Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

$p↖{→}=mυ↖{→}$

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

$a↖{→}={{υ_2}↖{→}-{υ_1}↖{→}}/{∆t}$

где, ${υ_1}↖{→}$ и ${υ_2}↖{→}$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

${m({υ_2}↖{→}-{υ_1}↖{→})}/{∆t}=F↖{→}$

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

${p_2}↖{→}-{p_1}↖{→}=F↖{→}∆t$

Здесь ${p_2}↖{→}-{p_1}↖{→}=∆p↖{→}$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

$∆p↖{→}=F↖{→}∆t$

Выражение $∆p↖{→}=F↖{→}∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы . Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖{→}=F↖{→}∆t$ называется уравнением движения тела . Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

${p_{сист}}↖{→}={p_1}↖{→}+{p_2}↖{→}+...$

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_{12}$ и $F_{21}$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы ${F_1}↖{→}$ и ${F_2}↖{→}$. Для каждого тела можно записать уравнение $∆p↖{→}=F↖{→}∆t$. Сложив левые и правые части этих уравнений, получим:

${∆p_1}↖{→}+{∆p_2}↖{→}=({F_{12}}↖{→}+{F_{21}}↖{→}+{F_1}↖{→}+{F_2}↖{→})∆t$

Согласно третьему закону Ньютона ${F_{12}}↖{→}=-{F_{21}}↖{→}$.

Следовательно,

${∆p_1}↖{→}+{∆p_2}↖{→}=({F_1}↖{→}+{F_2}↖{→})∆t$

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — ${∆p_{сист}}↖{→}$.С учетом этого равенство ${∆p_1}↖{→}+{∆p_2}↖{→}=({F_1}↖{→}+{F_2}↖{→})∆t$ можно записать:

${∆p_{сист}}↖{→}=F↖{→}∆t$

где $F↖{→}$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Закон сохранения импульса

Из уравнения ${∆p_{сист}}↖{→}=F↖{→}∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения ${∆p_{сист}}↖{→}=F↖{→}∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

${∆p_{сист}}↖{→}=m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=const$

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_{p}υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_{газ}·υ_{газ}$ выброшенных газов:

$m_{p}υ_p=m_{газ}·υ_{газ}$

Отсюда следует, что скорость ракеты

$υ_p=({m_{газ}}/{m_p})·υ_{газ}$

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=({m_{газ}}/{m_p})·υ_{газ}$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

$A=F|∆r↖{→}|cosα$

где $F$ — сила, действующая на тело, $∆r↖{→}$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖{→}$ и $∆r↖{→}$.

Работа — величина скалярная. Если $α 0$, а если $90°

При действии на тело нескольких сил полная работа (сумма работ всех сил) равна работе результирующей силы.

Единицей работы в СИ является джоуль ($1$ Дж). $1$ Дж — это работа, которую совершает сила в $1$ Н на пути в $1$ м в направлении действия этой силы. Эта единица названа в честь английского ученого Дж. Джоуля (1818-1889): $1$ Дж = $1$ Н $·$ м. Часто применяются также килоджоули и миллиджоули: $1$ кДж $= 1 000$ Дж, $1$ мДж $= 0.001$ Дж.

Работа силы тяжести

Рассмотрим тело, скользящее по наклонной плоскости с углом наклона $α$ и высотой $Н$.

Выразим $∆x$ через $H$ и $α$:

$∆x={H}/{sinα}$

Учитывая, что сила тяжести $F_т=mg$ составляет угол ($90° - α$) с направлением перемещения, используя формулу $∆x={H}/{sin}α$, получим выражение для работы силы тяжести $A_g$:

$A_g=mg·cos(90°-α)·{H}/{sinα}=mgH$

Из этой формулы видно, что работа силы тяжести зависит от высоты и не зависит от угла наклона плоскости.

Отсюда следует, что:

  1. работа силы тяжести не зависит от формы траектории, по которой движется тело, а лишь от начального и конечного положения тела;
  2. при перемещении тела по замкнутой траектории работа силы тяжести равна нулю, т. е. сила тяжести — консервативная сила (консервативными называются силы, обладающие таким свойством).

Работа сил реакции , равна нулю, поскольку сила реакции ($N$) направлена перпендикулярно перемещению $∆x$.

Работа силы трения

Сила трения направлена противоположно перемещению $∆x$ и составляет с ним угол $180°$, поэтому работа силы трения отрицательна:

$A_{тр}=F_{тр}∆x·cos180°=-F_{тр}·∆x$

Так как $F_{тр}=μN, N=mg·cosα, ∆x=l={H}/{sinα},$ то

$A_{тр}=μmgHctgα$

Работа силы упругости

Пусть на нерастянутую пружину длиной $l_0$ действует внешняя сила $F↖{→}$, растягивая ее на $∆l_0=x_0$. В положении $x=x_0F_{упр}=kx_0$. После прекращения действия силы $F↖{→}$ в точке $х_0$ пружина под действием силы $F_{упр}$ сжимается.

Определим работу силы упругости при изменении координаты правого конца пружины от $х_0$ до $х$. Поскольку сила упругости на этом участке изменяется линейно, в законе Гука можно использовать ее среднее значение на этом участке:

$F_{упр.ср.}={kx_0+kx}/{2}={k}/{2}(x_0+x)$

Тогда работа (с учетом того, что направления ${F_{упр.ср.}}↖{→}$ и ${∆x}↖{→}$ совпадают) равна:

$A_{упр}={k}/{2}(x_0+x)(x_0-x)={kx_0^2}/{2}-{kx^2}/{2}$

Можно показать, что вид последней формулы не зависит от угла между ${F_{упр.ср.}}↖{→}$ и ${∆x}↖{→}$. Работа сил упругости зависит лишь от деформаций пружины в начальном и конечном состояниях.

Таким образом, сила упругости, подобно силе тяжести, является консервативной силой.

Мощность силы

Мощность — физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она произведена.

Другими словами, мощность показывает, какая работа совершается за единицу времени (в СИ — за $1$ с).

Мощность определяется формулой:

где $N$ — мощность, $А$ — работа, совершенная за время $∆t$.

Подставив в формулу $N={A}/{∆t}$ вместо работы $A$ ее выражение $A=F|{∆r}↖{→}|cosα$, получим:

$N={F|{∆r}↖{→}|cosα}/{∆t}=Fυcosα$

Мощность равна произведению модулей векторов силы и скорости на косинус угла между этими векторами.

Мощность в системе СИ измеряется в ваттах (Вт). Один ватт ($1$ Вт) — это такая мощность, при которой за $1$ с совершается работа $1$ Дж: $1$ Вт $= 1$ Дж/с.

Эта единица названа в часть английского изобретателя Дж. Ватта (Уатта), построившего первую паровую машину. Сам Дж. Ватт (1736-1819) пользовался другой единицей мощности — лошадиной силой (л. с.), которую он ввел для того, чтобы можно было сравнивать работоспособности паровой машины и лошади: $1$ л.с. $= 735.5$ Вт.

В технике часто применяются более крупные единицы мощности — киловатт и мегаватт: $1$ кВт $= 1000$ Вт, $1$ МВт $= 1000000$ Вт.

Кинетическая энергия. Закон изменения кинетической энергии

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершать работу, то говорят, что они обладают энергией.

Слово «энергия» (от греч. energia — действие, деятельность) нередко употребляется в быту. Так, например, людей, которые могут быстро выполнять работу, называют энергичными, обладающими большой энергией.

Энергия, которой обладает тело вследствие движения, называется кинетической энергией.

