Основные понятия и термины: организм человека; функциональные системы организма (опорно-двигательная, сердечно-сосудистая, дыхательная, нервная, эндокринная, выделительная, пищеварительная, лимфатическая); анатомия; физиология; метаболизм; функциональная активность, физический и умственный труд, утомление, восстановление, экологические факторы; гиподинамия и гипокинезия; максимальное потребление кислорода.

План лекции.

  • 1. Основные понятия.
  • 2. Опорно-двигательный аппарат.
  • 3. Сердечно-сосудистая система.
  • 4. Дыхательная система.
  • 5. Нервная система.
  • 6. Обмен веществ и энергии.
  • 7. Внешняя среда и ее влияние на организм человека.
  • 8. Функциональная активность человека

Физическая культура как феномен общей культуры уникальна. Именно она, по словам В.К. Бальсевича, является естественным мостиком, позволяющим соединить социальное и биологическое в развитии человека Более того, как доказывает Н.Н. Визитей, она является самым первым и базовым видом культуры, который формируется в человеке. Физическая культура с присущим, ей дуализмом может значительно влиять на состояние организма, психики, статус человека. Исторически физическая культура складывалась, прежде всего, под влиянием практических потребностей общества в полноценной физической подготовке подрастающего поколения и взрослого населения к труду. Вместе с тем по мере становления систем образования и воспитания физическая культура становилась базовым фактором формирования двигательных умений и навыков. Качественно новая стадия осмысления сущности физической культуры связывается с ее влиянием на духовную сферу человека как действенного средства интеллектуального, нравственного, эстетического воспитания .

Физическая культура -- органическая часть общечеловеческой культуры, ее особая самостоятельная область. Вместе с тем это специфический процесс и результат человеческой деятельности, средство и способ физического совершенствования личности. Физическая культура воздействует на жизненно важные стороны индивида, полученные в виде задатков, которые передаются генетически и развиваются в процессе жизни под влиянием воспитания, деятельности и окружающей среды, удовлетворяет социальные потребности в общении, игре, развлечении, в некоторых формах самовыражения личности через социально активную полезную деятельность.

В своей основе физическая культура имеет целесообразную двигательную деятельность в форме физических упражнений, позволяющих эффективно формировать необходимые умения и навыки, физические способности, оптимизировать состояние здоровья организма человека и его работоспособность.

Организм человека - единая, сложная, саморегулируемая и саморазвивающаяся биологическая система, находящаяся в постоянном взаимодействии с окружающейся средой, имеющая способность к самообучению, восприятию, передаче и хранению информации. Медицинская наука при рассмотрении организма человека и его систем исходит из принципа целостности человеческого организма, обладающего способностью к самовоспроизведению. Человек развивается под влиянием генотипа (наследственности), а также факторов постоянно изменяющейся внешней природной и социальной среды .

Функциональная система организма - это группа органов, обеспечивающая согласованное протекание в них процессов жизнедеятельности. Выделение групп органов в организме человека в системы условно, так как они функционально взаимосвязаны между собой. Различают следующие системы человеческого организма: сердечно-сосудистая, дыхательная, опорно-двигательная, пищеварительная, эндокринная, выделительная, нервная.

Физиологическая регуляция процессов, протекающих в организме, весьма совершенная и позволяет ему постоянно приспосабливаться к изменяющимся воздействиям внешней среды. Все органы и системы человеческого организма находятся в постоянном взаимодействии и являются саморегулирующей системой, в основе которой лежат функции нервной и эндокринной систем организма.

При этом ведущую роль играет центральная нервная система, которая способна воспринимать воздействия внешней среды и отвечать на него, включая взаимодействие психики человека, его двигательных функций с различными условиями внешней окружающей среды.

Отличительной особенностью человека является возможность созидательно и активно изменять как внешние природные, так и социально-бытовые условия для укрепления здоровья, повышения умственной и физической работоспособности.

Без знания строения человеческого тела, закономерностей деятельности отдельных систем, органов и всего организма в целом, процессов жизнедеятельности, протекающих в условиях воздействия на организм естественных факторов природы, невозможно правильно организовать процесс физического воспитания.

Учебно-тренировочный процесс по физическому воспитанию базируется на ряде естественных наук. В первую очередь это анатомия и физиология.

Анатомия - наука, изучающая форму и строение человеческого организма, отдельных органов и тканей, выполняющих какую-либо функцию в процессе развития человека. Анатомия объясняет внешнюю форму, внутреннее строение и взаимное расположение органов и систем организма человека.

Физиология - наука о закономерностях функционирования целостного живого организма. Функционально все органы и системы организма человека находятся в тесной взаимосвязи. Активизация деятельности одного органа, обязательно влечет за собой активизацию деятельности других органов.

Функциональной единицей организма является клетка - элементарная живая система, обеспечивающая структурное и функциональное единство тканей, размножение, рост и передачу наследственных свойств организма. Благодаря клеточной структуре организма возможны восстановление отдельных частей органов и тканей организма. У взрослого человека число клеток в организме достигает порядка 100 триллионов.

Выделение органов в организме человека в системы условно, так как они функционально взаимосвязаны между собой. Различают следующие системы человеческого организма: опорно-двигательную, сердечно-сосудистую, дыхательную, нервную, эндокринную, выделительную, пищеварительную, лимфатическую.

Опорно-двигательный аппарат . Непосредственными исполнителями всех движений являются мышцы. Однако сами по себе они не могут осуществлять функцию движения. Механическая работа мышц осуществляется через костные рычаги. Опорно-двигательный аппарат включает в себя три относительно самостоятельные системы: костную (скелет), связочно-суставную (подвижные соединения костей) и мышечную (скелетная мускулатура).

Кости и их соединения в совокупности образуют скелет, выполняющий жизненно важные функции: защитную, рессорную и двигательную. Кости скелета принимают участие в обмене веществ и кроветворении.

В основу классификации костей, которых у взрослого человека насчитывается более 200, положены форма, структура и функции. По форме кости различают длинные, короткие, плоские или округлые; по структуре трубчатые, губчатые и воздухоносные. В процессе эволюции человека длина и толщина костей увеличивается и приобретает большую прочность. Эта прочность костей обусловлена химическим составом кости, то есть содержанием в них органических и минеральных веществ и ее механическим строением. Соли кальция и фосфора придают костям твердость, а ее органические компоненты - упругость и эластичность. С возрастом содержание минеральных веществ, в основном, карбоната кальция становится больше, что приводит к снижению упругости и эластичности костей, обуславливая их ломкость (хрупкость).

Снаружи кость покрыта тонкой оболочкой - надкостницей, плотно соединяющейся с веществом кости. Надкостница имеет два слоя: наружный плотный слой насыщен сосудами (кровеносными и лимфатическими) и нервами, и внутренний, костеобразующий особые клетки, которые способствуют росту кости в толщину. За счет этих клеток происходит срастание кости при ее переломе. Надкостница покрывает кость почти на всем ее протяжении, за исключением суставных поверхностей. Рост костей в длину происходит за счет хрящевых частей, расположенных на краях.

Суставы обеспечивают подвижность сочленяющимся костям скелета. Суставные поверхности покрыты тонким слоем хряща, что обеспечивает скольжение суставных поверхностей с малым трением. Каждый сустав полностью заключен в суставную сумку. Стенки этой сумки выделяют суставную жидкость, выполняющую роль смазки. Связочно-капсульный аппарат и окружающие сустав мышцы укрепляют и фиксируют его. Основными направлениями движения, которые обеспечивают суставы являются: сгибание - разгибание, отведение - приведение, вращение и круговые движения.

Скелет человека делится на скелет головы, туловища и конечностей. Скелет головы называется черепом, который имеет сложное строение. В черепе находится мозг и некоторые сенсорные системы: зрительная, слуховая, обонятельная. При занятиях физическими упражнениями большое значение имеет наличие опорных мест черепа - контрфорсов, которые смягчают толчки и сотрясения при беге, прыжках.

Непосредственно с туловищем череп соединяется с помощью двух первых шейных позвонков. Скелет туловища состоит из позвоночного столба и грудной клетки. Позвоночный столб - это 33-34 позвонка, условно разделенные на отделы: шейный (7 позвонков), грудной (12), поясничный (5), крестцовый (5 сросшихся позвонков) и копчиковый (сросшиеся 4-5 позвонков). Соединения позвонков осуществляется с помощью хрящевидных, эластичных межпозвоночных дисков и суставных отростков. Межпозвоночные диски увеличивают подвижность позвоночника. Чем больше их толщина, тем выше гибкость. Если изгибы позвоночного столба выражены сильно (при сколиозах) подвижность грудной клетки уменьшается. Плоская или округлая спина (горбатая) свидетельствует о слабости мышц спины. Коррекция осанки проводится общеразвивающими, силовыми упражнениями и упражнениями на растягивания.

В основной скелет входит и грудная клетка, которая выполняет защитную функцию для внутренних органов и состоит из грудины, 12 пар ребер и их соединений. Ребра представляют собой плоские дугообразно-изогнутые длинные кости, которые при помощи гибких хрящевидных концов прикрепляются подвижно к грудине. Все соединения ребер очень эластичны, что имеет важное значение для обеспечения дыхания.

Скелет верхней конечности образован плечевым поясом, состоящим из двух лопаток и двух ключиц, и свободной верхней конечностью, включающей плечо, предплечье и кисть.

Скелет нижней конечности образован тазовым поясом, состоящим из двух тазовых костей и крестца и скелетом свободной нижней конечности, включающей бедро, голень и стопу.

Правильно организованные занятия по физическому воспитанию не наносят ущерба развитию скелета, он становится более прочным в результате утолщения коркового слоя костей. Это имеет важное значение при выполнении физических упражнений, требующих высокой механической прочности (бег, прыжки и т.д.). Неправильное построение тренировочных занятий может привести к перегрузке опорного аппарата. Однобокость в выборе упражнений также может вызвать деформацию скелета .

У людей с ограниченной двигательной активностью, труд которых характеризуется удержанием определенной позы в течение длительного времени, возникают значительные изменения костной и хрящевой ткани, что особенно неблагоприятно отражается на состоянии позвоночного столба и межпозвоночных дисков. Занятия физическими упражнениями укрепляют позвоночник и за счет развития мышечного корсета, ликвидируют различные искривления, что способствует выработке правильной осанки и расширению грудной клетки.

Любая двигательная, в том числе и спортивная, деятельность совершается при помощи мышц, за счет их сокращения. Поэтому строение и функциональные возможности мускулатуры необходимо знать любому человеку, но в особенности тем, кто занимается физическими упражнениями и спортом.

На долю мышц приходится значительная часть сухой массы тела человека. У женщин на мышцы приходится до 35% общей массы тела, а у мужчин до 50% соответственно. Специальной силовой тренировкой можно значительно увеличить мышечную массу. Физическое бездействие приводит к уменьшению мышечной массы, а зачастую - к увеличению жировой массы.

В организме человека различают несколько видов мышц: скелетные (поперечно-полосатые), гладкие и сердечную мышцы. Деятельность мышц регулируется центральной нервной системой. Скелетные мышцы удерживают тело человека в равновесии и осуществляют все движения. При сокращении мышцы укорачиваются и через свои эластичные элементы - сухожилия осуществляют движения частей скелета. Работой скелетных мышц можно управлять произвольно, однако, при интенсивной работе они очень быстро утомляются.

Гладкие мышцы входят в состав внутренних органов человека. Гладкомышечные клетки укорачиваются в результате сокращения сократительных элементов, но скорость их сокращения в сотни раз меньше, чем в скелетных мышцах. Благодаря этому, гладкие мышцы хорошо приспособлены к длительному стойкому сокращению без утомления с незначительными энергозатратами.

В каждую мышцу входит нерв, распадающийся на тонкие и тончайшие ветви. Нервные окончания доходят до отдельных мышечных волокон, передавая им импульсы (возбуждение), которые заставляют их сокращаться. Мышцы на своих концах переходят в сухожилия, через которые они передают усилия на костные рычаги. Сухожилия также обладают упругими свойствами и являются последовательным упругим элементом мышцы. Сухожилия обладают большой прочностью на растяжение по сравнению с мышечной тканью. Наиболее слабыми и поэтому часто травмируемыми участками мышцы являются переходы мышцы в сухожилие. Поэтому перед каждым тренировочным занятием необходима хорошая предварительная разминка .

Мышцы в организме человека образуют рабочие группы и работают, как правило, скоординировано (согласовано) в пространственно-временных и динамико-временных отношениях. Такое взаимодействие называется мышечной координацией. Чем больше количество мышц или групп принимает участие в движении, тем сложнее движение и тем больше энергозатраты и тем большую роль играет межмышечная координация для повышения эффективности движения. Более совершенная межмышечная координация приводит к увеличению проявляемой силы, быстроты, выносливости и гибкости.

Все мышцы пронизаны сложной системой кровеносных сосудов. Протекающая по ним кровь снабжает их питательными веществами и кислородом. Сила сокращения мышцы зависит от площади поперечного сечения мышцы, от величины площади ее прикрепления к кости, а также от направления развиваемого мышцей усилия и длины плеча приложения силы. Например, сгибатель бицепса может создать усилия до 150 кг, а голени до 480 кг.

В процессе сокращения мышцы участвует одновременно лишь часть мышечных волокон, остальные в это время выполняют пассивную функцию. Поэтому мышцы могут совершать длительное время работу, однако, постепенно они теряют свою работоспособность и наступает утомление мышц.

В результате физических тренировок объем и сила мышцы значительно возрастает в 1,5-3 раза, а скорость сокращения и сопротивляемость к неблагоприятным факторам повышается в 1,2-2 раза, что приводит к возрастанию прочности сухожилий под влиянием мышечных усилий.

Сердечно-сосудистая система (система кровообращения). Деятельность всех систем организма человека осуществляется при взаимосвязи гуморальной (жидкостной) регуляции и нервной системы. Гуморальная регуляция осуществляется внутренней системой транспортировки через кровь и систему кровообращения, к которой относится сердце, кровеносные сосуды, лимфатические сосуды и органы вырабатывающие особые клетки, форменные элементы.

Движение крови и лимфы по сосудам происходит непрерывно, благодаря чему органы, ткани, клетки постоянно получают необходимые им в процессе ассимиляции пищевые вещества и кислород, и непрерывно удаляются продукты распада в процессе обмена веществ

В зависимости от характера и состава циркулирующей в организме жидкости сосудистую систему разделяют на кровеносную и лимфатическую.

