось ординат. И всё бы было ничего, но последняя плоскость слишком крутА и построить область не так-то просто. Выбор тут незавиден: либо ювелирная работа в мелком масштабе (т.к. тело достаточно тонкое), либо чертёж высотой порядка 20 сантиметров (да и то, если вместится).

Но есть и третий, исконно русский метод решения проблемы – забить =) А вместо трёхмерного чертежа обойтись словесным описанием: «Данное тело ограничено цилиндрами и плоскостью сбоку, плоскостью – снизу и плоскостью – сверху».

«Вертикальные» пределы интегрирования, очевидно, таковы:

Вычислим объём тела, не забывая, что проекцию мы обошли менее распространённым способом:

1)

Ответ :

Как вы заметили, предлагаемые в задачах тела не дороже сотни баксов часто ограничены плоскостью снизу. Но это не есть какое-то правило, поэтому всегда нужно быть начеку – может попасться задание, где тело расположено и под плоскостью . Так, например, если в разобранной задаче вместо рассмотреть плоскость , то исследованное тело симметрично отобразится в нижнее полупространство и будет ограничено плоскостью снизу, а плоскостью – уже сверху!

Легко убедиться, что получится тот же самый результат:

(помним, что тело нужно обходить строго снизу вверх! )

Кроме того, «любимая» плоскость может оказаться вообще не при делах, простейший пример: шар, расположенный выше плоскости – при вычислении его объёма уравнение не понадобится вообще.

Все эти случаи мы рассмотрим, а пока аналогичное задание для самостоятельного решения:

Пример 6

С помощью тройного интеграла найти объём тела, ограниченного поверхностями

Краткое решение и ответ в конце урока.

Переходим ко второму параграфу с не менее популярными материалами:

Тройной интеграл в цилиндрических координатах

Цилиндрические координаты – это, по сути, полярные координаты в пространстве.
В цилиндрической системе координат положение точки пространства определяется полярными координатами и точки – проекции точки на плоскость и аппликатой самой точки .

Переход от трёхмерной декартовой системы к цилиндрической системе координат осуществляется по следующим формулам:

Применительно к нашей теме преобразование выглядит следующим образом:

И, соответственно, в упрощённом случае, который мы рассматриваем в этой статье:

Главное, не забывать про дополнительный множитель «эр» и правильно расставлять полярные пределы интегрирования при обходе проекции:

Пример 7

Решение : придерживаемся того же порядка действий: в первую очередь рассматриваем уравнения, в которых отсутствует переменная «зет». Оно здесь одно. Проекция цилиндрической поверхности на плоскость представляет собой «одноимённую» окружность .

Плоскости ограничивают искомое тело снизу и сверху («высекают» его из цилиндра) и проецируются в круг :

На очереди трёхмерный чертёж. Основная трудность состоит в построении плоскости , которая пересекает цилиндр под «косым» углом, в результате чего получается эллипс . Уточним данное сечение аналитически: для этого перепишем уравнение плоскости в функциональном виде и вычислим значения функции («высоту») в напрашивающихся точках , которые лежат на границе проекции:

Отмечаем найдённые точки на чертеже и аккуратно (а не так, как я =)) соединяем их линией:

Проекция тела на плоскость представляет собой круг, и это весомый аргумент в пользу перехода к цилиндрической системе координат:

Найдём уравнения поверхностей в цилиндрических координатах:

Теперь следует выяснить порядок обхода тела.

Сначала разберёмся с проекцией. Как определить её порядок обхода? ТОЧНО ТАК ЖЕ, как и при вычислении двойных интегралов в полярных координатах . Здесь он элементарен:

«Вертикальные» пределы интегрирования тоже очевидны – входим в тело через плоскость и выходим из него через плоскость :

Перейдём к повторным интегралам:

При этом множитель «эр» сразу ставим в «свой» интеграл.

Веник как обычно легче сломать по прутикам:

1)

Сносим результат в следующий интеграл:

А тут не забываем, что «фи» считается константой. Но это до поры до времени:

Ответ :

Похожее задание для самостоятельного решения:

Пример 8

Вычислить с помощью тройного интеграла объём тела, ограниченного поверхностями . Выполнить чертёжи данного тела и его проекции на плоскость .