Как и в случае определения энергии вообще, о кинетической энергии можно сказать, что кинетическая энергия — это способность движущегося тела совершать работу.

Найдем кинетическую энергию тела массой $m$, движущегося со скоростью $υ$. Поскольку кинетическая энергия — это энергия, обусловленная движением, нулевым состоянием для нее является то состояние, в котором тело покоится. Найдя работу, необходимую для сообщения телу данной скорости, мы найдем его кинетическую энергию.

Для этого подсчитаем работу на участке перемещения $∆r↖{→}$ при совпадении направлений векторов силы $F↖{→}$ и перемещения $∆r↖{→}$. В этом случае работа равна

где $∆x=∆r$

Для движения точки с ускорением $α=const$ выражение для перемещения имеет вид:

$∆x=υ_1t+{at^2}/{2},$

где $υ_1$ — начальная скорость.

Подставив в уравнение $A=F·∆x$ выражение для $∆x$ из $∆x=υ_1t+{at^2}/{2}$ и воспользовавшись вторым законом Ньютона $F=ma$, получим:

$A=ma(υ_1t+{at^2}/{2})={mat}/{2}(2υ_1+at)$

Выразив ускорение через начальную $υ_1$ и конечную $υ_2$ скорости $a={υ_2-υ_1}/{t}$ и подставив в $A=ma(υ_1t+{at^2}/{2})={mat}/{2}(2υ_1+at)$ имеем:

$A={m(υ_2-υ_1)}/{2}·(2υ_1+υ_2-υ_1)$

$A={mυ_2^2}/{2}-{mυ_1^2}/{2}$

Приравняв теперь начальную скорость к нулю: $υ_1=0$, получим выражение для кинетической энергии:

$E_K={mυ}/{2}={p^2}/{2m}$

Таким образом, движущееся тело обладает кинетической энергией. Эта энергия равна работе, которую необходимо совершить, чтобы увеличить скорость тела от нуля до значения $υ$.

Из $E_K={mυ}/{2}={p^2}/{2m}$ следует, что работа силы по перемещению тела из одного положения в другое равна изменению кинетической энергии:

$A=E_{K_2}-E_{K_1}=∆E_K$

Равенство $A=E_{K_2}-E_{K_1}=∆E_K$ выражает теорему об изменении кинетической энергии.

Изменение кинетической энергии тела (материальной точки) за некоторый промежуток времени равно работе, совершенной за это время силой, действующей на тело.

Потенциальная энергия

Потенциальной энергией называется энергия, определяемая взаимным расположением взаимодействующих тел или частей одного и того же тела.

Поскольку энергия определяется как способность тела совершать работу, то потенциальную энергию, естественно, определяют как работу силы, зависящую только от взаимного расположения тел. Таковой является работа силы тяжести $A=mgh_1-mgh_2=mgH$ и работа силы упругости:

$A={kx_0^2}/{2}-{kx^2}/{2}$

Потенциальной энергией тела, взаимодействующего с Землей, называют величину, равную произведению массы $m$ этого тела на ускорение свободного падения $g$ и на высоту $h$ тела над поверхностью Земли:

Потенциальной энергией упруго деформированного тела называют величину, равную половине произведения коэффициента упругости (жесткости) $k$ тела на квадрат деформации $∆l$:

$E_p={1}/{2}k∆l^2$

Работа консервативных сил (тяжести и упругости) с учетом $E_p=mgh$ и $E_p={1}/{2}k∆l^2$ выражается следующим образом:

$A=E_{p_1}-E_{p_2}=-(E_{p_2}-E_{p_1})=-∆E_p$

Эта формула позволяет дать общее определение потенциальной энергии.

Потенциальной энергией системы называется зависящая от положения тел величина, изменение которой при переходе системы из начального состояния в конечное равно работе внутренних консервативных сил системы, взятой с противоположным знаком.

Знак «минус» в правой части уравнения $A=E_{p_1}-E_{p_2}=-(E_{p_2}-E_{p_1})=-∆E_p$ означает, что при совершении работы внутренними силами (например, падение тела на землю под действием силы тяжести в системе «камень — Земля») энергия системы убывает. Работа и изменение потенциальной энергии в системе всегда имеют противоположные знаки.

Поскольку работа определяет лишь изменение потенциальной энергии, то физический смысл в механике имеет только изменение энергии. Поэтому выбор нулевого уровня энергии произволен и определяется исключительно соображениями удобства, например, простотой записи соответствующих уравнений.

Закон изменения и сохранения механической энергии

Полной механической энергией системы называется сумма ее кинетической и потенциальной энергий:

Она определяется положением тел (потенциальная энергия) и их скоростью (кинетическая энергия).

Согласно теореме о кинетической энергии,

$E_k-E_{k_1}=A_p+A_{пр},$

где $А_р$ — работа потенциальных сил, $А_{пр}$ — работа непотенциальных сил.

В свою очередь, работа потенциальных сил равна разности потенциальной энергии тела в начальном $Е_{р_1}$ и конечном $Е_р$ состояниях. Учитывая это, получим выражение для закона изменения механической энергии:

$(E_k+E_p)-(E_{k_1}+E_{p_1})=A_{пр}$

где левая часть равенства — изменение полной механической энергии, а правая — работа непотенциальных сил.

Итак, закон изменения механической энергии гласит:

Изменение механической энергии системы равно работе всех непотенциальных сил.

Механическая система, в которой действуют только потенциальные силы, называется консервативной.

В консервативной системе $А_{пр} = 0$. Отсюда следует закон сохранения механической энергии:

В замкнутой консервативной системе полная механическая энергия сохраняется (не изменяется со временем):

$E_k+E_p=E_{k_1}+E_{p_1}$

Закон сохранения механической энергии выводится из законов механики Ньютона, которые применимы для системы материальных точек (или макрочастиц).

Однако закон сохранения механической энергии справедлив и для системы микрочастиц, где сами законы Ньютона уже не действуют.

Закон сохранения механической энергии является следствием однородности времени.

Однородность времени состоит в том, что при одинаковых начальных условиях протекание физических процессов не зависит от того, в какой момент времени эти условия созданы.

Закон сохранения полной механической энергии означает, что при изменении кинетической энергии в консервативной системе должна меняться и ее потенциальная энергия, так что их сумма остается постоянной. Это означает возможность превращения одного вида энергии в другой.

В соответствии с различными формами движения материи рассматривают различные виды энергии: механическую, внутреннюю (равную сумме кинетической энергии хаотического движения молекул относительно центра масс тела и потенциальной энергии взаимодействия молекул друг с другом), электромагнитную, химическую (которая складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами), ядерную и пр. Из сказанного видно, что деление энергии на разные виды достаточно условно.

Явления природы обычно сопровождаются превращением одного вида энергии в другой. Так, например, трение частей различных механизмов приводит к превращению механической энергии в тепло, т. е. во внутреннюю энергию. В тепловых двигателях, наоборот, происходит превращение внутренней энергии в механическую; в гальванических элементах химическая энергия превращается в электрическую и т. д.

В настоящее время понятие энергии является одним из основных понятий физики. Это понятие неразрывно связано с представлением о превращении одной формы движения в другую.

Вот как в современной физике формулируется понятие энергии:

Энергия — общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую. Понятие энергии связывает воедино все явления природы.

Простые механизмы. КПД механизмов

Простыми механизмами называются приспособления, изменяющие величину или направление приложенных к телу сил.

Они применяются для перемещения или подъема больших грузов с помощью небольших усилий. К ним относятся рычаг и его разновидности — блоки (подвижный и неподвижный), ворот, наклонная плоскость и ее разновидности — клин, винт и др.