Кровь - это разновидность соединительной ткани с жидким межклеточным веществом (плазмой) - 55% и взвешенных в ней форменных элементов (эритроцитов, лейкоцитов и тромбоцитов) - 45%. Основные компоненты плазмы - это вода (90-92%), белки и минеральные вещества. Благодаря наличию белков в крови вязкость ее выше воды (примерно в 6 раз). Состав крови относительно стабилен и имеет слабую щелочную реакцию.

Эритроциты - красные кровяные клетки, они являются носителем красного пигмента - гемоглобина. Гемоглобин уникален тем, что обладает способностью к образованию веществ в комплексе с кислородом. Гемоглобин составляет почти 90% в эритроцитах и служит переносчиком кислорода из легких ко всем тканям. В 1 куб. мм крови у мужчин в среднем 5 млн. эритроцитов, у женщин -4,5 млн. У людей занимающихся спортом, эта величина достигает 6 млн. и более. Эритроциты образуются в клетках красного костного мозга.

Лейкоциты - белые кровяные клетки. Они далеко не так многочисленны, как эритроциты. В 1 куб. мм крови содержится 6-8 тысяч белых кровяных клеток. Основная функция лейкоцитов - защита организма от возбудителей болезней. Особенностью лейкоцитов является способность их проникать к местам скопления микробов из капилляров в межклеточное пространство, где они выполняют свои защитные функции. Продолжительность жизни их 2-4 дня. Их число все время пополняется за счет вновь образующихся из клеток костного мозга, селезенки и лимфатических узлов.

Тромбоциты - кровяные пластинки, основная функция которых, обеспечение свертываемости крови. Кровь свертывается вследствие разрушения тромбоцитов и превращения растворимого белка плазмы фибриногена в нерастворимый фибрин. Волокна белка вместе с кровяными клетками формируют сгустки, закупоривающие просветы кровеносных сосудов.

Под влиянием систематических тренировок увеличивается число эритроцитов и содержание гемоглобина в крови, в результате чего повышается кислородная емкость крови. Повышается сопротивляемость организма к простудным и инфекционным заболеваниям из-за повышения активности лейкоцитов.

Функции крови: 1) транспортная, доставляет клеткам питательные вещества и кислород, удаляет из организма продукты распада при обмене веществ; 2) защитная, защищает организм от вредных веществ и инфекции, за счет наличия механизма свертывания останавливает кровотечение; 3) теплообменная, участвует в поддержании постоянной температуры тела .

Кровь в организме человека движется по замкнутой системе, в которой выделяются две части - большой и малый круги кровообращения. Центром кровеносной системы является сердце, исполняющее роль двух насосов. Правая сторона сердца - продвигает кровь по малому кругу кровообращения, левая сторона сердца - по большому кругу кровообращения.

Малый круг кровообращения начинается от правого желудочка сердца, затем кровь поступает в легочный ствол, который разделяется на две легочные артерии. Они делятся на более мелкие артерии, переходящие в капилляры альвеол, в которых происходит газообмен (кровь отдает углекислый газ и обогащается кислородом). Из каждого легкого выходит по две вены, впадающие в левое предсердие.

Большой круг кровообращения начинается от левого желудочка сердца. Обогащенная кислородом и питательными веществами кровь поступает ко всем органам и тканям, где происходит газообмен и обмен веществ. Забрав из тканей углекислый газ и продукты распада, кровь собирается в вены и двигается к правому предсердию.

У человека существуют три типа кровеносных сосудов: артерии, вены, капилляры. Артерии и вены отличаются друг от друга направлением движения крови в них. Артерии несут кровь от сердца к тканям, а вены возвращают ее от тканей к сердцу. Капилляры - тончайшие сосуды, они тоньше человеческого волоса в 15 раз. Стенки капилляров полупроницаемые, через них вещества, растворенные в плазме крови, просачиваются в тканевую жидкость, из которой переходят в клетки. Продукты обмена клеток проникают в обратном направлении из тканевой жидкости в кровь.

Артериальная кровь движется по сосудам от сердца под воздействием давления создаваемого сердечной мышцей в момент ее сокращения. На возвратное движение крови по венам оказывает влияние несколько факторов. Во-первых, венозная кровь продвигается к сердцу под действием сокращений скелетных мышц, которые как бы выталкивают кровь из вен в сторону сердца, при этом обратное движение крови исключается, так как клапаны, находящиеся в венах пропускают кровь только в одном направлении - к сердцу. Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблении скелетных мышц, называется мышечным насосом. Таким образом, скелетные мышцы при циклических движениях существенно помогают сердцу обеспечивать циркуляцию крови в сосудистой системе.

Во-вторых, при вдохе происходит расширение грудной клетки и в ней создается пониженное давление, которое обеспечивает подсасывание венозной крови к грудному отделу.

В-третьих, в момент систолы (сокращения) сердечной мышцы, при расслаблении предсердий в них также возникает подсасывающий эффект, способствующий движению венозной крови к сердцу.

Сердце - центральный орган системы кровообращения. Сердце представляет собой полый четырехкамерный мышечный орган, расположенный в грудной полости, разделенный вертикальной перегородкой на две половины - левую и правую, каждая из которых состоит из желудочка и предсердия. Сердце работает автоматически под контролем центральной нервной системы.

Волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту при сокращении левого желудочка, называется частотой сердечных сокращений (ЧСС).

ЧСС взрослого мужчины в покое составляет 65-75 уд/мин., у женщин на 8-10 ударов больше, чем у мужчин. У тренированных спортсменов ЧСС в покое может достигать 40-50 уд/мин.

Количество крови, выталкиваемой желудочком сердца в аорту при одном сокращении, называется систолическим (ударным) объемом крови. В состоянии покоя он составляет 60-80 мл. При физической нагрузке у нетренированных возрастает до 100-130 мл, а у тренированных до 180-200 мл.

Количество крови, выбрасываемое одним желудочком сердца в течение одной минуты, называется минутным объемом крови. В состоянии покоя этот показатель равен в среднем 4-6 л. При физической нагрузке он повышается у нетренированных до 18-20 л., а у тренированных до 30-40 л.

При каждом сокращении сердца, поступающая в систему кровообращения кровь создает в ней давление, зависящее от эластичности стенок сосудов. Его величина в момент сердечного сокращения (систолы) составляет у молодых людей 115-125 мм рт. ст. Минимальное (диастолическое) давление в момент расслабления сердечной мышцы составляет - 60-80 мм рт. ст. Разница между максимальным и минимальным давлением называется пульсовым давлением. Оно составляет примерно 30-50 мм рт. ст.

Под воздействием физической тренировки размеры, масса сердца увеличиваются в связи с утолщением стенок сердечной мышцы и увеличением его объема. Мышца тренированного сердца более густо пронизана кровеносными сосудами, что обеспечивает лучшее питание мышечной ткани и ее работоспособность.

Дыхательная система . Дыханием называется комплекс физиологических процессов, обеспечивающих потребление кислорода и выделение углекислого газа живым организмом.

Процесс дыхания принято делить на: внешнее (легочное), т.е. обмен газов между легкими и атмосферой; и тканевое, т.е. процесс обмена кислородом и углекислым газом между кровью и клетками тела.

Внешнее дыхание осуществляется с помощью дыхательного аппарата, состоящего из воздухоносных путей (полость носа, носоглотка, гортань, дыхательное горло, трахеи и бронхи). Стенки носового хода устланы мерцательным эпителием, который задерживает поступающую с воздухом пыль. Внутри носового хода происходит согревание воздуха. При дыхании через рот воздух поступает сразу в глотку и из нее в гортань, не очищаясь и не согреваясь.

При вдохе воздух попадает в легкие, каждое из которых находится в плевральной полости и работает изолированно друг от друга. Каждое легкое имеет форму конуса. Со стороны, обращенной к сердцу, в каждое легкое входит бронх, делясь на более мелкие бронхи, образуется так называемое бронхиальное дерево. Мелкие бронхи заканчиваются альвеолами, которые оплетены густой сетью капилляров, по которым течет кровь. При прохождении крови по легочным капиллярам и происходит газообмен: углекислый газ, выделяясь из крови, поступает в альвеолы, а те отдают в кровь кислород.

Показателями работоспособности органов дыхания являются дыхательный объем, частота дыхания, жизненная емкость легких, легочная вентиляция, потребление кислорода и др.

Дыхательный объем - объем воздуха, проходящий через легкие за один дыхательный цикл (вдох, выдох). Этот показатель значительно увеличивается у тренированных и составляет от 800 мл и более. У нетренированных дыхательный объем в состоянии покоя находится на уровне 350-500 мл.

Если после нормального вдоха сделать максимальный выдох, то из легких выйдет еще 1,0-1,5 л воздуха. Этот объем принято называть резервным. Количество воздуха, которое можно вдохнуть сверх дыхательного объема называют дополнительным объемом. Сумма трех объемов: дыхательного, дополнительного и резервного составляет жизненную емкость легких.

Жизненная емкость легких (ЖЕЛ) - максимальный объем воздуха, который может выдохнуть человек после максимального вдоха (измеряется методом спирометрии). Жизненная емкость легких в значительной степени зависит от возраста, пола, роста, окружности грудной клетки, физического развития. У мужчин ЖЕЛ колеблется в пределах 3200-4200 мл, у женщин 2500-3500 мл. У спортсменов, особенно занимающихся циклическими видами спорта (плавание, лыжные гонки и т.п.), ЖЕЛ может достигать у мужчин 7000 мл и более, у женщин 5000 мл и более .

Частота дыхания - количество дыхательных циклов в минуту. Один цикл состоит из вдоха, выдоха и дыхательной паузы. Средняя частота дыхания в покое 15-18 циклов в минуту. У тренированных людей, за счет увеличения дыхательного объема, частота дыхания снижается до 8-12 циклов в минуту. При физической нагрузке частота дыхания увеличивается, например, у пловцов до 45 циклов в минуту.

Легочная вентиляция - объем воздуха, который проходит через легкие за минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое находится на уровне 5000-9000 мл. При физической нагрузке этот показатель увеличивается.

Потребление кислорода - количество кислорода, использованного организмом в покое или при нагрузке за 1 минуту. В состоянии покоя человек потребляет 250-300 мл кислорода в 1 минуту. При физической нагрузке эта величина увеличивается. Наибольшее количество кислорода, которое организм может потребить в минуту при предельной мышечной работе, называется максимальным потреблением кислорода (МПК).

Наиболее эффективно дыхательную систему развивают циклические виды спорта (бег, гребля, плавание, лыжный спорт и т.п.).

Нервная система человека объединяет все системы организма в единое целое и состоит из нескольких миллиардов нервных клеток и их отростков. Длинные отростки нервных клеток, объединяясь, образуют нервные волокна, которые подходят ко всем тканям и органам человека.

Нервную систему делят на центральную и периферическую. К центральной нервной системе относят головной и спинной мозг. Периферическая нервная система образуется нервами, отходящими от головного и спинного мозга. От головного мозга отходят 12 пар черепных нервов, а от спинного - 31 пара спинномозговых нервов.

По функциональному принципу нервную систему делят на соматическую и вегетативную. Соматические нервы иннервируют на поперечно-полосатую мускулатуру скелета и некоторые органы (язык, глотка, гортань и др.). Вегетативные нервы регулируют работу внутренних органов (сокращение сердца, перистальтика кишечника и др.).

Основными нервными процессами являются возбуждение и торможение, возникающие в нервных клетках. Возбуждение - состояние нервных клеток, когда они передают или направляют сами нервные импульсы другим клеткам. Торможение - состояние нервных клеток, когда их активность направлена на восстановление.

Нервная система действует по принципу рефлекса. Различают два вида рефлексов: безусловный (врожденный) и условный (приобретенный в процессе жизнедеятельности). Рефлекс - это ответная реакция организма на раздражение, осуществляемая при участии ЦНС.

Все движения человека представляют собой приобретенные в процессе индивидуальной жизни новые формы двигательных актов. Двигательный навык - двигательное действие, выполняемое автоматически без участия внимания и мышления. Образование двигательного навыка происходит последовательно по трем фазам: генерализации, концентрации, автоматизации.

Фаза генерализации характеризуется расширением и усилением возбудительного процесса, в результате чего в работу включаются дополнительные группы мышц. В этой фазе движения неэкономичны, плохо координированы и неточны.

Фаза концентрации характеризуется дифференцированным торможением излишнего возбуждения и его концентрации в нужных зонах головного мозга. Движения в этой фазе становятся точными, экономичными, стабильными.

Фаза автоматизации характеризуется выполнением движения автоматически без участи внимания и мышления. Автоматизированный навык отличается высокой степенью надежности и стабильности выполнения всех составляющих его движений.

В образовании двигательного навыка участвуют различные анализаторы: двигательный, вестибулярный, кожный и др. Анализатор - это структурная целостность рецептора и нерва, проводящего возбуждение в центр находящийся в коре головного мозга. Изменение функции того или иного анализатора тесно связанно со спецификой физических упражнений. У занимающихся физическими упражнениями совершенствуется глазодвигательный анализатор, увеличивается поле зрения (норма - 15°, при специальной тренировке до 30°) и совершенствуется глубина восприятия. При исследованиях кожного анализатора в процессе тренировок установлено, что те области тела, которые подвергаются соприкосновениям и ударам имеют пониженную тактильную и болевую чувствительность.

В процессе физической тренировки нервная система человека совершенствуется, осуществляя более тонко взаимодействие процессов возбуждения и торможения различных нервных центров. Тренировка позволяет более дифференцированно органам чувств осуществлять двигательное действие, формирует способность к более быстрому усвоению новых двигательных навыков.

Обмен веществ и энергии -- основа жизнедеятельности организма человека.

Единство организма человека с внешней средой проявляется прежде всего в непрекращающемся обмене веществ и энергии. Под обменом веществ (метаболизмом ) принято понимать сложный постоянно протекающий, самосовершающийся и саморегулирующийся биохимический и энергетический процесс, связанный с поступлением в организм из окружающей среды различных питательных веществ, обеспечивающих постоянство химического состава и внутренних параметров организма, его жизнедеятельность, развитие и рост, размножение, способность к движению и адаптацию к изменяющимся условиям внешней окружающей среды.

Обмен веществ -- это два взаимосвязанных противоположных процесса, протекающие одновременно, в результате которых происходит усвоение веществ, поступающих из окружающей среды и их биологическое превращение в потенциальную энергию (ассимиляция), а второй процесс, связанный с постоянным распадом веществ и выведение из организма продуктов распада (диссимиляция).

Эти процессы согласованы между собой и образуют целостную систему, обеспечивающую нормальную функциональную жизнедеятельность организма человека.