Примерный образец чистового оформления в конце урока.

Обратите внимание, что в условиях задач ни слова не сказано о переходе к цилиндрической системе координат, и несведущий человек будет бодаться с трудными интегралами в декартовых координатах. …А может и не будет – ведь есть третий, исконно русский способ решения проблем =)

Всё только начинается! …в хорошем смысле: =)

Пример 9

С помощью тройного интеграла найти объем тела, ограниченного поверхностями

Скромно и со вкусом.

Решение : данное тело ограничено конической поверхностью и эллиптическим параболоидом . Читатели, которые внимательно ознакомились с материалами статьи Основные поверхности пространства , уже представили, как выглядит тело, но на практике часто встречаются более сложные случаи, поэтому я проведу подробное аналитическое рассуждение.

Сначала найдём линии, по которым пересекаются поверхности. Составим и решим следующую систему:

Из 1-го уравнения почленно вычтем второе:

В результате получено два корня:

Подставим найденное значение в любое уравнение системы:
, откуда следует, что
Таким образом, корню соответствует единственная точка – начало координат. Естественно – ведь вершины рассматриваемых поверхностей совпадают.

Теперь подставим второй корень – тоже в любое уравнение системы:

Каков геометрический смысл полученного результата? «На высоте» (в плоскости ) параболоид и конус пересекаются по окружности – единичного радиуса с центром в точке .

При этом «чаша» параболоида вмещает в себя «воронку» конуса, поэтому образующие конической поверхности следует прочертить пунктиром (за исключением отрезка дальней от нас образующей, который виден с данного ракурса):

Проекцией тела на плоскость является круг с центром в начале координат радиуса 1, который я даже не удосужился изобразить ввиду очевидности данного факта (однако письменный комментарий делаем!) . Кстати, в двух предыдущих задачах на чертёж проекции тоже можно было бы забить, если бы не условие.

При переходе к цилиндрическим координатам по стандартным формулам неравенство запишется в простейшем виде и с порядком обхода проекции никаких проблем:

Найдём уравнения поверхностей в цилиндрической системе координат:

Так как в задаче рассматривается верхняя часть конуса, то из уравнения выражаем:

«Сканируем тело» снизу вверх. Лучи света входят в него через эллиптический параболоид и выходят через коническую поверхность . Таким образом, «вертикальный» порядок обхода тела:

Остальное дело техники:

Ответ :

Не редкость, когда тело задаётся не ограничивающими его поверхностями, а множеством неравенств:

Пример 10


Геометрический смысл пространственных неравенств я достаточно подробно разъяснил в той же справочной статье – Основные поверхности пространства и их построение .

Данная задача хоть и содержит параметр, но допускает выполнение точного чертежа, отражающего принципиальный вид тела. Подумайте, как выполнить построение. Краткое решение и ответ – в конце урока.

…ну что, ещё парочку заданий? Думал закончить урок, но прямо так и чувствую, что вы хотите ещё =)

Пример 11

С помощью тройного интеграла вычислить объём заданного тела:
, где – произвольное положительное число.

Решение : неравенство задаёт шар с центром в начале координат радиуса , а неравенство – «внутренность» кругового цилиндра с осью симметрии радиуса . Таким образом, искомое тело ограничено круговым цилиндром сбоку и симметричными относительно плоскости сферическими сегментами сверху и снизу.

Принимая за базовую единицу измерения, выполним чертёж:

Точнее, его следует назвать рисунком, поскольку пропорции по оси я выдержал не очень-то хорошо. Однако, справедливости ради, по условию вообще не требовалось ничего чертить и такой иллюстрации оказалось вполне достаточно.

Обратите внимание, что здесь не обязательно выяснять высоту, на которой цилиндр высекает из шара «шапки» – если взять в руки циркуль и наметить им окружность с центром в начале координат радиуса 2 см, то точки пересечения с цилиндром получатся сами собой.