Рычаг. Правило рычага

Рычаг представляет собой твердое тело, способное вращаться вокруг неподвижной опоры.

Правило рычага гласит:

Рычаг находится в равновесии, если приложенные к нему силы обратно пропорциональны их плечам:

${F_2}/{F_1}={l_1}/{l_2}$

Из формулы ${F_2}/{F_1}={l_1}/{l_2}$, применив к ней свойство пропорции (произведение крайних членов пропорции равно произведению ее средних членов), можно получить такую формулу:

Но $F_1l_1=M_1$ — момент силы, стремящейся повернуть рычаг по часовой стрелке, а $F_2l_2=M_2$ — момент силы, стремящейся повернуть рычаг против часовой стрелки. Таким образом, $M_1=M_2$, что и требовалось доказать.

Рычаг начал применяться людьми в глубокой древности. С его помощью удавалось поднимать тяжелые каменные плиты при постройке пирамид в Древнем Египте. Без рычага это было бы невозможно. Ведь, например, для возведения пирамиды Хеопса, имеющей высоту $147$ м, было использовано более двух миллионов каменных глыб, самая меньшая из которых имела массу $2.5$ тонн!

В наше время рычаги находят широкое применение как на производстве (например, подъемные краны), так и в быту (ножницы, кусачки, весы).

Неподвижный блок

Действие неподвижного блока аналогично действию рычага с равными плечами: $l_1=l_2=r$. Приложенная сила $F_1$ равна нагрузке $F_2$, и условие равновесия имеет вид:

Неподвижный блок применяют, когда нужно изменить направление силы, не меняя ее величину.

Подвижный блок

Подвижный блок действует аналогично рычагу, плечи которого составляют: $l_2={l_1}/{2}=r$. При этом условие равновесия имеет вид:

где $F_1$ — приложенная сила, $F_2$ — нагрузка. Применение подвижного блока дает выигрыш в силе в два раза.

Полиспаст (система блоков)

Обычный полиспаст состоит из $n$ подвижных и $n$ неподвижных блоков. Его применив дает выигрыш в силе в $2n$ раз:

$F_1={F_2}/{2n}$

Степенной полиспаст состоит из п подвижных и одного неподвижного блока. Применение степенного полиспаста дает выигрыш в силе в $2^n$ раз:

$F_1={F_2}/{2^n}$

Винт

Винт представляет собой наклонную плоскость, навитую на ось.

Условие равновесия сил, действующих на винт, имеет вид:

$F_1={F_2h}/{2πr}=F_2tgα, F_1={F_2h}/{2πR}$

где $F_1$ — внешняя сила, приложенная к винту и действующая на расстоянии $R$ от его оси; $F_2$ — сила, действующая в направлении оси винта; $h$ — шаг винта; $r$ — средний радиус резьбы; $α$ — угол наклона резьбы. $R$ — длина рычага (гаечного ключа), вращающего винт с силой $F_1$.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) — отношение полезной работы ко всей затраченной работе.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой $η$ («эта»):

$η={A_п}/{A_3}·100%$

где $А_п$ — полезная работа, $А_3$ — вся затраченная работа.

Полезная работа всегда составляет лишь часть полной работы, которую затрачивает человек, используя тот или иной механизм.

Часть совершенной работы тратится на преодоление сил трения. Поскольку $А_3 > А_п$, КПД всегда меньше $1$ (или $< 100%$).

Поскольку каждую из работ в этом равенстве можно выразить в виде произведения соответствующей силы на пройденный путь, то его можно переписать так: $F_1s_1≈F_2s_2$.

Отсюда следует, что, выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот . Этот закон называют золотым правилом механики.

Золотое правило механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу сразу можно сказать, что рабочему, изображенному на рисунке, при двукратном выигрыше в силе подъема груза на $10$ см придется опустить противоположный конец рычага на $20$ см.

Столкновение тел. Упругий и неупругий удары

Законы сохранения импульса и механической энергии применяются для решения задачи о движении тел после столкновения: по известным импульсам и энергиям до столкновения определяются значения этих величин после столкновения. Рассмотрим случаи упругого и неупругого ударов.

Абсолютно неупругим называется удар, после которого тела образуют единое тело, движущееся с определенной скоростью. Задача о скорости последнего решается с помощью закона сохранения импульса системы тел с массами $m_1$ и $m_2$ (если речь идет о двух телах) до и после удара:

$m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=(m_1+m_2)υ↖{→}$

Очевидно, что кинетическая энергия тел при неупругом ударе не сохраняется (например, при ${υ_1}↖{→}=-{υ_2}↖{→}$ и $m_1=m_2$ она становится равной нулю после удара).

Абсолютно упругим называется удар, при котором сохраняется не только сумма импульсов, но и сумма кинетических энергий ударяющихся тел.

Для абсолютно упругого удара справедливы уравнения

$m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=m_1{υ"_1}↖{→}+m_2{υ"_2}↖{→};$

${m_{1}υ_1^2}/{2}+{m_{2}υ_2^2}/{2}={m_1(υ"_1)^2}/{2}+{m_2(υ"_2)^2}/{2}$

где $m_1, m_2$ — массы шаров, $υ_1, υ_2$ —скорости шаров до удара, $υ"_1, υ"_2$ —скорости шаров после удара.

Импульс - это одна из самых фундаментальных характеристик физической системы. Импульс замкнутой системы сохраняется при любых происходящих в ней процессах.

Знакомство с этой величиной начнем с простейшего случая. Импульсом материальной точки массы движущейся со скоростью называется произведение

Закон изменения импульса. Из этого определения можно с помощью второго закона Ньютона найти закон изменения импульса частицы в результате действия на нее некоторой силы Изменяя скорость частицы, сила изменяет и ее импульс: . В случае постоянной действующей силы поэтому

Скорость изменения импульса материальной точки равна равнодействующей всех действующих на нее сил. При постоянной силе промежуток времени в (2) может быть взят любым. Поэтому для изменения импульса частицы за этот промежуток справедливо

В случае изменяющейся со временем силы весь промежуток времени следует разбить на малые промежутки в течение каждого из которых силу можно считать постоянной. Изменение импульса частицы за отдельный промежуток вычисляется по формуле (3):

Полное изменение импульса за весь рассматриваемый промежуток времени равно векторной сумме изменений импульса за все промежутки

Если воспользоваться понятием производной, то вместо (2), очевидно, закон изменения импульса частицы записывается как

Импульс силы. Изменение импульса за конечный промежуток времени от 0 до выражается интегралом

Величина, стоящая в правой части (3) или (5), называется импульсом силы. Таким образом, изменение импульса Др материальной точки за промежуток времени равно импульсу силы, действовавшей на него в течение этого промежутка времени.

Равенства (2) и (4) представляют собой в сущности другую формулировку второго закона Ньютона. Именно в таком виде этот закон и был сформулирован самим Ньютоном.

Физический смысл понятия импульса тесно связан с имеющимся у каждого из нас интуитивным или почерпнутым из повседневного опыта представлением о том, легко ли остановить движущееся тело. Значение здесь имеют не скорость или масса останавливаемого тела, а то и другое вместе, т. е. именно его импульс.

Импульс системы. Понятие импульса становится особенно содержательным, когда оно применяется к системе взаимодействующих материальных точек. Полным импульсом Р системы частиц называется векторная сумма импульсов отдельных частиц в один и тот же момент времени:

Здесь суммирование выполняется по всем входящим в систему частицам, так что число слагаемых равно числу частиц системы.