В обменных процессах участвуют белки, углеводы, жиры, вода и минеральные соли. Важная роль в этих процессах принадлежит также витаминам, которые являются катализаторами обменных процессов.

Процесс обмена веществ регулируется нервно-гуморальным (жидкостным) путем, то есть системой и железами внутренней секреции, усиливая или тормозя гормонообразование и поступление гормонов в кровь.

Так, например, на белковый обмен существенное влияние оказывает гормон щитовидной железы - тироксин; на углеводный обмен оказывает влияние гормон надпочечников - адреналин и гормон поджелудочной железы - инсулин; на жировой обмен влияют гормоны поджелудочной железы и щитовидной железы и др.

Общая интенсивность обменных процессов, в течение жизни меняется. Сразу после рождения человека скорость поступления в организм питательных веществ превышает скорость их распада. Это обеспечивает рост организма. К 17-19 годам различия в скорости процессов ассимиляции и диссимиляции постепенно сглаживаются, в организме к этому времени устанавливается динамическое равновесие между этими сторонами обменных процессов. С этого времени рост организма, по существу прекращается, но процесс ассимиляции все же преобладает. В возрасте от 25 до 60 лет в процессе обмена веществ наблюдается равновесие, при котором интенсивность процессов примерно равна. К старости в обменных процессах начинает преобладать диссимиляция, что приводит к снижению биосинтеза многих важнейших для жизнедеятельности организма веществ: ферментов, структурных белков, легко доступных для использования источников энергии. Происходит снижение функциональных возможностей различных тканей, дистрофия мышц и снижение их силы, ухудшаются и качество нервной регуляции длительности органов и систем организма

Мышечная деятельность является непременным условием отправления двигательных и вегетативных функций организма человека на всех этапах его развития. Значение мышечной деятельности в биологии и физиологии человека настолько велико, что ее совершенно справедливо расценивать как главенствующий признак жизни.

Функциональная активность человека характеризуется различными двигательными актами: сокращением мышцы сердца, передвижением тела в пространстве, движением глазных яблок, глотанием, дыханием, а также двигательным компонентом речи, мимики.

Понятие “труд” включает различные его виды. Между тем существуют два основных вида трудовой деятельности человека -- физический и умственный труд и их промежуточные сочетания.

Физический труд -- это вид деятельности человека, особенности которой определяются комплексом факторов, отличающих один вид деятельности от другого, связанного с наличием каких-либо климатических, производственных, физических, информационных и тому подобных факторов. Выполнение физической работы всегда связано с определенной тяжестью труда, которая определяется степенью вовлечения в работу скелетных мышц и отражающая физиологическую стоимость преимущественно физической нагрузки. По степени тяжести различают физически легкий труд, средней тяжести, тяжелый и очень тяжелый. Критериями оценки тяжести труда служат эргометрические показатели (величины внешней работы) и физиологические (уровни энергозатрат, частота сердечных сокращений, иные функциональные изменения) .

Умственный труд -- это деятельность человека по преобразованию сформированной в его сознании концептуальной модели действительности путем создания новых понятий, суждений, умозаключений, а на их основе -- гипотез и теории. Результат умственного труда -- научные и духовные ценности или решения, которые посредством управляющих воздействий на орудия труда используются для удовлетворения общественных или личных потребностей.

Одна из важнейших характеристик личности -- интеллект. Другой, не менее важной стороной личности является эмоционально-волевая сфера, темперамент и характер. С помощью систематических занятий физическими упражнениями можно регулировать формирование личности.

Ежедневная утренняя зарядка, прогулка или пробежка на свежем воздухе благоприятно влияют на организм, повышают тонус мышц, улучшают кровообращение и газообмен, а это положительно влияет на повышение умственной работоспособности студентов.

Утомление -- это функциональное состояние, временно возникающее под влиянием продолжительной и интенсивной работы и приводящее к снижению ее эффективности. Утомление проявляется в том, что уменьшается сила и выносливость мышц, ухудшается координация движений, возрастают затраты энергии при выполнении работы одинакового характера, замедляется скорость переработки информации, ухудшается память, затрудняется процесс сосредоточения и переключения внимания, усвоения теоретического материала. Утомление связано, с ощущением усталости, и в то же время оно служит естественным сигналом возможного истощения организма и предохранительным биологическим механизмом, защищающим его от перенапряжения.

Утомление наступает при физической и умственной деятельности. Оно может быть острым, т.е. проявляться в короткий промежуток времени, и хроническим, т.е. носить длительный характер (вплоть до нескольких месяцев): общим, т.е. характеризующим изменение функций организма в целом, и локальным, затрагивающим какую-либо ограниченную группу мышц, орган, анализатор. Различают две фазы утомления: компенсированную (когда нет явно выраженного снижения работоспособности из-за того, что включаются резервные возможности организма) и некомпенсированную (когда резервные мощности организма исчерпаны и работоспособность явно снижается). Систематическое выполнение работы на фоне недовосстановления, непродуманная организация труда, чрезмерное нервно-психическое и физическое напряжение могут привести к переутомлению, а, следовательно, к перенапряжению нервной системы, обострениям сердечно-сосудистых заболеваний, гипертонической и язвенным болезням, снижению защитных свойств организма. Физиологической основой всех этих явлений является нарушение баланса возбудительно-тормозных нервных процессов. Умственное переутомление особенно опасно для психического здоровья человека, оно связано со способностью центральной нервной системы долго работать с перегрузками, а это в конечном итоге может привести к развитию запредельного торможения, к нарушению слаженности взаимодействия вегетативных функций.

Устранить утомление возможно, повысив уровень общей и специализированной тренированности организма, оптимизировав его физическую, умственную и эмоциональную активность.

Профилактике и отдалению умственного утомления способствует мобилизация тех сторон психической активности и двигательной деятельности, которые не связаны с теми, что привели к утомлению. Необходимо активно отдыхать, переключаться на другие виды деятельности, использовать арсенал средств восстановления.

Восстановление -- процесс, происходящий в организме после прекращения работы и заключающийся в постепенном переходе физиологических и биохимических функций к исходному состоянию. Время, в течение которого происходит восстановление физиологического статуса после выполнения определенной работы, называют восстановительным периодом. Схематически процесс восстановления можно представить в виде трех взаимодополняющих звеньев: 1) устранение изменений и нарушений в системах нейрогуморального регулирования: 2) выведение продуктов распада, образующихся в тканях и клетках работавшего органа, из мест их возникновения; 3) устранение продуктов распада из внутренней среды организма .

Специальные исследования показали, что эффективность умственной деятельности в условиях низкой физической активности уже на вторые сутки снижается почти на 50%, при этом резко ухудшается концентрация внимания, растет нервное напряжение, существенно увеличивается время решения задач, быстро развивается утомление, апатия и безразличие к выполняемой работе, человек становится раздражительным, вспыльчивым.

Почему, именно, физические упражнения являются в этом случае самым лучшим "лекарством" от утомления? Дело в том, что импульсы от опорно-двигательного аппарата резко повышают тонус клеток коры головного мозга за счет улучшения в них обменных процессов.

Одновременно существенно возрастает выброс в кровь гормонов эндокринным железам, что также усиливает обменные процессы во всех органах. Наконец, при активной, работе мышц быстро улучшается кровообращение, а вместе с ним дыхание, работа печени и почек по выведению из крови токсичных шлаков, угнетающе действующих на нервные клетки.

Таким образом, самый верный и эффективный путь к высокой работоспособности, творческой активности, физическому совершенству и долголетию - высокая физическая активность.

Физическая нагрузка, повышая окислительные, обменные процессы в организме, задерживает развитие атеросклероза. Врачебные наблюдения показывают, что атеросклероз сосудов головного мозга, сосудов питающих мышцы сердца, у людей физического труда, а так же у лиц, занимающихся физической культурой, встречается сравнительно редко, как и повышенное содержание холестерина в крови.

Тонус и работоспособность головного мозга поддерживается в течение длительных промежутков времени. Если сокращение и напряжение различных мышечных групп ритмически чередуется с их последующим растяжением и расслаблением. Такой режим движений наблюдается во время ходьбы на лыжах, бега, катания на коньках и многих других физических упражнений, выполняемых ритмично с умеренной интенсивностью. Ежедневная утренняя гимнастика - обязательный минимум физической тренировки. Она должна стать такой же привычной, как умывание по утрам.

Внешняя среда и ее воздействие на организм человека. На человека воздействуют различные факторы окружающей среды. При изучении многообразных видов его деятельности не обойтись без учета влияния природных факторов (барометрическое давление, газовый состав и влажность воздуха, температура окружающей среды, солнечная радиация -- так называемая физическая окружающая среда), биологических факторов растительного и животного окружения, а также факторов социальной среды с результатами бытовой, хозяйственной, производственной и творческой деятельности человека.

Из внешней среды в организм поступают вещества, необходимые для его жизнедеятельности и развития, а также раздражители (полезные и вредные), которые нарушают постоянство внутренней среды. Организм путем взаимодействия функциональных систем всячески стремится сохранить необходимое постоянство своей внутренней среды.

Природные и социально-биологические факторы, влияющие на организм человека, неразрывно связаны с вопросами экологического характера. Экология -- это и область знания, и часть биологии, и учебная дисциплина, и комплексная наука. Человек зависит от условий среды обитания точно так же, как природа зависит от человека. Между тем влияние производственной деятельности на окружающую природу (загрязнение атмосферы, почвы, водоемов отходами производства, вырубка лесов, повышенная радиация в результате аварий и нарушении технологий) ставит под угрозу существование самого человека. Экологические проблемы напрямую связаны с процессом организации и проведения систематических занятий физическими упражнениями и спортом, а также с условиями, в которых они происходят.

Гипокинезия и гиподинамия. Гипокинезия -- особое состояние организма, обусловленное недостаточностью двигательной активности. В ряде случаев это состояние приводит к гиподинамии. Гиподинамия -- совокупность отрицательных морфофункциональных изменений в организме вследствие длительной гипокинезии. Это атрофические изменения в мышцах, общая физическая детренированность, детренированность сердечно-сосудистой системы, понижение ортостатической устойчивости, изменение водно-солевого баланса, системы крови, деминерализация костей и т.д. В конечном счете, снижается функциональная активность органов и систем, нарушается деятельность регуляторных механизмов, обеспечивающих их взаимосвязь, ухудшается устойчивость к различным неблагоприятным факторам; уменьшается интенсивность и объем афферентной информации, связанной с мышечными сокращениями, нарушается координация движений, снижается тонус мышц, падает выносливость и силовые показатели.

Устойчивость организма к неблагоприятным факторам зависит от врожденных и приобретенных свойств. Физическая тренировка путем совершенствования физиологических механизмов повышает устойчивость к перегреванию, переохлаждению, гипоксии, действию некоторых токсических веществ, снижает заболеваемость и повышает работоспособность. Тренированные лыжники при охлаждении их тела до 35°С сохраняют высокую работоспособность. Если нетренированные люди не в состоянии выполнять работу при подъеме их температуры до 37--38°С, то тренированные успешно справляются с нагрузкой даже тогда, когда температура их тела достигает 39°С и более.

У людей, которые систематически и активно занимаются физическими упражнениями, повышается психическая, умственная и эмоциональная устойчивость при выполнении напряженной умственной или физической деятельности.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Негосударственное образовательное учреждение высшего профессионального образования

Институт управления, бизнеса и технологий

Реферат

На тему: Социально-биологиче ские основы физической культуры

Выполнила: Пряникова Олеся Сергеевна

г . Калуга - 2016 г.

Введение

1. Физиологическая характеристика организма при занятиях физическими упражнениями

2. Внешняя среда и её воздействие на организм и жизнедеятельность человека

3. Организм человека как единая биологическая система

4. Утомление при физической и умственной работе

5. Средства физической культуры, обеспечивающие устойчивость к умственной и физической работоспособности

6. Влияние физических упражнений на дыхательную и пищеварительную системы

7. Простейшие методики самооценки работоспособности, усталости и утомления

8. Двигательная функция и повышение устойчивости организма человека к различным условиям внешней среды

Заключение

Список литературы

Введение

Социально-биологические основы физической культуры - это принципы взаимодействия социальных и биологических закономерностей в процессе овладения человеком ценностями физической культуры.

При организации процесса физического воспитания большую роль играют знания комплекса медико-биологических, социально-психологических, педагогических и многих других наук.

Медико-биологические и педагогические науки имеют дело с человеком как с существом не только биологическим, но и социальным. Социальность- специфическая сущность человека, которая не упраздняет его биологической субстанции, ведь биологическое начало человека- необходимое условие для формирования и проявления социального образа жизни. Между тем творят историю, изменяют живой и неживой мир, создают и разрушают, устанавливают мировые и олимпийский рекорды не организмы, а люди, человеческие личности.

Анатомия и физиология - важнейшие биологические науки о строении и функциях человеческого организма. Человек подчиняется биологическим закономерностям, присущим всем живым существам. Однако от представителей животного мира он отличается не только строением, но развитым мышлением, интеллектом, речью, особенностями социально-бытовых условий жизни и общественных взаимоотношений. Труд и влияние социальной среды в процессе развития человечества повлияли на биологические особенности организма современного человека и его окружение. В основе изучения органов и межфункциональных систем человека принцип целостности и единства организма с внешней природной и социальной средой.

В данном реферате я рассматриваю вопросы деятельности организма, его органов и систем, воздействие на организм человека экологических факторов, а также выделяю роль физической культуры и спорта в укреплении здоровья.

физический культура организм работоспособность

1 . Физиологическая характеристика организма при занятиях физическими упражнениями

Связанные с выполнением физических упражнений общего и особенно специального (соревновательного, спортивного) характера изменения многих функций организма (увеличение частоты сердечных сокращений, систолического и минутного выброса сердцем крови, легочная вентиляция, потребление кислорода, повышение интенсивности обмена веществ и энергии и т.д.) могут наблюдаться еще до начала выполнения какой-либо мышечной деятельности, в результате возникновения предстартового и стартового состояний.

Физиологическими исследованиями выявлено три разновидности предстартовых состояний:

1.боевая готовность (оптимальный и желаемый вариант).

2.предстартовая лихорадка.

Проявление предстартовых реакций связано с уровнем тренированности и вполне может быть регулируемо с помощью разминки, словесных воздействий, массажа, произвольных изменений ритма и глубины дыхания.

Под влиянием разминки повышаются активность ферментов и скорость протекания биохимических реакций непосредственно в мышцах, их возбудимость, подвижность, готовность к напряженной деятельности. В среднем разминка должна продолжаться 10-30 минут и сопровождаться началом потоотделения, свидетельствующего о готовности терморегуляционных механизмов к повышенным требованиям во время основной физической работы. Однако необходимо помнить, что разминка не должна приводить к утомлению, а должна способствовать успешному врабатыванию организма.

В состоянии «мертвой точки» существенно учащается дыхание, нарастает легочная вентиляция, активно поглощается кислород. Несмотря на то, что увеличивается и выведение углекислоты, ее напряжение в крови и в альвеолярном воздухе нарастает. Частота сердечных сокращений резко увеличивается, давление крови повышается, количество недоокисленных продуктов в крови растет. При выходе из «мертвой точки» за счет более низкой интенсивности работы легочная вентиляция еще какое-то время остается повышенной, активизируется процесс потоотделения, создаются необходимые соотношения между возбудительными и тормозными процессами в центральной нервной системе. При высокоинтенсивной работе «второе дыхание» не наступает, поэтому продолжение ее осуществляется на фоне нарастающего утомления..

Один из инструментов ослабления проявления «мертвой точки» - разминка, которая способствует более быстрому наступлению «второго дыхания».

В физическом воспитании существуют два важных понятия, которые необходимо знать, это: ГИПОКИНЕЗИЯ - (понижение, уменьшение, недостаточность) - особое состояние организма, обусловленное недостаточностью двигательной активности, т.е. ограничение количества и объема движений в результате образа жизни, особенностей профессиональной деятельности, постельного режима в период заболевания и т. д. В ряде случаев это состояние приводит к гиподинамии.

ГИПОДИНАМИЯ - совокупность отрицательных морфофункциональных изменений в организме вследствие длительной гипокинезии. Это атрофические изменения в мышцах, общая физическая детренированность, детренированность сердечно-сосудистой системы, понижение ортостатической устойчивости, изменение водно-солевого баланса, системы крови и т.д. В конечном итоге все сводится к снижению функциональной активности органов и систем и нарушениям функционирования регуляторных механизмов, обеспечивающих их взаимосвязь, ухудшению устойчивости к различным неблагоприятным факторам.

Наиболее устойчивы к развитию гиподинамических признаков мышцы шеи, спины и др. Мышцы живота атрофируются сравнительно быстро, что неблагоприятно сказывается на функции органов кровообращения, дыхания, пищеварения. В условиях гиподинамии снижается сила сердечных сокращений, в связи с уменьшением венозного возврата в предсердия уменьшается минутный объем, масса сердца и его энергетический потенциал, ослабляется сердечная мышца, снижается количество циркулирующей крови в связи с застаиванием ее в капиллярах. При этом тонус сосудов ослабляется, кровяное давление снижается, ухудшается снабжение тканей кислородом (гипоксия) и падает интенсивность обменных процессов. Все это сопровождается неадекватностью нервно-мышечных напряжений. Таким образом, при гиподинамии в организме создается ситуация, чреватая «аварийными» последствиями для его жизнедеятельности.

2. Внешняя среда и её воздействие на органи зм и жизнедеятельность человека

Природные социально-экологические факторы и их воздействие на организм.

Природные и социально-биологические факторы, влияющие на организм человека, неразрывно связаны с вопросами экологического характера.

Экология (греч, oikos- дом, жилище, родина + logos - понятие, учение) - это и область знания, и часть биологии, и учебная дисциплина, и комплексная наука. Экология рассматривает взаимоотношения организмов друг с другом и с неживыми компонентами природы: Земли (ее биосферы). Экология человека изучает закономерности взаимодействия человека с природой, проблемы сохранения и укрепления здоровья. Человек зависит от условий среды обитания точно так же, как природа зависит от человека. Между тем влияние производственной деятельности на окружающую природу (загрязнение атмосферы, почвы, водоемов отходами производства, вырубка лесов, повышенная радиация в результате аварий и нарушений технологий) ставит под угрозу существование самого человека. К примеру, в крупных городах значительно ухудшается естественная среда обитания, нарушаются ритм жизни, психоэмоциональная ситуация труда, быта, отдыха, меняется климат. В городах интенсивность солнечной радиации на 15 - 20% ниже, чем в прилегающей местности, зато среднегодовая температура выше на 1 - 2«0,менее значительны суточные и сезонные колебания, ниже атмосферное давление, загрязненный воздух. Все эти изменения оказывают крайне неблагоприятное воздействие на физическое и психическое здоровье человека. Около 80М болезней современного человека - результат ухудшения экологической ситуации на планете. Экологические проблемы напрямую связаны с процессом организации и проведения систематических занятий физическими упражнениями и спортом, а также с условиями, в которых они происходят.

Внешняя среда . На человека воздействуют различные факторы окружающей среды. При изучении многообразных видов его деятельности н обойтись без учета влияния природных факторов(барометрическое давление, газовый состав и влажность воздуха, температура окружающей среды, солнечная радиация - так называемая физическая окружающая среда), биологических факторов растительного и животного окружения, а также факторов социальной среды с результатами бытовой, хозяйственной, производственной и творческой деятельности человека.

Из внешней среды в организм поступают вещества, необходимые для его жизнедеятельности и развития, а также раздражители (полезные и вредные), которые нарушают постоянство внутренней среды. Организм путем взаимодействия функциональных систем всячески стремится сохранить необходимое постоянство своей внутренней: среды.

Деятельность всех органов и их систем в целостном организме характеризуется определенными показателями, имеющими те или иные " диапазоны колебаний. Одни константы стабильны и довольно жесткие(например, рН крови 7,36 - 7,40, температура тела - в пределах 35 -:42«0), другие и в норме отличаются значительными колебаниями (например, ударный объем сердца - количество крови, выбрасываемой за! одно сокращение -50 - 200 см»). Низшие позвоночные, у которых регуляция показателей, характеризующих состояние внутренней среды, несовершенна, оказываются во власти факторов окружающей среды. Например, лягушка, не обладая механизмом, регулирующим постоянство температуры тела, дублирует температуру внешней среды настолько, что зимой все жизненные процессы у нее затормаживаются, а летом, оказавшись вдалеке от воды, она высыхает и гибнет. В процессе филогенетического развития высшие животные, в том числе и человек, как бы сами себя поместили в теплицу, создав свою стабильную внутреннюю среду и обеспечив тем самым относительную независимость от внешней среды.

3. Организм человека как единая биологическая система

Естественно - научными основами физической культуры при организации процесса физического воспитания человека в обществе является комплекс медико-биологических наук, таких, как анатомия, физиология, биология, биохимия, гигиена и др.

Без знания строения человеческого тела, закономерностей деятельности отдельных органов и функциональных систем организма, особенностей протекания сложных процессов его жизнедеятельности невозможно должным образом организовать процесс формирования здорового образа жизни и физической подготовки.

Организм человека как единая саморазвивающаяся и саморегулирующаяся биологическая система - это система автоматического поддержания какого-либо жизненно важного фактора организма (например, давление крови, температура тела и др.) на должном уровне, всякое отклонение от которого ведет к немедленной мобилизации механизмов, восстанавливающих этот уровень.

Каждую секунду в организме разрушается огромное количество молекул различных веществ и одновременно образуются новые вещества, необходимые организму. В течение трех месяцев половина всех белков нашего тела обновляются. За 5 лет учебы у студентов, например, ткань роговицы глаза обновляется 250 раз, а слизистая оболочка желудка - 500 раз.

Обмен веществ между организмом и внешней средой сопровождается обменом энергии. С одной стороны человек получает энергию с потребляемой пищей, с другой стороны, он тратит энергию на работу внутренних органов, на физическую и умственную работу и на поддержание оптимальной температуры тела. Каждый взрослый человек должен стремиться не нарушать так называемый энергетический баланс, т.е. равное соотношение между количеством энергии, поступающим в организм, и величиной энергетических затрат.

Мышечная деятельность, занятия физическими упражнениями, спортом повышают активность обменных процессов, тренируют и поддерживают на высоком уровне механизмы, осуществляющие в организме обмен веществ и энергии, что положительно сказывается на умственной и физической работоспособности.

Организм - сложная биологическая система. Все его органы связаны между собой и взаимодействуют. Нарушение деятельности одного органа приводит к нарушению деятельности других.

Огромное количество клеток, каждая из которых выполняет свои, присущие только ей функции в общей структурно-функциональной системе организма, снабжаются питательными веществами и необходимым количеством кислорода для того, чтобы осуществлялись жизненно необходимые процессы энергообразования, выведения продуктов распада, обеспечения различных биохимических реакций жизнедеятельности и т.д. Эти процессы происходят благодаря регуляторным механизмам, осуществляющим свою деятельность через нервную, кровеносную, дыхательную, эндокринную и другие системы организма.

Необходимо отметить, что за последние 100 - 150 лет в ряде стран наблюдается раннее морфофункциональное развитие организма у детей и подростков. Это явление называют акселерацией (лат. ассе1еra - ускорение), оно связано не только с ускорением роста и развития организма вообще, но и с более ранним наступлением периода половой зрелости, ускоренным развитием сенсорных (лат. вепре - чувство), двигательных координаций и психических функций. Поэтому границы между возрастными периодами достаточно условны и это связано со значительными индивидуальными различиями, при которых «физиологический» возраст и «паспортный» не всегда совпадают.

Как правило, юношеский возраст (16 - 21 год) связан с периодом созревания, когда все органы, их системы и аппараты достигают своей морфофункциональной зрелости. Зрелый возраст (~2 - 60 лет) характеризуется незначительными изменениями строения тела, а функциональные возможности этого достаточно продолжительного периода жизни во многом определяются особенностями образа жизни, питания, двигательной активности. Пожилому возрасту (61 - 74 года) и старческому (75 лет и более) свойственны физиологические процессы перестройки снижение активных возможностей организма и его систем - иммунной, нервной, кровеносной и др. Здоровый образ жизни, активная двигательная деятельность в процессе жизни существенно замедляют процесс старения.

4. Утомление при физической и умственной работе

УТОМЛЕНИЕ - это вид функционального состояния организма человека, временно возникающий под влиянием продолжительной или интенсивной работы и приводящей к снижению ее эффективности. Состояние утомления проявляется в уменьшении силы и выносливости мышц, ухудшении координации движений, в возрастании затрат энергии при выполнении однообразной работы, в замедлении скорости переработки информации, ухудшении памяти, затруднении процесса сосредоточения и переключения внимания.

Развитие процесса утомления связано с ощущением усталости. В то же время утомление служит естественным сигналом возможного истощения организма и одновременно предохранительным биологическим механизмом, защищающим его от перенапряжения. Вместе с тем утомление, возникающее в процессе физического или умственного упражнения, является также и стимулятором, мобилизующим резервы организма, его органы и системы, восстановительные процессы.

Умственное переутомление особенно опасно для психического здоровья человека, так как оно связано со способностью центральной нервной системы к длительной работе с перегрузками, что в конечном итоге может привести в развитию запредельного торможения в ее корковых и подкорковых структурах, к нарушению слаженности взаимодействия вегетативных функций.

Устранение и профилактика утомления при умственных и физических нагрузках возможны за счет повышения уровня общей и специальной тренированности организма, оптимизации его физической, умственной и эмоциональной активности. Необходим активный отдых, переключение на другие виды деятельности, использование арсенала средств восстановления.

Время, в течение которого происходит восстановление физиологического статуса после выполнения определенной работы, называют восстановительным периодом.

В качестве ускоряющего процесс восстановления средства в спортивной практике с успехом используется активный отдых, т.е. переключение на другой вид деятельности. Значение активного отдыха для восстановления работоспособности впервые было установлено русским физиологом И.М Сеченовым, который показал, что явно выраженное ускорение восстановления работоспособности утомленной конечности происходит не при ее пассивном отдыха, а при работе в период отдыха другой конечностью.

5. Средства физической культуры, обеспечивающие устойчивость к умственной и физической работоспособности

Основное средство физической культуры - физические упражнения. Существует физиологическая классификация упражнений, в которой вся многообразная мышечная деятельность объединена в отдельные группы упражнений по физиологическим признакам. Устойчивость организма к неблагоприятным факторам зависит от: врожденных и приобретенных свойств. Она весьма подвижна и поддается тренировке как средствами мышечных нагрузок, так и различными внешними воздействиями (температурными колебаниями, недостатком или избытком кислорода, углекислого газа). Отмечено, например, что физическая тренировка путем совершенствования физиологических механизмов повышает устойчивость к перегреванию, переохлаждению, гипоксии, действию некоторых токсических веществ, снижает заболеваемость и повышает работоспособность. Тренированные лыжники при охлаждении их тела до 35 0 С сохраняют высокую работоспособность. Если нетренированные люди не в состоянии выполнять работу при подъеме их температуры до 37 - 38 0 С, то тренированные успешно справляются с нагрузкой даже тогда, когда температура их тела достигает 39 0 С и более.

У людей, которые систематически и активно занимаются физическими упражнениями, повышается психическая, умственная и эмоциональная устойчивость при выполнении напряженной умственной или физической деятельности.

К числу основных физических или двигательных) качеств, обеспечивающих высокий уровень физической работоспособности человека, относят силу, быстроту и выносливость, которые проявляются в определенных соотношениях в зависимости от условий выполнения той или иной двигательной деятельности, ее характера, специфики, продолжительности, мощности и интенсивности. К названным физическим качествам следует добавить гибкость и ловкость, которые во многом определяют успешность выполнения некоторых видов физических упражнений. Многообразие и специфичность воздействия упражнений на организм человека можно понять, ознакомившись с физиологической классификацией физических упражнений (с точки зрения спортивных физиологов). В основу ее положены определенные физиологические классификационные признаки, которые присущи всем видам мышечной деятельности, входящим в конкретную группу. Так, по характеру мышечных сокращений работа мышц может носить статический или динамический характер. Деятельность мышц в условиях сохранения неподвижного положения тела или его звеньев, а также упражнение мышц при удержании какого-либо груза без его перемещения характеризуется как статическая работа (статическое усилие). Статическими усилиями характеризуется поддержание разнообразных поз тела, а усилия мышц при динамической работе связаны с перемещениями тела или его звеньев в пространстве.

Значительная группа физических упражнений выполняется в строго постоянных (стандартных) условиях как на тренировках, так и на соревнованиях; двигательные акты при этом производятся в определенной последовательности. В рамках определенной стандартности движений и условий их выполнения совершенствуется выполнение конкретных движений с проявлением силы, быстроты, выносливости, высокой координации при их выполнении.