Внутренние и внешние силы. К закону сохранения импульса системы взаимодействующих частиц легко прийти непосредственно из второго и третьего законов Ньютона. Силы, действующие на каждую из входящих в систему частиц, разобьем на две группы: внутренние и внешние. Внутренняя сила - это сила, с которой частица действует на Внешняя сила - это сила, с которой действуют на частицу все тела, не входящие в состав рассматриваемой системы.

Закон изменения импульса частицы в соответствии с (2) или (4) имеет вид

Сложим почленно уравнения (7) для всех частиц системы. Тогда в левой части, как следует из (6), получим скорость изменения

полного импульса системы Поскольку внутренние силы взаимодействия между частицами удовлетворяют третьему закону Ньютона:

то при сложении уравнений (7) в правой части, где внутренние силы встречаются только парами их сумма обратится в нуль. В результате получим

Скорость изменения полного импульса равна сумме внешних сил, действующих на все частицы.

Обратим внимание на то, что равенство (9) имеет такой же вид, как и закон изменения импульса одной материальной точки, причем в правую часть входят только внешние силы. В замкнутой системе, где внешние силы отсутствуют, полный импульс Р системы не изменяется независимо от того, какие внутренние силы действуют между частицами.

Полный импульс не меняется и в том случае, когда действующие на систему внешние силы в сумме равны нулю. Может оказаться, что сумма внешних сил равна нулю только вдоль какого-то направления. Хотя физическая система в этом случае и не является замкнутой, составляющая полного импульса вдоль этого направления, как следует из формулы (9), остается неизменной.

Уравнение (9) характеризует систему материальных точек в целом, но относится к определенному моменту времени. Из него легко получить закон изменения импульса системы за конечный промежуток времени Если действующие внешние силы неизменны в течение этого промежутка, то из (9) следует

Если внешние силы изменяются со временем, то в правой части (10) будет стоять сумма интегралов по времени от каждой из внешних сил:

Таким образом, изменение полного импульса системы взаимодействующих частиц за некоторый промежуток времени равно векторной сумме импульсов внешних сил за этот промежуток.

Сравнение с динамическим подходом. Сравним подходы к решению механических задач на основе уравнений динамики и на основе закона сохранения импульса на следующем простом примере.

щенный с сортировочной горки железнодорожный вагон массы движущийся с постоянной скоростью сталкивается с неподвижным вагоном массы и сцепляется с ним. С какой скоростью движутся сцепленные вагоны?

Нам ничего не известно о силах, с которыми взаимодействуют вагоны во время столкновения, кроме того факта, что на основании третьего закона Ньютона они в каждый момент равны по модулю и противоположны по направлению. При динамическом подходе необходимо задаваться какой-то моделью взаимодействия вагонов. Простейшее возможное предположение - что силы взаимодействия постоянны в течение всего времени, пока происходит сцепка. В таком случае с помощью второго закона Ньютона для скоростей каждого из вагонов спустя время после начала сцепки можно написать

Очевидно, что процесс сцепки заканчивается, когда скорости вагонов становятся одинаковыми. Предположив, что это произойдет спустя время х, имеем

Отсюда можно выразить импульс силы

Подставляя это значение в любую из формул (11), например во вторую, находим выражение для конечной скорости вагонов:

Конечно, сделанное предположение о постоянстве силы взаимодействия вагонов в процессе их сцепки весьма искусственно. Использование более реалистичных моделей приводит к более громоздким расчетам. Однако в действительности результат для конечной скорости вагонов не зависит от картины взаимодействия (разумеется, при условии, что в конце процесса вагоны сцепились и движутся с одной и той же скоростью). Проще всего в этом убедиться, используя закон сохранения импульса.

Поскольку никакие внешние силы в горизонтальном направлении на вагоны не действуют, полный импульс системы остается неизменным. До столкновения он равен импульсу первого вагона После сцепки импульс вагонов равен Приравнивая эти значения, сразу находим

что, естественно, совпадает с ответом, полученным на основе динамического подхода. Использование закона сохранения импульса позволило найти ответ на поставленный вопрос с помощью менее громоздких математических выкладок, причем этот ответ обладает большей общностью, так как при его получении не использовалась какая бы то ни было конкретная модель взаимодействия.

Проиллюстрируем применение закона сохранения импульса системы на примере более сложной задачи, где уже выбор модели для динамического решения затруднителен.

Задача

Разрыв снаряда. Снаряд разрывается в верхней точке траектории, находящейся на высоте над поверхностью земли, на два одинаковых осколка. Один из них падает на землю точно под точкой разрыва спустя время Во сколько раз изменится расстояние от этой точки по горизонтали, на которое улетит второй осколок, по сравнению с расстоянием, на котором упал бы неразорвавшийся снаряд?

Решение, Прежде всего напишем выражение для расстояния на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению и на время падения с высоты без начальной скорости, равное на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению на время падения с высоты без начальной скорости, равное тела, рассматриваемого как система материальных точек:

Разрыв снаряда на осколки происходит почти мгновенно, т. е. разрывающие его внутренние силы действуют в течение очень короткого промежутка времени. Очевидно, что изменением скорости осколков под действием силы тяжести за столь короткий промежуток времени можно пренебречь по сравнению с изменением их скорости под действием этих внутренних сил. Поэтому, хотя рассматриваемая система, строго говоря, не является замкнутой, можно считать, что ее полный импульс при разрыве снаряда остается неизменным.

Из закона сохранения импульса можно сразу выявить некоторые особенности движения осколков. Импульс - векторная величина. До разрыва он лежал в плоскости траектории снаряда. Поскольку, как сказано в условии, скорость одного из осколков вертикальна, т. е. его импульс остался в той же плоскости, то и импульс второго осколка также лежит в этой плоскости. Значит, и траектория второго осколка останется в той же плоскости.

Далее из закона сохранения горизонтальной составляющей полного импульса следует, что горизонтальная составляющая скорости второго осколка равна ибо его масса равна половине массы снаряда, а горизонтальная составляющая импульса первого осколка по условию равна нулю. Поэтому горизонтальная дальность полета второго осколка от

места разрыва равна произведению на время его полета. Как найти это время?

Для этого вспомним, что вертикальные составляющие импульсов (а следовательно, и скоростей) осколков должны быть равны по модулю и направлены в противоположные стороны. Время полета интересующего нас второго осколка зависит, очевидно, от того, вверх или вниз направлена вертикальная составляющая его скорости в момент разрыва снаряда (рис. 108).

Рис. 108. Траектория осколков после разрыва снаряда

Это легко выяснить, сравнив данное в условии время отвесного падения первого осколка с временем свободного падения с высоты А. Если то начальная скорость первого осколка направлена вниз, а вертикальная составляющая скорости второго - вверх, и наоборот (случаи а и на рис. 108).

3.2. Импульс

3.2.1. Импульс тела, импульс системы тел

Импульсом обладают только движущиеся тела.

Импульс тела вычисляется по формуле

P → = m v → ,

где m - масса тела; v → - скорость тела.

В Международной системе единиц импульс тела измеряется в килограммах, умноженных на метр, деленный на секунду (1 кг ⋅ м/с).

Импульс системы тел (рис. 3.1) есть векторная сумма импульсов тел, входящих в эту систему:

P → = P → 1 + P → 2 + ... + P → N =

M 1 v → 1 + m 2 v → 2 + ... + m N v → N ,

где P → 1 = m 1 v → 1 - импульс первого тела (m 1 - масса первого тела; v → 1 - скорость первого тела); P → 2 = m 2 v → 2 - импульс второго тела (m 2 - масса второго тела; v → 2 - скорость второго тела) и т.п.

Рис. 3.1

Для вычисления импульса системы тел целесообразно применять следующий алгоритм :

1) выбрать систему координат и найти проекции импульсов каждого тела на координатные оси:

P 1 x , P 2 x , ..., P Nx ;

P 1 y , P 2 y , ..., P Ny ,

где P 1 x , ..., P Nx ; P 1 y , ..., P Ny -проекции импульсов тел на координатные оси;

P x = P 1 x + P 2 x + ... + P Nx ;

P y = P 1 y + P 2 y + ... + P Ny ;

3) вычислить модуль импульса системы по формуле

P = P x 2 + P y 2 .

Пример 1. На горизонтальной поверхности покоится тело. На него начинает действовать сила 30 Н, направленная параллельно поверхности. Рассчитать модуль импульса тела через 5,0 с после начала движения, если сила трения равна 10 Н.

Решение. Модуль импульса тела зависит от времени и определяется произведением

P (t ) = mv ,

где m - масса тела; v - модуль скорости тела в момент времени t 0 = 5,0 c.

При равноускоренном движении с нулевой начальной скоростью (v 0 = 0) величина скорости тела зависит от времени по закону

v (t ) = at ,

где a - модуль ускорения; t - время.

Подстановка зависимости v (t ) в формулу для определения модуля импульса дает выражение

P (t ) = mat .

Таким образом, решение задачи сводится к нахождению произведения ma .

Для этого запишем основной закон динамики (второй закон Ньютона) в виде:

F → + F → тр + N → + m g → = m a → ,

или в проекциях на координатные оси

O x: F − F тр = m a ; O y: N − m g = 0, }

где F - модуль силы, приложенной к телу в горизонтальном направлении; F тр - модуль силы трения; N - модуль силы нормальной реакции опоры; mg - модуль силы тяжести; g - модуль ускорения свободного падения.

Силы, действующие на тело, и координатные оси изображены на рисунке.

Из первого уравнения системы следует, что искомое произведение определяется разностью

ma = F − F тр.

Следовательно, зависимость величины импульса тела от времени определяется выражением

P (t ) = (F − F тр)t ,

а его значение в указанный момент времени t 0 = 5 c - выражением

P (t) = (F − F тр) t 0 = (30 − 10) ⋅ 5,0 = 100 кг ⋅ м/с.

Пример 2. Тело движется в плоскости xOy по траектории вида x 2 + y 2 = 64 под действием центростремительной силы, величина которой равна 18 Н. Масса тела составляет 3,0 кг. Считая, что координаты x и y заданы в метрах, найти величину импульса тела.

Решение. Траектория движения тела представляет собой окружность радиусом 8,0 м. Согласно условию задачи на тело действует только одна сила, направленная к центру этой окружности.

Модуль указанной силы является постоянной величиной, поэтому тело обладает только нормальным (центростремительным) ускорением. Наличие постоянного центростремительного ускорения не влияет на величину скорости тела; следовательно, движение тела по окружности происходит с постоянной скоростью.

Рисунок иллюстрирует данное обстоятельство.

Величина центростремительной силы определяется формулой

F ц. с = m v 2 R ,

где m - масса тела; v - модуль скорости тела; R - радиус окружности, по которой движется тело.

Выразим отсюда модуль скорости тела:

v = F ц. с R m

и подставим полученное выражение в формулу, определяющую величину импульса:

P = m v = m F ц. с R m = F ц. с R m .

Произведем вычисление:

P = 18 ⋅ 8,0 ⋅ 3,0 ≈ 21 кг ⋅ м/с.

Пример 3. Два тела движутся во взаимно перпендикулярных направлениях. Масса первого тела равна 3,0 кг, а величина его скорости составляет 2,0 м/с. Масса второго тела - 2,0 кг, а величина его скорости - 3,0 м/с. Найти модуль импульса системы тел.

Решение. Тела, движущиеся во взаимно перпендикулярных направлениях, изобразим в системе координат, как показано на рисунке:

  • вектор скорости первого тела направим вдоль положительного направления оси Ox ;
  • вектор скорости второго тела направим вдоль положительного направления оси Oy .

Для расчета модуля импульса системы тел воспользуемся алгоритмом :

1) запишем проекции импульсов первого P → 1 и второго P → 2 тел на координатные оси:

P 1 x = m 1 v 1 ; P 2 x = 0;

P 1 y = 0, P 2 y = m 2 v 2 ,

где m 1 - масса первого тела; v 1 - величина скорости первого тела; m 2 - масса второго тела; v 2 - величина скорости второго тела;

2) найдем проекции импульса системы на координатные оси, суммируя соответствующие проекции каждого из тел:

P x = P 1 x + P 2 x = P 1 x = m 1 v 1 ;

P y = P 1 y + P 2 y = P 2 y = m 2 v 2 ;

3) вычислим величину импульса системы тел по формуле

P = P x 2 + P y 2 = (m 1 v 1) 2 + (m 2 v 2) 2 =

= (3,0 ⋅ 2,0) 2 + (2,0 ⋅ 3,0) 2 ≈ 8,5 кг ⋅ м/с.

Часто в физике говорят об импульсе тела, подразумевая при этом количество движения. На самом же деле это понятие тесно связано с совершенно другой величиной - с силой. Импульс силы - что это, как он вводится в физику, и каков его смысл: все эти вопросы подробно освещены в статье.

Количество движения

Импульс тела и импульс силы - это две взаимосвязанных величины, более того, они практически означают одно и то же. Сначала разберем понятие количества движения.

Количество движения как физическая величина впервые появилось в научных трудах ученых нового времени, в частности в XVII веке. Здесь важно отметить две фигуры: это Галилео Галилей, знаменитый итальянец, который обсуждаемую величину так и называл impeto (импульс), и Исаак Ньютон, великий англичанин, который помимо величины motus (движения) также использовал понятие vis motrix (движущая сила).

Итак, названные ученые под количеством движения понимали произведение массы объекта на скорость его линейного перемещения в пространстве. Это определение на языке математики записывается так:

Обратим внимание, что речь идет о величине векторной (p¯), направленной в сторону движения тела, которая пропорциональна модулю скорости, а роль коэффициента пропорциональности играет масса тела.

Связь импульса силы и изменения величины p¯

Как было сказано выше, помимо количества движения Ньютон ввел еще понятие движущей силы. Эту величину он определил так:

Это всем знакомый закон появления ускорения a¯ у тела в результате воздействия на него некоторой внешней силы F¯. Эта важная формула позволяет вывести закон импульса силы. Заметим, что a¯ - это производная по времени скорости (быстрота изменения v¯), что означает следующее:

F¯ = m*dv¯/dt или F¯*dt = m*dv¯ =>

F¯*dt = dp¯, где dp¯ = m*dv¯

Первая формула во второй строке - это импульс силы, то есть величина, равная произведению силы на промежуток времени, в течение которого она действует на тело. Она измеряется в ньютонах на секунду.

Анализ формулы

Выражение для импульса силы в предыдущем пункте также раскрывает физический смысл этой величины: она показывает, на сколько изменяется количество движения за промежуток времени dt. Заметим, что это изменение (dp¯) совершенно не зависит от общего значения количества движения тела. Импульс силы - это причина изменения количества движения, которая может приводить как к увеличению последнего (когда угол между силой F¯ и скоростью v¯ меньше 90 o), так и к его уменьшению (угол между F¯ и v¯ больше 90 o).