Есть также большая группа физических упражнений, особенность которых в нестандартности, непостоянстве условий их выполнения, в меняющейся ситуации, требующей мгновенной двигательной реакции (единоборства, спортивные игры). Две большие группы физических упражнений, связанные со стандартностью или нестандартностью движений, в свою очередь, делятся на упражнения (движения) циклического характера (ходьба, бег, плавание, гребля, передвижения на коньках, лыжах, велосипеде и т.п.) и упражнения ациклического характера (упражнения без обязательной слитной повторяемости определенных циклов, имеющих четко выраженные начало и завершение движения: прыжки, метания, гимнастические и акробатические элементы, поднимание тяжестей). Общее для движений циклического характера состоит в том, что все они представляют работу постоянной и: переменной мощности с различной продолжительностью. Многообразный характер движений не всегда позволяет точно определить мощность выполненной работы (т.е. количество работы в единицу времени, связанное с силой мышечных сокращений, их частотой и амплитудой), в таких случаях используется термин «интенсивность». Предельная продолжительность работы зависит от ее мощности, интенсивности и объема, а характер выполнения работы связан с процессом утомления в организме. Если мощность работы велика, то длительность ее мала вследствие быстро наступающего утомления, и наоборот. При работе циклического характера спортивные физиологи различают зону максимальной мощности (продолжительность работы не превышает 20 - 30 с, причем утомление и снижение работоспособности большей частью наступает уже через 10 - 15 с); субмаксимальной (от 20 - 30 до: 3 - 5 с); большой (от 3 - 5 до 30 - 50 мин) и умеренной (продолжительность 50 мин и более).

Особенности функциональных сдвигов организма при выполнении различных видов циклической работы в различных зонах мощности: определяет спортивный результат. Так, например, основной характерной чертой работы в зоне максимальной мощности является то, что деятельность мышц протекает в бескислородных (анаэробных) условиях. Мощность работы настолько велика, что организм не в состоянии обеспечить ее совершение за счет кислородных (аэробных) процессов. : Если бы такая мощность достигалась за счет кислородных реакций, то органы кровообращения и дыхания должны были обеспечить доставку к мышцам свыше 40 л кислорода в 1 мин. Но даже у высококвалифицированного спортсмена при полном усилении функции дыхания и кровообращения потребление кислорода может только приближаться: к указанной цифре. В течение же первых 10 - 20 с работы потребление кислорода в пересчете на 1 мин достигает лишь 1 - 2 л. Поэтому работа максимальной мощности выполняется «в долг», который ликвидируется после окончания мышечной деятельности. Процессы дыхания и кровообращения во время работы максимальной мощности не успевают усилиться до уровня, обеспечивающего нужное количество кислорода, чтобы дать энергию работающим мышцам. Во время спринтерского бега делается лишь несколько поверхностных дыханий, а иногда такой бег совершается при полной задержке дыхания. При этом афферентные и эфферентные отделы нервной системы функционируют с максимальным напряжением, вызывая достаточно быстрое утомление клеток центральной нервной системы. Причина утомления самих мышц связана со значительным накоплением продуктов анаэробного обмена и истощением энергетических веществ в них. Главная масса энергии, освобождающаяся при работе максимальной мощности, образуется за счет энергии распада АТФ и КФ. Кислородный долг, ликвидируемый в период восстановления после выполненной работы, используется на окислительный ресинтез (восстановление) этих веществ.

Снижение мощности и увеличение продолжительности работы связано с тем, что помимо анаэробных реакций энергообеспечения мышечной деятельности разворачиваются также и процессы аэробного энергообразования. Это увеличивает (вплоть до полного удовлетворения потребности) поступление кислорода к работающим мышцам. Так, при выполнении работы в зоне относительно умеренной мощности (бег на длинные и сверхдлинные дистанции) уровень потребления кислорода может достигать примерно 85% максимально возможного. При этом часть потребляемого кислорода используется на окислительный ресинтез АТФ, КФ и углеводов. При длительной (иногда многочасовой) работе умеренной мощности углеводные запасы организма (гликоген) значительно уменьшаются, что приводит к снижению содержания глюкозы в крови, отрицательно сказываясь на деятельности нервных центров, мышц и других работающих органов. Чтобы восполнить израсходованные углеводные запасы организма в процессе длительных забегов и проплывов, предусматривается специальное питание растворами сахара, глюкозы, соками. Ациклические движения не обладают слитной повторяемостью циклов и представляют собою стереотипно следующие фазы движений с четким завершением. Чтобы выполнить их, необходимо проявить силу, быстроту, высокую координацию движений (движения силового и скоростно-силового характера). Успешность выполнения этих упражнений связана с проявлением либо максимальной силы, либо скорости, либо сочетания того и другого и зависит от необходимого уровня функциональной готовности систем организма в целом.

К средствам физической культуры относятся не только физические упражнения, но и оздоровительные силы природы (солнце, воздух и вода), гигиенические факторы (режим труда, сна, питания, санитарно-гигиенические условия). Использование оздоровительных сил,природы способствует укреплению и активизации защитных сил организма, стимулирует обмен веществ и деятельность физиологических систем и отдельных органов. Чтобы повысить уровень физической и, лиственной работоспособности, необходимо бывать на свежем воздухе, отказаться от вредных привычек, проявлять двигательную активность, заниматься закаливанием. Систематические занятия физическими упражнениями в условиях напряженной учебной деятельности снимают нервно-психические напряжения, а систематическая мышечная деятельность повышает психическую, умственную и эмоциональную устойчивость организма при напряженной учебной работе.

6. Влияние физических упражнений на дыхательную и пищеварительную системы

Дыхательная система человека состоит из легких, воздухоносных путей, грудной клетки и дыхательной мускулатуры. Обмен воздуха в легких происходит в результате дыхательных движений грудной клетки.

Частота дыхания. Средняя частота дыхания в покое составляет 16-20 циклов в минуту. Один цикл состоит из вдоха, выдоха и дыхательной паузы. При физической нагрузке частота дыхания увеличивается в 2-3 раза и достигает 30-50 циклов в минуту.

Дыхательный объем - количество воздуха, проходящее через легкие при одном дыхательном цикле. В покое дыхательный объем находится в пределах 350-800 мл. При интенсивной физической работе он может увеличиваться до 2-2,5 л.

Легочная вентиляция - объем воздуха, который проходит через легкие за одну минуту. В покое она составляет 5-9 л. При интенсивной мышечной работе вентиляция увеличивается в 10-20 раз и достигает 150-180 л.

Жизненная емкость легких (ЖЕЛ) - максимальное количество воздуха, которое может выдохнуть человек после максимального вдоха. Средняя величина ЖЕЛ составляет у мужчин 3500-4200 мл, у женщин 3000-3500 мл. На величину ЖЕЛ влияет возраст, рост, вес и занятия физическими упражнениями. У высококвалифицированных спортсменов этот показатель достигает 7000 мл у мужчин и 5000 мл у женщин.

Правильное дыхание является одним из составляющих здорового образа жизни. Дыхательные упражнения, или, как их сейчас называют, дыхательная гимнастика, имеют большое значение для организма.

Важную роль играют дыхательные упражнения, способствующие быстрому восстановлению при интенсивной нагрузке. Методика их применения следующая: при развитии скоростно-силовых качеств используются, как правило, общепринятые дыхательные упражнения; при развитии выносливости - «силовое» дыхание (продолжительный вдох с одновременным напряжением мышц всего тела) и выдох с задержкой дыхания; при развитии быстроты движений - чередование «силового» дыхания с общепринятыми дыхательными упражнениями.

Пищеварительная система состоит из ротовой полости, желудка, отдела тонких и толстых кишок.

Систематическая физическая тренировка, повышая обмен веществ и энергии, увеличивает потребность организма в питательных веществах, стимулирует выделение пищеварительных соков, активизирует перистальтику кишечника и тем самым повышает эффективность процессов пищеварения.

Однако положительное влияние мышечной работы на пищеварение наблюдается не всегда. При напряженной мышечной работе, например, происходит торможение пищевых центров в центральной нервной системе, уменьшается кровоснабжение органов пищеварения и пищеварительных желез в связи с оттоком крови к работающим мышцам. Все это угнетает работу органов пищеварения. С другой стороны, переваривание пищи, особенно обильной, отрицательно влияет на двигательную деятельность. Прием пищи следует проводить в оптимальных количествах за 2,5-3,5 часа до физических нагрузок.

7. Простейшие методи ки самооценки работоспособности , усталости, утомления

РАБОТОСПОСОБНОСТЬ - способность длительно выполнять работу с высокой эффективностью. Общая работоспособность человека определяется тремя группами факторов:

1.физиологические - состояние здоровья и функциональная подготовленность (тренированность), половая принадлежность, питание, сон, общая нагрузка, организация отдыха и др.;

2.физические - воздействующие га организм через органы чувств: атмосферное давление, температура, шум, освещенность рабочего места и др.;

3.психические - самочувствие, настроение, мотивация.

УТОМЛЕНИЕ - это состояние организма, возникающее под влиянием той или иной работы и характеризующееся временным снижением работоспособности.

УСТАЛОСТЬ - это субъективное ощущение утомления. Иногда человек может ощущать усталость, не будучи утомленным, и наоборот, в состоянии утомления может не замечать усталости.

8. Двигательная функция и повышение устойчивости организма человека к различным условиям внешней среды

В настоящее время практически ни у кого не вызывает возражения тот факт, что физическая культура является основным моментом в формировании, сохранении и укреплении физического здоровья.

Высокий удельный вес гипокинезии и гиподинамии, характерный для жизни современного человека,особенно в городах, все нагрузки адресует в первую очередь к сердцу, которое в этих условиях быстрее изнашивается, срывается, стареет. Отсюда понятно, почему среди заболеваний на первый план выступает сердечно-сосудистая патология. Кроме того, недостаток двигательной активности вызывает к жизни и другие «болезни цивилизации» -нарушение обмена веществ, ожирение, заболевания желез внутренней секреции и пр. Особенно важна двигательная активность для детей, причем с самого раннего возраста.

Главенствующая роль двигательной активности в сохранении и укреплении здоровья человека обусловливается еще и тем, что практически только она одна подчиняется нашей воле, нашей решимости, нашему активному отношению к собственному здоровью.

Физиологические механизмы повышения неспецифической устойчивости организма при систематической двигательной активности достаточно сложны. По современным представлениям, большая роль в этом процессе принадлежит гипофизеадреналовой системе,обеспечивающей оптимум гуморальной регуляции функций. Кроме того,важное значение в этих механизмах принимают процессы нервной регуляции функций.

Активность любого живого организма, в том числе человека, вызывается как внешними, так и внутренними потребностями, и направлена на удовлетворение этих потребностей посредством определенной деятельности.

Функциональная активность организма человека характеризуется различными двигательными актами, которые осуществляются соответствующими мышцами. Поперечно-полосатые мышцы обеспечивают сокращение сердца, передвижение тела в пространстве и другие движения.

Гладкие мышцы входят в состав стенок сосудов, бронхов, мочевого и желчных пузырей, мочеточников, желудочно-кишечного тракта и других внутренних органов, а также кожи.

Развитие организма и его связи с окружающей средой невозможны без вышеназванных и других форм активности,развертывание которых осуществляется при постоянном взаимодействии с вегетативными органами,тканями и внутренней средой.

Особенно большое влияние на развитие функций мышц оказывают силы гравитации и инерции, которые мышца постоянно преодолевает, время, в течение которого развертывается мышечное сокращение, пространство, в котором оно осуществляется.

Газообмен, температурные колебания, превращение пищевых веществ в организме также характеризуют взаимосвязь организма с окружающей средой и лежат в основе энергетики и динамики мышечного сокращения.

Таким образом,двигательная активность - условие существования организма.

Заключение

Познание себя самого является необходимым условием обеспечения жизнедеятельности специалиста в условиях современных воздействий внешней среды. Формирование физической культуры личности будущего специалиста при этом немыслимо без умения рационально корректировать свое состояние средствами физической культуры и двигательной деятельности.

Движения играют существенную роль во взаимодействии человека с внешней средой. Выполняя разнообразные и сложные движения, человек может осуществлять трудовую деятельность, общаясь с другими людьми, заниматься спортом и т.д. При этом организм получает более высокую способность к сохранению постоянства внутренней среды при изменяющихся внешних воздействиях: температура, влажность, давление, сила воздействия солнечной и космической радиации.

Под воздействием физической тренировки происходит неспецифическая адаптация организма человека к разнообразным проявлениям факторов внешней среды.

Экспериментальные данные подчеркивают стимулирующее влияние оптимально организованной двигательной активности на уровень умственной работоспособности студентов.

Активная мышечная деятельность вызывает усиление деятельности всех систем организма, особенно сердечно-сосудистой и дыхательной. При любой деятельности человека все его органы и системы действуют согласованно в тесном единстве. Главнейшая роль в регуляции отводится нервной системе. Таким образом, можно сделать заключение, что двигательная функция- основная функция человеческого организма, которую следует постоянно совершенствовать для повышения работоспособности в любом виде деятельности, в том числе и в умственной.

Список литературы

1. Давиденко Д.Н., Андухар К. и др. Физическая культура. Теоретический курс: Учебное пособие - СПб.: НИИ Химия СпбГУ, 1999. - 250 с.

2. Физическая культура: Пособие для поступающих в ВУЗ / под ред. Г.Н. Пономарева, Ш.З. Хуббиева, С.О. Филимонова. - СПб.: РГУ им. А.И. Герцена, 2002. - 208 с.

3. Виленский М. Я. и др. Физическая культура студента: Учеб. для вузов / М. Я. Виленский, А. И. Зайцев, В. И. Ильинич и др. / Под ред. В. И. Ильинича. - М.: Гардарики, 1999. - 446 с.

4. Орешник Ю.А. К здоровью через физкультуру. М. «Медицина», 1989 г.

5. Шаталова Г.С. Философия здоровья. М, 1997.

6. Физическая культура студента: Учебник/Под ред. .И.Ильинича.-М.:Гардарики,1999.-448 c.

7. Физическая культура: Учебное пособие/Под ред.В.А.Коваленко.-Изд-во АСВ,2000.-432 с

Размещено на Allbest.ru

...

Подобные документы

    Организм как единая саморазвивающаяся и саморегулирующаяся биологическая система. Внешняя среда и ее воздействие на организм человека. Основные средства физической культуры, обеспечивающие устойчивость к умственной и физической работоспособности.

    реферат , добавлен 18.10.2015

    Воздействие природных и социально-экологических факторов на организм и жизнедеятельность человека. Средства физической культуры и спорта в управлении совершенствованием организма. Двигательная функция и повышение устойчивости организма человека.