Из анализа формулы следует важный вывод: единицы измерения импульса силы совпадают с таковыми для p¯ (ньютон в секунду и килограмм на метр в секунду), более того, первая величина равна изменению второй, поэтому вместо импульса силы часто используют фразу "импульс тела", хотя более правильно говорить "изменение количества движения".

Силы, зависящие и не зависящие от времени

Выше закон импульса силы был представлен в дифференциальной форме. Чтобы посчитать значение этой величины, необходимо провести интегрирование по времени действия. Тогда получаем формулу:

∫ t1 t2 F¯(t)*dt = Δp¯

Здесь сила F¯(t) действует на тело в течение времени Δt = t2-t1, что приводит к изменению количества движения на Δp¯. Как видно, импульс силы - это величина, определяемая силой, зависящей от времени.

Теперь рассмотрим более простую ситуацию, которая реализуется в ряде экспериментальных случаев: будем считать, что сила от времени не зависит, тогда можно легко взять интеграл и получить простую формулу:

F¯*∫ t1 t2 dt = Δp¯ => F¯*(t2-t1) = Δp¯

При решении реальных задач на изменение количества движения, несмотря на то, что сила в общем случае зависит от времени действия, ее полагают постоянной и вычисляют некоторую эффективную среднюю величину F¯.

Примеры проявления на практике импульса силы

Какую роль играет эта величина, проще всего понять на конкретных примерах из практики. Перед тем как их привести, выпишем еще раз соответствующую формулу:

Заметим, если Δp¯ - величина постоянная, тогда модуль импульса силы - это тоже константа, поэтому чем больше Δt, тем меньше F¯, и наоборот.

Теперь приведем конкретные примеры импульса силы в действии:

  • Человек, который прыгает с любой высоты на землю, старается при приземлении согнуть ноги в коленях, тем самым он увеличивает время Δt воздействия поверхности земли (сила реакции опоры F¯), тем самым уменьшая ее силу.
  • Боксер, отклоняя голову от удара, продлевает время контакта Δt перчатки соперника с его лицом, уменьшая ударную силу.
  • Современные автомобили стараются конструировать таким образом, чтобы в случае их столкновения их корпус как можно сильнее деформировался (деформация - это процесс, развивающийся во времени, что приводит к значительному снижению силы столкновения и, как следствие, снижению рисков повреждения пассажиров).

Понятие о моменте силы и его импульсе

И импульс этого момента - это другие величины, отличные от рассмотренной выше, поскольку они касаются уже не линейного, а вращательного движения. Итак, момент силы M¯ определяется как векторное произведение плеча (расстояния от оси вращения до точки воздействия силы) на саму силу, то есть справедлива формула:

Момент силы отражает способность последней выполнить кручение системы вокруг оси. Например, если взяться за гаечный ключ подальше от гайки (большой рычаг d¯), то можно создать большой момент M¯, что позволит открутить гайку.

По аналогии с линейным случаем импульс M¯ можно получить, умножив его на промежуток времени, в течение которого он воздействует на вращающуюся систему, то есть:

Величина ΔL¯ носит название изменения углового момента, или момента импульса. Последнее уравнение имеет важное значение для рассмотрения систем с осью вращения, ведь оно показывает, что момент импульса системы будет сохраняться, если отсутствуют внешние силы, создающие момент M¯, что математически записывается так:

Если M¯= 0, тогда L¯ = const

Таким образом, оба уравнения импульсов (для линейного и кругового движения) оказываются аналогичными в плане их физического смысла и математических следствий.

Задача на столкновение птицы и самолета

Эта проблема не является чем-то фантастическим. Такие столкновения действительно происходят довольно часто. Так, по некоторым данным в 1972 году на территории воздушного пространства Израиля (зона наиболее плотной миграции птиц) было зарегистрировано около 2,5 тысяч столкновений птиц с боевыми и транспортными самолетами, а также с вертолетами.

Задача заключается в следующем: необходимо приблизительно рассчитать, какая сила удара приходится на птицу, если на пути ее движения встречается самолет, летящий со скоростью v=800 км/ч.

Перед тем как приступать к решению, примем, что длина птицы в полете составляет l = 0,5 метра, а ее масса равна m = 4 кг (это может быть, например, селезень или гусь).

Пренебрежем скоростью движения птицы (она мала в сравнении с таковой для самолета), а также будем считать массу самолета намного большей, чем птицы. Эти приближения позволяют говорить, что изменение количества движения птицы равно:

Для вычисления силы удара F необходимо знать продолжительность этого инцидента, она приблизительно равна:

Комбинируя эти две формулы, получаем искомое выражение:

F = Δp/Δt = m*v 2 /l.

Подставив в него цифры из условия задачи, получаем F = 395062 Н.

Более наглядно будет перевести эту цифру в эквивалентную массу, используя формулу для веса тела. Тогда получим: F = 395062/9,81 ≈ 40 тонн! Иными словами птица воспринимает столкновение с самолетом так, будто на нее свалилось 40 тонн груза.

Второй закон Ньютона \(~m \vec a = \vec F\) можно записать в иной форме, которая приведена самим Ньютоном в его главном труде «Математические начала натуральной философии».

Если на тело (материальную точку) действует постоянная сила, то постоянным является и ускорение

\(~\vec a = \frac{\vec \upsilon_2 - \vec \upsilon_1}{\Delta t}\) ,

где \(~\vec \upsilon_1\) и \(~\vec \upsilon_2\) - начальное и конечное значения скорости тела.

Подставив это значение ускорения во второй закон Ньютона, получим:

\(~\frac{m \cdot (\vec \upsilon_2 - \vec \upsilon_1)}{\Delta t} = \vec F\) или \(~m \vec \upsilon_2 - m \vec \upsilon_1 = \vec F \Delta t\) . (1)

В этом уравнении появляется новая физическая величина - импульс материальной точки.

Импульсом материальной точки называют величину равную произведению массы точки на ее скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой \(~\vec p\) . Тогда

\(~\vec p = m \vec \upsilon\) . (2)

Из формулы (2) видно, что импульс - векторная величина. Так как m > 0, то импульс имеет то же направление, что и скорость.

Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

[p ] = [m ] · [υ ] = 1 кг · 1 м/с = 1 кг·м/с.

Другая форма записи второго закона Ньютона

Обозначим через \(~\vec p_1 = m \vec \upsilon_1\) импульс материальной точки в начальный момент интервала Δt , а через \(~\vec p_2 = m \vec \upsilon_2\) - импульс в конечный момент этого интервала. Тогда \(~\vec p_2 - \vec p_1 = \Delta \vec p\) есть изменение импульса за время Δt . Теперь уравнение (1) можно записать так:

\(~\Delta \vec p = \vec F \Delta t\) . (3)

Так как Δt > 0, то направления векторов \(~\Delta \vec p\) и \(~\vec F\) совпадают.

Согласно формуле (3)

изменение импульса материальной точки пропорционально приложенной к ней силе и имеет такое же направление, как и сила.

Именно так был впервые сформулирован второй закон Ньютона .

Произведение силы на время ее действия называют импульсом силы . Не надо путать импульс \(~m \vec \upsilon\) материальной точки и импульс силы \(\vec F \Delta t\) . Это совершенно разные понятия.