    реферат , добавлен 05.10.2006

    Роль физической культуры и спорта в совершенствовании функциональных возможностей организма человека для обеспечения его умственной и физической деятельности и устойчивости к различным условиям внешней среды. Их основные и вспомогательные средства.

    курсовая работа , добавлен 29.05.2013

    Самоконтроль занимающихся физическими упражнениями. Методы оценки физического развития. Тесты физической работоспособности и нагрузочные тесты. Признаки утомления при занятиях физическими упражнениями. Тестирование функционального состояния организма.

    реферат , добавлен 24.05.2015

    Организм человека как единая саморазвивающаяся и саморегулирующая биологическая система. Влияние длительных занятий физической культурой на сердечно-сосудистую, дыхательную, кровеносную и мышечную систему. Диссимиляция и ассимиляция, гомеостаз организма.

    реферат , добавлен 18.11.2014

    История развития лечебной физической культуры, ее особенности, применение и влияние на организм. Причины возникновения гипертонии и сопутствующих заболеваний. Лечебная гимнастика и комплекс физических упражнений для больных гипертонической болезнью.

    реферат , добавлен 08.06.2009

    Функциональная активность человека и взаимосвязь физической и умственной деятельности. Функциональные расстройства в организме, снижение работоспособности при психическом перенапряжении и хроническоом умственном переутомлении без физической разрядки.

    реферат , добавлен 26.12.2014

    Сущность рекреационной физической культуры школьников. Формирование мотивов у школьников к регулярным занятиям физической рекреацией. Анализ результатов функционального состояния организма и уровня интереса школьников к занятиям физическими упражнениями.

    курсовая работа , добавлен 23.01.2012

    Организм человека как единая саморазвивающаяся и саморегулирующаяся биологическая система. Опорно-двигательная, нервная, дыхательная и сердечно-сосудистая системы. Кости и их соединения. Сущность социально биологических основ физической культуры.

    реферат , добавлен 17.10.2013

    Основные группы ценностей в физическом воспитании: общественные и личные, их особенности. Специфические функции физической культуры. Мероприятия по правильной постановке обучения, повышению физического здоровья и умственной работоспособности студентов.

Глава 2. СОЦИАЛЬНО-БИОЛОГИЧЕСКИЕ ОСНОВЫ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

Медико-биологические и педагогические науки имеют дело с чело­веком как с существом не только биологическим, но и социальным. Социальность- специфическая сущность человека, которая не упраздняет его биологической субстанции, ведь биологическое нача­ло человека - необходимое условие для формирования и проявле­ния социального образа жизни. Между тем творят историю, изменя­ют живой и неживой мир, созидают и разрушают, устанавливают ми­ровые и олимпийские рекорды не организмы, а люди, человеческие личности. Таким образом, социально-биологические основы физичес­кой культуры - это принципы взаимодействия социальных и биоло­гических закономерностей в процессе овладения человеком ценнос­тями физической культуры.

Естественно - научные основы физической культуры - комплекс меди­ко-биологических наук (анатомия, физиология, биология, биохимия, гигиена и др.). Анатомия и физиология - важнейшие биологические науки о строении и функциях человеческого организма. Человек под­чиняется биологическим закономерностям, присущим всем живым су­ществам. Однако от представителей животного мира он отличается не только строением, но развитым мышлением, интеллектом, речью, осо­бенностями социально-бытовых условий жизни и общественных вза­имоотношений. Труд и влияние социальной среды в процессе развития человечества повлияли на биологические особенности организма со­временного человека и его окружение. В основе изучения органов и межфункциональных систем человека принцип целостности и единст­ва организма с внешней природной и социальной средой. Организм- слаженная единая саморегулирующаяся и саморазви­вающаяся биологическая система, функциональная деятельность ко­торой обусловлена взаимодействием психических, двигательных и вегетативных реакций на воздействия окружающей среды, которые могут быть как полезными, так и пагубными для здоровья. Отличи­тельная особенность человека - сознательное и активное воздейст­вие на внешние природные и социально-бытовые условия, опреде­ляющие состояние здоровья людей, их работоспособность, продол­жительность жизни и рождаемость (репродуктивность). Без знаний о строении человеческого тела, о закономерностях функ­ционирования отдельных органов и систем организма, об особеннос­тях протекания сложных процессов его жизнедеятельности нельзя организовать процесс формирования здорового образа жизни и фи­зической подготовки населения, в том числе и учащейся молодежи. Достижения медико-биологических наук лежат в основе педагоги­ческих принципов и методов учебно-тренировочного процесса, тео­рии и методики физического воспитания и спортивной тренировки.

Организм как единая саморазвивающаяся и саморегулирующаяся биологическая система

Развитие организма осуществляется во все периоды его жизни- с момента зачатия и до ухода из жизни. Это развитие назы­вается индивидуальным , илиразвитием в онтогенезе. При этом разли­чают два периода: внутриутробный (от момента зачатия и до рожде­ния) и внеутробный (после рождения).

Каждый родившийся человек наследует от родителей врожденные, ге­нетически обусловленные черты и особенности, которые во многом оп­ределяют индивидуальное развитие в процессе его дальнейшей жизни.

Оказавшись после рождения, образно говоря, в условиях автоном­ного режима, ребенок быстро растет, увеличивается масса, длина и площадь поверхности его тела. Рост человека продолжается прибли­зительно до 20 лет. Причем у девочек наибольшая интенсивность роста наблюдается в период от 10 до 13, а у мальчиков от 12 до 16 лет. Увеличение массы тела происходит практически параллельно с увели­чением его длины и стабилизируется к 20-25 годам.

Необходимо отметить, что за последние 100-150 лет в ряде стран наблюдается раннее морфофункциональное развитие организма у детей и подростков. Это явление называют акселерацией (лат. acceleratio -ускорение), оно связано не только с ускорением роста и развития организма вообще, но и с более ранним наступлением периода поло­вой зрелости, ускоренным развитием сенсорных (лат. Sensus- чувст­во), двигательных координации и психических функций. Поэтому гра­ницы между возрастными периодами достаточно условны и это связа­но со значительными индивидуальными различиями, при которых «физиологический» возраст и «паспортный» не всегда совпадают.

Как правило, юношеский возраст (16-21 год) связан с периодом со­зревания, когда все органы, их системы и аппараты достигают своей морфофункциональной зрелости. Зрелый возраст (22-60 лет) характеризу­ется незначительными изменениями строения тела, а функциональные возможности этого достаточно продолжительного периода жизни во многом определяются особенностями образа жизни, питания, двигатель­ной активности. Пожилому возрасту (61-74 года) и старческому (75 лет и более) свойственны физиологические процессы перестройки: сниже­ние активных возможностей организма и его систем - иммунной, нерв­ной, кровеносной и др. Здоровый образ жизни, активная двигательная де­ятельность в процессе жизни существенно замедляют процесс старения.

В основе жизнедеятельности организма лежит процесс автоматического поддержания жизненно важных факторов на необходимом уровне, всякое отклонение от которого ведет к немедленной мобили­зации механизмов, восстанавливающих этот уровень (гомеостаз).

Гомеостаз - совокупность реакций, обеспечивающих поддержание или восстановление относительно динамического постоянства внут­ренней среды и некоторых физиологических функций организма че­ловека (кровообращения, обмена веществ, терморегуляции и др.). Этот процесс обеспечивается сложной системой координированных приспособительных механизмов, направленных на устранение или ог­раничение факторов, воздействующих на организм как из внешней, так и из внутренней среды. Они позволяют сохранять постоянство со­става, физико-химических и биологических свойств внутренней среды, несмотря на изменения во внешнем мире и физиологические сдвиги, возникающие в процессе жизнедеятельности организма. В нормальном состоянии колебания физиологических и биохимических констант происходят в узких гомеостатических границах, и клетки ор­ганизма живут в относительно постоянной среде, так как они омыва­ются кровью, лимфой и тканевой жидкостью. Постоянство физико-хи­мического состава поддерживается благодаря саморегуляции обмена веществ, кровообращения, пищеварения, дыхания, выделения и дру­гих физиологических процессов.

Организм - сложная биологическая система. Все его органы связа­ны между собой и взаимодействуют. Нарушение деятельности одного органа приводит к нарушению деятельности других.

Огромное количество клеток, каждая из которых выполняет свои, присущие только ей функции в общей структурно-функциональной системе организма, снабжаются питательными веществами и необхо­димым количеством кислорода для того, чтобы осуществлялись жиз­ненно необходимые процессы энергообразования, выведения продук­тов распада, обеспечения различных биохимических реакций жизне­деятельности и т.д. Эти процессы происходят благодаря регуляторным механизмам, осуществляющим свою деятельность через нервную, кро­веносную, дыхательную, эндокринную и другие системы организма.

Функциональные системы организма

Сердечно-сосудистая система

Кровеносная система состоит из сердца и кровеносных сосудов. Сердце - главный орган кровеносной системы - представляет собой полый мышечный орган, совершаю­щий ритмические сокращения, благодаря которым происходит про­цесс кровообращения в организме. Сердце -автономное, автомати­ческое устройство. Однако его работа корректируется многочисленны­ми прямыми и обратными связями, поступающими от различных ор­ганов и систем организма. Сердце связано с центральной нервной сис­темой, которая оказывает на его работу регулирующее воздействие.

Сердечно-сосудистая система состоит из большого и малого круговкровообращения . Левая половина сердца обслуживает большой круг кровообращения, правая - малый. Большой круг кровообращения начина­ется от левого желудочка сердца, проходит через ткани всех органов и возвращается в правое предсердие. Из право­го предсердия кровь перехо­дит в правый желудочек, от­куда начинается малый круг кровообращения, который проходит через легкие, где ве­нозная кровь, отдавая угле­кислый газ и насыщаясь кис­лородом, превращается в ар­териальную и направляется в левое предсердие. Из левого предсердия кровь поступает в левый желудочек и оттуда вновь в большой круг крово­обращения.

Деятельность сердца за­ключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения пред­сердий, сокращения желудоч­ков и общего расслабления сердца.

Пульс- волна колебаний, распространяемая по эластич­ным стенкам артерий в ре­зультате гидродинамического удара порции крови, выбра­сываемой в аорту под боль­шим давлением при сокраще­нии левого желудочка. Часто­та пульса соответствует частоте сокращений сердца. Частота пульса в покое (утром, лежа, натощак) оказывается ниже из-за увеличения мощности каждого сокращения. Урежение частоты пульса увеличива­ет абсолютное время паузы для отдыха сердца и для протекания про­цессов восстановления в сердечной мышце. В покое пульс здорового человека равен 60-70 удар/мин.

Кровяное давление создается силой сокращения желудочков сердца и упругостью стенок со­судов. Оно измеряется в плече­вой артерии. Различают макси­мальное (или систолическое) давление, которое создается во время сокращения левого желу­дочка (систолы), и минимальное (или диастолическое) давление, которое отмечается во время расслабления левого желудочка (диастолы). Давление поддер­живается за счет упругости сте­нок растянутой аорты и других крупных артерий. В норме у здо­рового человека в возрасте 18-40 лет в покое кровяное давле­ние равно 120/70 мм рт. ст. (120 мм систолическое давле­ние, 70 мм- диастолическое). Наибольшая величина кровяно­го давления наблюдается в аорте. По мере удаления от серд­ца кровяное давление оказывает­ся все ниже. Самое низкое давле­ние наблюдается в венах при впадении их в правое предсердие. Посто­янная разность давления обеспечивает непрерывный ток крови по кро­веносным сосудам (в сторону пониженного давления).

Дыхательная система

Дыхательная система включает в себя но­совую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферно­го воздуха через альвеолы легких в орга­низм постоянно поступает кислород, а из организма выделяется угле­кислый газ.

Трахея в нижней своей части делится на два бронха, каждый из ко­торых, входя в легкие, древовидно разветвляется. Конечные мельчай­шие разветвления бронхов (бронхиолы) переходят в закрытые альвео­лярные ходы, в стенках которых имеется большое количество шаровидных образований - легоч­ных пузырьков (альвеол). Каж­дая альвеола окружена густой сетью капилляров. Общая по­верхность всех легочных пу­зырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м2.

Легкие располагаются в гер­метически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой - плеврой, такая же оболочка вы­стилает изнутри полость груд­ной клетки. Пространство, об­разованное между этими листами плевры, называется плевральной по­лостью. Давление в плевральной полости всегда ниже атмосферного при выдохе на 3-4 мм рт. ст., при вдохе - на 7-9.

Процесс дыхания - это целый комплекс физиологических и био­химических процессов, в реализации которых участвует не только ды­хательный аппарат, но и система кровообращения.

Механизм дыхания имеет рефлекторный (автоматический) харак­тер. В покое обмен воздуха в легких происходит в результате дыха­тельных ритмических движений грудной клетки. При понижении в грудной полости давления в легкие в достаточной степени пассивно за счет разности давлений засасывается порция воздуха - происходит вдох. Затем полость грудной клетки уменьшается и воздух из легких выталкивается - происходит выдох. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной муску­латуры. В покое при вдохе полость грудной клетки расширяет специ­альная дыхательная мышца - диафрагма, а также наружные межре­берные мышцы; при интенсивной физической работе включаются и другие (скелетные) мышцы. Выдох в покое производится выражено пассивно, при расслаблении мышц, осуществлявших вдох, грудная клетка под воздействием силы тяжести и атмосферного давления уменьшается. При интенсивной физической работе в выдохе участву­ют мышцы брюшного пресса, внутренние межреберные и другие ске­летные мышцы. Систематические занятия физическими упражнениями и спортом укрепляют дыхательную мускулатуру и способствуют увеличению объема и подвижности (экскурсии) грудной клетки.

Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови - в атмосферный воздух, называют внешним дыханием; перенос газов кровью - следующий этап и, наконец, тканевое (или внутреннее) дыхание- потребление клет­ками кислорода и выделение ими углекислоты как результат биохи­мических реакций, связанных с образованием энергии, чтобы обеспе­чить процессы жизнедеятельности организма.

Внешнее (легочное) дыхание осуществляется в альвеолах легких. Здесь через полупроницаемые стенки альвеол и капилляров кислород переходит из альвеолярного воздуха, заполняющего полости альвеол. Молекулы кислорода и углекислого газа осуществляют этот переход за сотые доли секунды. После переноса кислорода кровью к тканям осуществляется тканевое (внутриклеточное) дыхание. Кислород пере­ходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, а затем выводится из организма. Переход кислорода и угле­кислого газа через полупроницаемые стенки альвеол, капилляров и оболочек эритроцитов путем диффузии (перехода) обусловлен раз­ностью парциального давления каждого из этих газов. Так, например, при атмосферном давлении воздуха 760 мм рт. ст. парциальное давле­ние кислорода (рОг) в нем равно 159 мм рт. ст., а в альвеолярном - 102, в артериальной крови - 100, в венозной - 40 мм рт. ст. В рабо­тающей мышечной ткани рО2 может снижаться до нуля. Из-за разни­цы в парциальном давлении кислорода происходит его поэтапный переход в легкие, далее через стенки капилляров в кровь, а из крови в клетки тканей.

Углекислый газ из клеток тканей поступает в кровь, из крови - в легкие, из легких - в атмосферный воздух, так как градиент парциального давления углекислого газа (рСО2) направлен в обратную относи­тельно рО2 сторону (в клетках рСО2 - 50-60, в крови - 47, в альвеолярном воздухе - 40, в атмосферном воздухе - 0,2 мм рт. ст.).

Нервная система

Нервная система состоит из центрального (головной и спинной мозг) и периферичес­кого отделов (нервов, отходящих от голов­ного и спинного мозга и расположенных на периферии нервных узлов). Центральная нервная система координи­рует деятельность различных органов и систем организма и регулиру­ет эту деятельность в условиях изменяющейся внешней среды по ме­ханизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека.

О структуре центральной нервной системы. Спинной мозг лежит в спинно-мозговом канале, образованном дужками позвонков. Первый шейный позвонок - граница спинного мозга сверху, а граница снизу - второй поясничный позвонок. Спинной мозг делится на пять отделов с определенным количеством сегментов: шейный, грудной, по­ясничный, крестцовый и копчиковый. В центре спинного мозга имеет­ся канал, заполненный спинномозговой жидкостью. На поперечном разрезе лабораторного препарата легко различают серое и белое веще­ство мозга. Серое вещество мозга образовано скоплением тел нервных клеток (нейронов), периферические отростки которых в составе спин­номозговых нервов достигают различных рецепторов кожи, мышц, су­хожилий, слизистых оболочек. Белое вещество, окружающее серое, состоит из отростков, связывающих между собой нервные клетки спин­ного мозга; восходящих чувствительных (афферентных), связывающих все органы и ткани (кроме головы) с головным мозгом; нисходящих двигательных (эфферентных) путей, идущих от головного мозга к дви­гательным клеткам спинного мозга. Итак, спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. В различных отделах спинного мозга находятся мотонейроны (двига­тельные нервные клетки), иннервирующие мышцы верхних конечнос­тей, спины, груди, живота, нижних конечностей. В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой дея­тельности. Важная функция мотонейронов в том, что они постоянно обеспечивают необходимый тонус мышц, благодаря которому все рефлекторные двигательные акты осуществляются мягко и плавно. Тонус центров спинного мозга регулируется высшими отделами централь­ной нервной системы. Поражения спинного мозга влекут за собой раз­личные нарушения, связанные с выходом из строя проводниковой функции. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса.

Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела.

Кора больших полушарий головного мозга - наиболее молодой в филогенетическом отношении отдел головного мозга (филогенез - процесс развития растительных и животных организмов в течение времени существования жизни на Земле). В процессе эволюции кора больших полушарий стала высшим отделом центральной нервной сис­темы, формирующим деятельность организма как единого целого в его взаимоотношениях с окружающей средой. Мозг активен не только во время бодрствования, но и во время сна. Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% массы тела человека, мозг поглощает 18- 25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60-70% глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы. Ухудшение кровоснабже­ния головного мозга может быть связано с гиподинамией. В этом слу­чае возникает головная боль различной локализации, интенсивности и продолжительности, головокружение, слабость, понижается умст­венная работоспособность, ухудшается память, появляется раздражи­тельность. Чтобы охарактеризовать изменения умственной работоспо­собности, используется комплекс методик, оценивающих различные ее компоненты (внимание, объем памяти и восприятия, логическое мышление).

Вегетативная нервная система - специализированный отдел нервной системы, регулируемый корой больших полушарий. В отли­чие от соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и других органов чувств, вегетативная нервная система регулиру­ет деятельность внутренних органов -дыхания, кровообращения, вы­деления, размножения, желез внутренней секреции. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую системы. Деятельность сердца, сосудов, органов пи­щеварения, выделения, половых и других, регуляция обмена веществ, термообразования, участие в формировании эмоциональных реакций (страх, гнев, радость) - все это находится в ведении симпатической и парасимпатической нервной системы и под контролем высшего отдела центральной нервной системы.

Рецепторы и анализаторы

Способность организма быстро приспосаб­ливаться к изменениям окружающей среды реализуется благодаря специальным обра­зованиям -рецепторам, которые, обладая строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление) в нервные импульсы, поступаю­щие по нервным волокнам в центральную нервную систему. Рецепто­ры человека делятся на две основные группы: экстеро - (внешние) и интеро - (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, которая называется ана­лизатором. Анализатор состоит из трех отделов - рецептора, провод­никовой части и центрального образования в головном мозге.

Высшим отделом анализатора является корковый отдел. Перечис­лим названия анализаторов, о роли которых в жизнедеятельности че­ловека многим известно. Это кожный анализатор (тактильная, боле­вая, тепловая, холодовая чувствительность); двигательный (рецепто­ры в мышцах, суставах, сухожилиях и связках возбуждаются под вли­янием давления и растяжения); вестибулярный (расположен во внут­реннем ухе и воспринимает положение тела в пространстве); зритель­ный (свет и цвет); слуховой (звук); обонятельный (запах); вкусовой (вкус); висцеральный (состояние ряда внутренних органов).

Эндокринная система

Железы внутренней секреции, или эндо­кринные железы, вырабатывают особые биологические вещества - гормоны. Термин «гормон» происходит от греческого «hormo» - побуждаю, возбуждаю. Гормоны обеспечивают гумораль­ную (через кровь, лимфу, межтканевую жидкость) регуляцию физио­логических процессов в организме, попадая во все органы и ткани. Часть гормонов продуцируется только в определенные периоды, боль­шинство же - на протяжении всей жизни человека. Они могут тормо­зить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, дея­тельность внутренних органов. К железам внутренней секреции отно­сят: щитовидную, околощитовидные, зобную, надпочечники, поджелу­дочную, гипофиз, половые железы и ряд других.

Некоторые из перечисленных желез вырабатывают кроме гормонов еще секреторные вещества (например, поджелудочная железа участ­вует в процессе пищеварения, выделяя секреты в двенадцатиперстную кишку; продуктом внешней секреции мужских половых желез - яичек яв­ляются сперматозоиды и т.д.). Такие железы называют железами смешан­ной секреции.

Гормоны, как вещества высокой биологической активности, несмотря на чрезвычайно малые концентрации в крови способны вызывать значи­тельные изменения в состоянии орга­низма, в частности в осуществлении обмена веществ и энергии. Они обла­дают дистанционным действием, ха­рактеризуются специфичностью, ко­торая выражается в двух формах: одни гормоны (например, половые) влияют только на функцию некото­рых органов и тканей, другие управ­ляют лишь определенными измене­ниями в цепи обменных процессов и в активности регулирующих эти про­цессы ферментов. Гормоны сравни­тельно быстро разрушаются и для поддержания их определенного ко­личества в крови необходимо, чтобы они неустанно выделялись со­ответствующей железой. Практически все расстройства деятельности желез внутренней секреции вызывают понижение общей работоспо­собности человека. Функция эндокринных желез регулируется цент­ральной нервной системой, нервное и гуморальное воздействие на раз­личные органы, ткани и их функции представляют собой проявление единой системы нейрогуморальной регуляции функций организма.

Гипокинезия и гиподинамия

Гипокинезия (греч. hypo - понижение, уменьшение, недо­статочность; kinesis- движение) - особое состояние организма, обу­словленное недостаточностью двигательной активности. В ряде случа­ев это состояние приводит к гиподинамии. Гиподинамия (греч. hypo - понижение; dynamis сила) - совокупность отрицательных морфо-функциональных изменений в организме вследствие длительной ги­покинезии. Это атрофические изменения в мышцах, общая физичес­кая детренированность, детренированность сердечно-сосудистой сис­темы, понижение ортостатической устойчивости, изменение водно-со­левого баланса, системы крови, деминерализация костей и т.д. В ко­нечном счете снижается функциональная активность органов и сис­тем, нарушается деятельность регуляторных механизмов, обеспечива­ющих их взаимосвязь, ухудшается устойчивость к различным небла­гоприятным факторам; уменьшается интенсивность и объем аффе­рентной информации, связанной с мышечными сокращениями, нару­шается координация движений, снижается тонус мышц (тургор), па­дает выносливость и силовые показатели. Наиболее устойчивы к раз­витию гиподинамических признаков мышцы антигравитационного характера (шеи, спины). Мышцы живота атрофируются сравнительно быстро, что неблагоприятно сказывается на функции органов крово­обращения, дыхания, пищеварения. В условиях гиподинамии снижа­ется сила сердечных сокращений в связи с уменьшением венозного возврата в предсердия, сокращаются минутный объем, масса сердца и его энергетический потенциал, ослабляется сердечная мышца, снижа­ется количество циркулирующей крови в связи с застаиванием ее в депо и капиллярах. Тонус артериальных и венозных сосудов ослабля­ется, падает кровяное давление, ухудшаются снабжение тканей кисло­родом (гипоксия) и интенсивность обменных процессов (нарушения в балансе белков, жиров, углеводов, воды и солей). Уменьшается жиз­ненная емкость легких и легочная вентиляция, интенсивность газооб­мена. Все это сопровождается ослаблением взаимосвязи двигательных и вегетативных функций, неадекватностью нервно-мышечных напря­жений. Таким образом, при гиподинамии в организме создается ситуа­ция, чреватая «аварийными» последствиями для его жизнедеятельнос­ти. Если добавить, что отсутствие необходимых систематических за­нятий физическими упражнениями связано с негативными измене­ниями в деятельности высших отделов головного мозга, его подкорко­вых структурах и образованиях, то становится понятно, почему сни­жаются общие защитные силы организма и возникает повышенная утомляемость, нарушается сон, снижается способность поддерживать высокую умственную или физическую работоспособность.

МАТЕРИАЛ ИЗ 5 ГЛАВЫ

Проявления тренирован­ности при предельно напряженной работе

Нагрузка, выполняемая на тренировках и соревнованиях, не бывает стандартной. На соревнованиях каждый стремится достичь максимально возможной для него интен­сивности работы. Физиологические исследования, проводимые при работе на пределе функциональных возможностей организма, могут дать представление его физиологических возможностях.

Применяются три, варианта исследований при такой работе. Пер­вый вариант состоит в регистрации физиологических изменений во время выполнения спортивного упражнения в условиях соревнования или близких к ним. Физиологические функции регистрируются во время этой работы, или сразу после нее, или на протяжении всего последующего восстановительного периода.

Второй вариант представляет собой лабораторную работу в виде бега на месте, или работу на велоэргометре, или бег на тредбане. Ис­пытуемый совершает работу, постепенно усиливая ее мощность с целью максимальной мобилизации всех функций организма, обеспе­чивающих предельную работу. К концу такого усиления испытуемый уже работает в полную силу своих возможностей. В это время и про­изводят необходимые физиологические замеры, которые характеризу­ют предельную мобилизацию физиологических возможностей орга­низма спортсмена.

Третий вариант заключается в том, что испытуемый совершает ра­боту, строго стандартную по мощности. Однако продолжительность
работы не ограничивается. Она производится до тех пор, пока испытуемый может поддерживать заданную мощность (заданное число оборотов педалей, темп бега при определенной высоте подъема бедра, скорость бега или плавания за лидером). Работа прекращается в тот момент, когда ее мощность или скорость передвижения начинают не­отвратимо/падать и испытуемый даже при всем напряжении своих сил вынужден отказаться от дальнейшего выполнения работы в данных условиях. Иначе говоря, с целью характеристики тренированности ис­следуется выполнение работы «до отказа».

Результаты исследований при предельной работе спортсмена резко отличается от тех, которые были получены при изучении стандартной работы. При предельной работе отмечалось обратное: у тренирован­ных во многих физиологических показателях были большие сдвиги, чем у нетренированных. Это выражается в том, что тренированный

расходует при предельной работе больше энергии, чем нетренирован­ный, а объясняется тем, что сама работа, произведенная тренирован­ным, превышает величину работы, которую может выполнить нетре­нированный. Экономизация проявляется в несколько меньшем расхо­де энергии на единицу работы, однако весь объем работы у трениро­ванного при предельной работе настолько велик, что общая величина затраченной энергии оказывается очень большой.

Преобладание расхода энергии у тренированных особенно заметно в тех случаях, когда выполняемая работа не отличается сложностью. Вращение педалей велоэргометра сопровождается почти одинаковым расходом энергии у мастера спорта и спортсмена третьего разряда. Между тем различия в количестве работы, которую может выполнить на велоэргометре мастер или новичок, очень велики, что и определяет различия в величинах энергетических трат.

Весьма тесно связаны с тренированностью спортсмена показатели максимального потребления кислорода. Чем тренированнее спортсмен, тем большее количество кислорода он в состоянии потребить во время предельной работы. Самые высокие показатели (5,5-6,5 л/мин, или 80-90 мл/кг) зарегистрированы у представителей циклических видов спорта - мастеров международного класса, находящихся в момент ис­следования в состоянии наилучшей спортивной формы. Несколько меньшие цифры - около 4,5-5,5 л/мин, или 70-80 мл/кг, - отмеча­ются у менее подготовленных мастеров спорта и некоторых первораз­рядников. У спортсменов второго, третьего разряда величина макси­мального потребления кислорода достигает приблизительно 3,5- 4,5 л/мин, или 60-70 мл/кг. Показатель ниже 3 л/мин, или 50 мл/кг, характеризует низкий уровень тренированности.

Такая тесная связь между максимальным потреблением кислорода и тренированностью наблюдается в тех видах спорта, которые предъ­являют значительные требования к снабжению мышц кислородом и характеризуются высоким уровнем аэробных реакций. Для специали­зирующихся в работе максимальной мощности связь между трениро­ванностью и максимальным потреблением кислорода очень мала, так как для них более характерна связь между тренированностью и мак­симальным кислородным долгом, отражающим возможный объем анаэ­робных процессов организме. У таких спортсменов (например, бегу­нов на короткие и средние дистанции) максимальный кислородный долг может достирать 25 л, если это спортсмены очень высокого клас­са. У менее тренированных спортсменов максимальный кислородный долг не превышает 10-15 л.