Уравнение (3) показывает, что одинаковые изменения импульса материальной точки могут быть получены в результате действия большой силы в течение малого интервала времени или малой силы за большой интервал времени. Когда вы прыгаете с какой-то высоты, то остановка вашего тела происходит за счет действия силы со стороны земли или пола. Чем меньше продолжительность столкновения, тем больше тормозящая сила. Для уменьшения этой силы надо, чтобы торможение происходило постепенно. Вот почему при прыжках в высоту спортсмены приземляются на мягкие маты. Прогибаясь, они постепенно тормозят спортсмена. Формула (3) может быть обобщена и на тот случай, когда сила меняется во времени. Для этого весь промежуток времени Δt действия силы надо разделить на столь малые интервалы Δt i , чтобы на каждом из них значение силы без большой ошибки можно было считать постоянным. Для каждого малого интервала времени справедлива формула (3). Суммируя изменения импульсов за малые интервалы времени, получим:

\(~\Delta \vec p = \sum^{N}_{i=1}{\vec F_i \Delta t_i}\) . (4)

Символ Σ (греческая буква «сигма») означает «сумма». Индексы i = 1 (внизу) и N (наверху) означают, что суммируется N слагаемых.

Для нахождения импульса тела поступают так: мысленно разбивают тело на отдельные элементы (материальные точки), находят импульсы полученных элементов, а потом их суммируют как векторы.

Импульс тела равен сумме импульсов его отдельных элементов.

Изменение импульса системы тел. Закон сохранения импульса

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которой мы изучаем, называется механической системой или просто системой.

Изменение импульса системы тел

Рассмотрим систему, состоящую из трех тел. Это могут быть три звезды, испытывающие воздействие со стороны соседних космических тел. На тела системы действуют внешние силы \(~\vec F_i\) (i - номер тела; например, \(~\vec F_2\) - это сумма внешних сил, действующих на тело номер два). Между телами действуют силы \(~\vec F_{ik}\) называемые внутренними силами (рис. 1). Здесь первая буква i в индексе означает номер тела, на которое действует сила \(~\vec F_{ik}\) , а вторая буква k означает номер тела, со стороны которого действует данная сила. На основании третьего закона Ньютона

\(~\vec F_{ik} = - \vec F_{ki}\) . (5)

Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в форме уравнения (3):

\(~\Delta (m_1 \vec \upsilon_1) = (\vec F_{12} + \vec F_{13} + \vec F_1) \Delta t\) , \(~\Delta (m_2 \vec \upsilon_2) = (\vec F_{21} + \vec F_{23} + \vec F_2) \Delta t\) , (6) \(~\Delta (m_3 \vec \upsilon_3) = (\vec F_{31} + \vec F_{32} + \vec F_3) \Delta t\) .

Здесь в левой части каждого уравнения стоит изменение импульса тела \(~\vec p_i = m_i \vec \upsilon_i\) за малое время Δt . Более подробно\[~\Delta (m_i \vec \upsilon_i) = m_i \vec \upsilon_{ik} - m_i \vec \upsilon_{in}\] где \(~\vec \upsilon_{in}\) - скорость в начале, а \(~\vec \upsilon_{ik}\) - в конце интервала времени Δt .

Сложим левые и правые части уравнений (6) и покажем, что сумма изменений импульсов отдельных тел равна изменению суммарного импульса всех тел системы, равного

\(~\vec p_c = m_1 \vec \upsilon_1 + m_2 \vec \upsilon_2 + m_3 \vec \upsilon_3\) . (7)

Действительно,

\(~\Delta (m_1 \vec \upsilon_1) + \Delta (m_2 \vec \upsilon_2) + \Delta (m_3 \vec \upsilon_3) = m_1 \vec \upsilon_{1k} - m_1 \vec \upsilon_{1n} + m_2 \vec \upsilon_{2k} - m_2 \vec \upsilon_{2n} + m_3 \vec \upsilon_{3k} - m_3 \vec \upsilon_{3n} =\) \(~=(m_1 \vec \upsilon_{1k} + m_2 \vec \upsilon_{2k} + m_3 \vec \upsilon_{3k}) -(m_1 \vec \upsilon_{1n} + m_2 \vec \upsilon_{2n} + m_3 \vec \upsilon_{3n}) = \vec p_{ck} - \vec p_{cn} = \Delta \vec p_c\) .

Таким образом,

\(~\Delta \vec p_c = (\vec F_{12} + \vec F_{13} + \vec F_{21} + \vec F_{23} + \vec F_{31} + \vec F_{32} + \vec F_1 + \vec F_2 + \vec F_3) \Delta t\) . (8)

Но силы взаимодействия любой пары тел в сумме дают нуль, так как согласно формуле (5)

\(~\vec F_{12} = - \vec F_{21} ; \vec F_{13} = - \vec F_{31} ; \vec F_{23} = - \vec F_{32}\) .

Поэтому изменение импульса системы тел равно импульсу внешних сил:

\(~\Delta \vec p_c = (\vec F_1 + \vec F_2 + \vec F_3) \Delta t\) . (9)

Мы пришли к важному выводу:

импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Уравнение (9) справедливо для любого интервала времени, если сумма внешних сил остается постоянной.

Закон сохранения импульса

Из уравнения (9) вытекает чрезвычайно важное следствие. Если сумма внешних сил, действующих на систему, равна нулю, то равно нулю и изменение импульса системы\[~\Delta \vec p_c = 0\] . Это означает, что, какой бы интервал времени мы ни взяли, суммарный импульс в начале этого интервала \(~\vec p_{cn}\) и в его конце \(~\vec p_{ck}\) один и тот же\[~\vec p_{cn} = \vec p_{ck}\] . Импульс системы остается неизменным, или, как говорят, сохраняется:

\(~\vec p_c = m_1 \vec \upsilon_1 + m_2 \vec \upsilon_2 + m_3 \vec \upsilon_3 = \operatorname{const}\) . (10)

Закон сохранения импульса формулируется так:

если сумма внешних сил, действующих на тела системы, равна нулю, то импульс системы сохраняется.

Тела могут только обмениваться импульсами, суммарное же значение импульса не изменяется. Надо только помнить, что сохраняется векторная сумма импульсов, а не сумма их модулей.

Как видно из проделанного нами вывода, закон сохранения импульса является следствием второго и третьего законов Ньютона. Система тел, на которую не действуют внешние силы, называется замкнутой или изолированной. В замкнутой системе тел импульс сохраняется. Но область применения закона сохранения импульса шире: если даже на тела системы действуют внешние силы, но их сумма равна нулю, импульс системы все равно сохраняется.

Полученный результат легко обобщается на случай системы, содержащей произвольное число N тел:

\(~m_1 \vec \upsilon_{1n} + m_2 \vec \upsilon_{2n} + m_3 \vec \upsilon_{3n} + \ldots + m_N \vec \upsilon_{Nn} = m_1 \vec \upsilon_{1k} + m_2 \vec \upsilon_{2k} + m_3 \vec \upsilon_{3k} + \ldots + m_N \vec \upsilon_{Nk}\) . (11)

Здесь \(~\vec \upsilon_{in}\) - скорости тел в начальный момент времени, а \(~\vec \upsilon_{ik}\) - в конечный. Так как импульс - величина векторная, то уравнение (11) представляет собой компактную запись трех уравнений для проекций импульса системы на координатные оси.

Когда выполняется закон сохранения импульса?

Все реальные системы, конечно, не являются замкнутыми, сумма внешних сил довольно редко может оказаться равной нулю. Тем не менее в очень многих случаях закон сохранения импульса можно применять.

Если сумма внешних сил не равна нулю, но равна нулю сумма проекций сил на какое-то направление, то проекция импульса системы на это направление сохраняется. Например, система тел на Земле или вблизи ее поверхности не может быть замкнутой, так как на все тела действует сила тяжести, которая изменяет импульс по вертикали согласно уравнению (9). Однако вдоль горизонтального направления сила тяжести не может изменять импульс, и сумма проекций импульсов тел на горизонтально направленную ось будет оставаться неизменной, если действием сил сопротивления можно пренебречь.

Кроме того, при быстрых взаимодействиях (взрыв снаряда, выстрел из орудия, столкновения атомов и т. п.) изменение импульсов отдельных тел будет фактически обусловлено только внутренними силами. Импульс сис-темы сохраняется при этом с большой точностью, ибо такие внешние силы, как сила тяготения и сила трения, зависящая от скорости, заметно не изменяет импульса системы. Они малы по сравнению с внутренними силами. Так, скорость осколков снаряда при взрыве в зависимости от калибра может изменяться в пределах 600 - 1000 м/с. Интервал времени, за который сила тяжести смогла бы сообщить телам такую скорость, равен

\(~\Delta t = \frac{m \Delta \upsilon}{mg} \approx 100 c\)

Внутренние же силы давления газов сообщают такие скорости за 0,01 с, т.е. в 10000 раз быстрее.

Реактивное движение. Уравнение мещерского. Реактивная сила

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела,

например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 2). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Уравнение Мещерского

Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна \(~\vec u\) . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.

Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна \(~\vec \upsilon\) (рис. 3), а масса ракеты равна М . Через малый интервал времени Δt масса ракеты станет равной

\(~M_1 = M - \mu \Delta t\) ,

где μ - расход топлива (расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания).

За этот же промежуток времени скорость ракеты изменится на \(~\Delta \vec \upsilon\) и станет равной \(~\vec \upsilon_1 = \vec \upsilon + \Delta \vec \upsilon\) . Скорость истечения газов относительно выбранной инерциальной системы отсчета равна \(~\vec \upsilon + \vec u\) (рис. 4), так как до начала сгорания топливо имело ту же скорость, что и ракета.

Запишем закон сохранения импульса для системы ракета - газ:

\(~M \vec \upsilon = (M - \mu \Delta t)(\vec \upsilon + \Delta \vec \upsilon) + \mu \Delta t(\vec \upsilon + \vec u)\) .

Раскрыв скобки, получим:

\(~M \vec \upsilon = M \vec \upsilon - \mu \Delta t \vec \upsilon + M \Delta \vec \upsilon - \mu \Delta t \Delta \vec \upsilon + \mu \Delta t \vec \upsilon + \mu \Delta t \vec u\) .

Слагаемым \(~\mu \Delta t \vec \upsilon\) можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:

\(~M \Delta \vec \upsilon = - \mu \Delta t \vec u\) или \(~M \frac{\Delta \vec \upsilon}{\Delta t} = - \mu \vec u\) . (12)

Это одно из уравнений Мещерского для движения тела переменной массы, полученное им в 1897 г.

Если ввести обозначение \(~\vec F_r = - \mu \vec u\) , то уравнение (12) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.

Величина \(~\vec F_r = - \mu \vec u\) носит название реактивной силы . Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью \(~\vec u\) при расходе топлива μ . Реактивная сила космических ракет достигает 1000 кН.

Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (12) запишется так:

\(~M \frac{\Delta \vec \upsilon}{\Delta t} = \vec F_r + \vec F\) . (13)

Реактивные двигатели

Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-реактивными двигателями.

В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твердой, жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолетов и ракет, не выходящих за пределы атмосферы, связано с тем, что именно реактивные двигатели способны обеспечить максимальную скорость полета.

Реактивные двигатели делятся на два класса: ракетные и воздушно-реактивные .

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

На рисунке 5 показана схема ракетного двигателя на твердом топливе. Порох или какое-либо другое твердое топливо, способное к горению в отсутствие воздуха, помещают внутрь камеры сгорания двигателя.

При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где расположено сопло. Вытекающие через сопло газы не встречают на своем пути стенку, на которую могли бы оказывать давление. В результате появляется сила, толкающая ракету вперед.

Суженная часть камеры - сопло служит для увеличения скорости истечения продуктов сгорания, что в свою очередь повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Применяются также ракетные двигатели, работающие на жидком топливе.

В жидкостно-реактивных двигателях (ЖРД) в качестве горючего можно использовать керосин, бензин, спирт, анилин, жидкий водород и др., а в качестве окислителя, необходимого для горения, - жидкий кислород, азотную кислоту, жидкий фтор, пероксид водорода и др. Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру, где при сгорании топлива развивается температура до 3000 °С и давление до 50 атм (рис. 6). В остальном двигатель работает так же, как и двигатель на твердом топливе.

Раскаленные газы (продукты сгорания), выходя через сопло, вращают газовую турбину, приводящую в движение компрессор. Турбокомпрессорные двигатели установлены в наших лайнерах Ту-134, Ил-62, Ил-86 и др.

Реактивными двигателями оснащены не только ракеты, но и большая часть современных самолетов.

Успехи в освоении космического пространства

Основы теории реактивного двигателя и научное доказательство воз-можности полетов в межпланетном пространстве были впервые высказаны и разработаны русским ученым К.Э. Циолковским в работе «Исследование мировых пространств реактивными приборами».

К.Э. Циолковскому принадлежит также идея применения многоступенчатых ракет. Отдельные ступени, из которых составлена ракета, снабжаются собственными двигателями и запасом топлива. По мере выгорания топлива каждая очередная ступень отделяется от ракеты. Поэтому в дальнейшем на ускорение ее корпуса и двигателя топливо не расходуется.

Идея Циолковского о сооружении большой станции-спутника на орбите вокруг Земли, с которой будут стартовать ракеты к другим планетам Солнечной системы, еще не осуществлена, но нет сомнения в том, что рано или поздно такая станция будет создана.

В настоящее время становится реальностью пророчество Циолковского: «Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство».

Нашей стране принадлежит великая честь запуска 4 октября 1957 г. первого искусственного спутника Земли. Также впервые в нашей стране 12 апреля 1961 г. был осуществлен полет космического корабля с космонавтом Ю.А. Гагариным на борту.

Эти полеты были совершены на ракетах, сконструированных отечест-венными учеными и инженерами под руководством С.П. Королева. Большие заслуги в исследовании космического пространства имеют американские ученые, инженеры и астронавты. Два американских астронавта из экипажа космического корабля «Аполлон-11» - Нейл Армстронг и Эдвин Олдрин - 20 июля 1969 г. впервые совершили посадку на Луну. На космическом теле Солнечной системы человеком были сделаны первые шаги.

С выходом человека в космос не только открылись возможности исследования других планет, но и представились поистине фантастические возможности изучения природных явлений и ресурсов Земли, о которых можно было только мечтать. Возникло космическое природоведение. Раньше общая карта Земли составлялась по крупицам, как мозаичное панно. Теперь снимки с орбиты, охватывающие миллионы квадратных километров, позволяют выбирать для исследования наиболее интересные участки земной поверхности, экономя тем самым силы и средства- Из космоса лучше различаются крупные геологические структуры: плиты, глубинные разломы земной коры - места наиболее вероятного залегания полезных ископаемых. Из космоса удалось обнаружить новый тип геологических образований кольцевые структуры, подобные кратерам Луны и Марса,

Сейчас на орбитальных комплексах разработаны технологии получения материалов, которые нельзя изготовить на Земле, а только в состоянии длительной невесомости в космосе. Стоимость этих материалов (сверхчистые монокристаллы и др.) близка к затратам на запуск космических аппаратов.

Литература

  1. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - 496 с.