Большая величина максимального потребления кислорода у высокотренированных спортсменов тесно связана с большими величинами объема дыхания и кровообращения. Максимальное потребление кисло­рода, равное 5-6 л/мин, сопровождается легочной вентиляцией, до­стигающей 200 л в 1 мин, при частоте дыхания, превышающей 60 в 1 мин, и глубине каждого дыхания, равной более 3 л. Иначе говоря, максимальное потребление кислорода сопровождается максимальной интенсивностью легочного дыхания, которое у высокотренированных спортсменов достигает значительно больших величин, чем у малотре­нированных. Соответственно этому максимальных величин достигает минутный объем крови. Для того чтобы транспортировать от легких в мышцы 5-6 л кислорода в 1 мин, сердце должно перекачивать в каж­дую минуту около 35 л крови. Частота сердечных сокращений при этом составляет 180-190 в 1 мин, а систолический объем крови может превышать 170 мл. Естественно, что столь резко возрастающая ско­рость кровотока сопровождается высоким подъемом артериального давления, достигающим 200-250 мм рт. ст.

Если выполняемая предельная работа характеризуется высокой интенсивностью анаэробных реакций, то она сопровождается накопле­нием продуктов анаэробного распада. Оно больше у тренированных спортсменов, чем у нетренированных. Например, концентрация мо­лочной кислоты в крови при предельной работе может доходить у тре­нированных спортсменов до 250-300 мг %. Соответственно этому общие биохимические сдвиги в крови и моче у тренированных спорт­сменов при предельной работе значительно большие, чем у нетрени­рованных.

Понижение уровня сахара в крови, являющееся одним из основных признаков утомления, наиболее выражено при очень длительной ра­боте у хорошо тренированных спортсменов. Даже при величине содер­жания сахара в крови ниже 50 мг % тренированной марафонец еще долго способен сохранять высокий темп бега, в то время как Нетрени­рованный при таком низком содержании сахара в крови вынужден сойти с дистанции.

Значительные изменения в химизме крови во время работы гово­рят о том, что центральная нервная система тренированного организма обладает устойчивостью к действию резко измененного состава внут­ренней среды. Организм высокотренированного спортсмена обладает повышенной сопротивляемостью к действию факторов утомления, иначе говоря, большой выносливостью. Он сохраняет работоспособ­ность при таких условиях, при которых нетренированный организм вынужден прекратить работу.

Таким образом, функциональные показатели тренированности при выполнении предельно напряженной работы в циклических видах двигательной деятельности обусловливаются мощностью работы. Так, из приведенных данных видно, что при работе субмаксимальной и максимальной мощности наибольшее значение имеют анаэробные процессы энергообеспечения, т.е. способность адаптации организма к работе при существенно измененном составе внутренней среды в кис­лую сторону. При работе большой и умеренной мощности главным фактором результативности является своевременная и удовлетворяю­щая доставка кислорода к работающим тканям. Аэробные возможнос­ти организма при этом должны быть очень высоки.

При предельно напряженной мышечной деятельности происходят значительные изменения практически во всех системах организма, и это говорит о том, что выполнение этой напряженной работы связано с вовлечением в ее реализацию больших резервных мощностей орга­низма, с усилением обмена веществ и энергии.

Таким образом, организм человека, систематически занимающего­ся активной двигательной деятельностью, в состоянии совершить более значительную по объему и интенсивности работу, чем организм человека, не занимающегося ею. Это обусловлено систематической ак­тивизацией физиологических и функциональных систем организма, вовлечением и повышением их резервных возможностей, своего рода тренированностью процессов их использования и пополнения. Каж­дая клетка, их совокупность, орган, система органов, любая функцио­нальная система в результате целенаправленной систематической упражняемости повышают показатели своих функциональных возмож­ностей и резервных мощностей, обеспечивая в итоге более высокую работоспособность организма за счет того же эффекта упражняемости, тренированности мобилизации обменных процессов.

Обмен веществ

Социально-биологические основы физической культуры - это принципы взаимодействие социальных и биологических закономерностей в процессе овладения человеком ценностями физической культуры. Естественно - научные основы физической культуры - комплекс медико-биологических наук (анатомия, физиология, биология, биохимия, гигиена и др.) Анатомия и физиология - важнейшие биологические науки о строении и функциях человеческого организма. Человек подчиняется биологическим закономерностям, присущим всем живым существам. Однако от представителей животного мира он отличается не только строением, но и развитым мышлением, интеллектом, речью, особенностями социально-бытовых условий жизни и общественных взаимоотношений.

Организм человека - слаженнаяединая саморегулирующая и саморазвивающаяся биологическая система, функциональная деятельность которой обусловлена взаимодействием психических, двигательных и вегетативных реакций на воздействия окружающей среды, которые могут быть как полезными, так и пагубными для здоровья. Все органы связаны между собой и взаимодействуют. Нарушение деятельности одного органа приводит к нарушению деятельности других. Отличительная особенность человека - сознательное и активное воздействие на внешние природные и социально-бытовые условия, определяющие состояние здоровья людей, их работоспособность, продолжительность жизни и рождаемость (репродуктивность).

Без знаний о строении человеческого тела, о закономерностях функционирования отдельных органов и систем организма, об особенностях протекания сложных процессов его жизнедеятельности нельзя организовать процесс формирования здорового образа жизни и физической подготовки населения, в том числе учащейся молодежи.

Каждый человек наследует от родителей врожденные, генетически обусловленные черты и особенности, которые во многом определяют индивидуальное развитие в процессе его дальнейшей жизни. Необходимо отметить, что за последние 100-150 лет в ряде стран наблюдается раннее морфофункциональное развитие организма у детей и подростков. Это явление называют акселерацией (лат. acceleration - ускорение), оно связано не только с ускорением роста и развития организма вообще, но и с более ранним наступлением периода половой зрелости, ускоренным развитием сенсорных (лат. sensus - чувство), двигательных способностей и психических функций. Поэтому границы между возрастными периодами достаточно условны и это связано со значительными индивидуальными различиями, при которых «физиологический» возраст и «паспортный» не всегда совпадают.

Как правило , юношеский возраст (16-21 год) связан с периодом созревания, когда все органы, их системы и аппараты достигают своей морфофункциональной зрелости. Зрелый возраст (22-60 лет) характеризуется незначительными изменениями строения тела, а функциональные возможности этого достаточно продолжительного периода жизни во многом определяются особенностями образа жизни, питания, двигательной активности. Пожилому возрасту (61-74 года) и старческому (75 лет и более) свойственны физиологические процессы перестройки: снижение активных возможностей организма и его систем - иммунной, нервной, кровеносной и др. Здоровый образ жизни, активная двигательная деятельность в процессе жизни существенно замедляет процесс старения.


В основе жизнедеятельности организма лежит процесс автоматического поддержания жизненно важных факторов на необходимом уровне, всякое отклонение которого ведет к немедленной мобилизации механизмов, восстанавливающих этот уровень (гомеостаз).

Если рабочая возбуждающая нагрузка через определённый период не повторяется, то фаза повышенной работоспособности постепенно проходит. Иное дело, если функциональная нагрузка повторяется систематически. Через некоторое время повышенный уровень выработки пластических материалов, в освоенной фазе экзальтации становится постоянным и исходным для дальнейшего роста работоспособности. Упражняемый орган увеличивает свою массу и достигает более высокого структурного и функционального совершенства. Обновленная ткань лучше приспосабливается к новым внешним раздражителям. Следует помнить, что центральная нервная система (ЦНС), посылая по двигательным волокнам нервные импульсы к мышцам и внутренним органам, вызывает их активность.

В свою очередь возбуждение рецепторов (датчиков), расположенных в этих органах и тканях (в том числе мышцах) вызывают поток чувствительных импульсов, направляющихся в различные отделы ЦНС, в том числе, в кору больших полушарий.

Рецепторы иначе можно назвать анализаторами. Различают анализаторы: зрительный, слуховой, обонятельный, вкусовой, тактильный, вестибулярный, проприоцептивный.

Тактильный анализатор обеспечивает восприятие ощущений прикосновения, его место, силу, продолжительность.

Вестибулярный анализатор дает ощущение положения тела в пространстве, а также ускорения (как линейного, так и углового) и, следовательно, позволяет определить ряд параметров движения всего тела

Проприоцептивный анализатор позволяет определить степень напряжения мышц, взаимное расположение звеньев тела, скорость и ускорение движений, их амплитуду; он является определяющим в двигательной деятельности, дает информацию о выполняемых движениях.

ЦНС, мобилизуя мышечные сокращения, в свою очередь, под влиянием импульсов, идущих от мышц и внутренних органов, совершенствует свою функцию.

Сниженная на длительное время мышечная активность резко ограничивает поток чувствительных импульсов, поступающих в ЦНС. При отсутствии таких возбудительных импульсов снижается функциональный уровень как ЦНС, так и периферических органов. Поэтому физическая активность благотворно отражается на ЦНС, заставляя работать нервные центры, включая процессы самовосстановления и этим способствуя усовершенствованию ЦНС.

Говоря о влиянии двигательной активности на ЦНС нельзя не сказать, что активная мышечная деятельность вызывает усиление деятельности сердечнососудистой, дыхательной и других систем организма. При любой деятельности организма все его органы и системы действуют согласованно, в тесном единстве. Эта взаимосвязь осуществляется гуморальной (жидкостной) регуляцией и нервной системой.

Гуморальная регуляция осуществляется через кровь посредством особых химических веществ - гормонов, выделяемых железами внутренней секреции, соотношением концентрации кислорода и углекислого газа и с помощью других механизмов. При переходе в кровь углеводов из пищеварительных органов, куда они поступают с пищей, излишки их под воздействием гормона инсулина вырабатываемого поджелудочной железой, превращаются в гликоген и откладываются в организме как запас.

Под влиянием - гормона, выделяемого в кровь надпочечниками в предстартовом состоянии, или во время интенсивной мышечной работы, гликоген превращается в глюкозу и поступает в кровь для осуществления питания активно работающих мышц. Увеличение концентрации углекислого газа в крови, которое происходит при мышечной работе, воздействует на дыхательный центр и приводит к увеличению глубины и частоты дыхания. Усиление деятельности сердца и повышение в связи с этим кровяного давления воздействует на специальные нервные образования в сосудах (барорецепторы) и способствуют расширению кровеносных сосудов.

Кровеносная система.

Сердце - главный орган кровеносной системы, представляет собой полый мышечный орган, совершающий ритмические сокращения, благодаря которым происходит процесс кровообращения в организме. Сердце - автономное, автоматическое устройство, однако его работа корректируется прямыми и обратными связями, поступающими от различных органов и систем организма.

Сердце связано с центральной нервной системой, которая оказывает на его работу определенное регулирующее воздействие.

Сердечно-сосудистая система состоит из большого и малого кругов кровообращения. Левая половина сердца обслуживает большой крут кровообращения, правая - малый. Большой круг кровообращения начинается от левого желудочка сердца, проходит через ткани всех органов и возвращается в правое предсердие. Из правого предсердия кровь переходит в правый желудочек, а оттуда, из правого желудочка, начинается малый круг кровообращения, который проходит через легкие, где венозная кровь, отдавая углекислый газ и насыщаясь кислородом, превращается в артериальную и направляется в левое предсердие. Из левого предсердия кровь переходит в левый желудочек и оттуда снова в большой круг кровообращения.

Деятельность сердца заключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращение предсердий, сокращений желудочков, и общего расслабления сердца.

Активная физическая деятельность человека оказывает тренирующее воздействие на сердце и всю сердечно - сосудистую систему. Воспринимая регулярные тренировочные нагрузки сердечная мышца развивается и совершенствуется. Как правило, растет масса сердечной мышцы, увеличивается и размер сердца. Квалифицированные спортсмены, как правило, имеют сердце «расширенное в поперечнике», что видно врачам при рентгенографии грудной клетки.

Показателями работоспособности сердца, являются в первую очередь частота пульса, кровяное давление, систолический объем крови, минутный объем крови. Статистика показывает, что объем сердца тренированного человека в 1,5-2 раза больше, чем нетренированного.

Частота пульса тренированных людей существенно ниже, чем нетренированных: мужчины: 50 - 60 ударов в мин. 70-80 ударов в мин. у нетренированных; женщины: 60 - 70 ударов в мин. у тренированных, 75 - 85 ударов в мин. у нетренированных. Частота пульсав покое (утром, лежа, натощак) становится реже за счет увеличения мощности каждого сокращения. Сокращение частоты пульса увеличивает абсолютное время паузы для отдыха сердца и для протекания процессов восстановления сердечной мышцы.

Кровяное давление создается силой сокращений желудочков сердца и силой стенок сосудов. Кровяное давление измеряется в плечевой артерии. Различают максимальное (систолическое ) давление, которое создается во время сокращения левого желудочка (систолы) и минимальное (диастолическое )давление - давление, которое отмечается во время расслабления левого желудочка (диастолы). Давление поддерживается за счет упругости стенок растянутой аорты и других крупных артерий. Нормальное давление в покое: 120\70 мм. рт. столба.

Физическая работа способствует расширению кровеносных сосудов, снижению тонуса их стенок, свободному прохождению крови; умственная работа, равно, как и нервно-эмоциональное напряжение, приводит к сужению сосудов, повышению тонуса их стенок и даже к спазмам.

Такая реакция особенно свойственна сосудам сердца и мозга. Длительная напряженная умственная работа, частые нервно-эмоциональные напряжения, несбалансированные с активными движениями и с физическими нагрузками могут привезти к ухудшению питания этих важнейших органов, стойкому повышению кровяного давления, которое называется гипертонической болезнью. Свидетельствует о заболевании также и понижение кровяного давления в покое, что может быть следствием ослабления деятельности сердечной мышцы.

За счет более густой сети кровеносных сосудов и высокой их эластичности у спортсменов, как правило, максимальное давление несколько ниже нормы.

У тренированного человека при выполнении физической работы кровяное давление поднимается до 200 мм. рт. столба и может долго держаться. У нетренированного человека давление поднимается до 200 мм. рт. столба затем снижается по причине утомления сердца. Если интенсивная работа продолжается долго, может наступить обморок. После работы или прекращения тренировочной нагрузки у тренированного человека кровяное давление быстро восстанавливается до нормы (2-3 мин.); у нетренированного давление долго остается повышенным.

Предельная частота сердечных сокращений у тренированных людей при физической нагрузке находится на уровне 200 - 240 ударов в мин. Нетренированное сердце такой частоты достигнуть не может.

Систолический объем крови - количество крови выбрасываемое левым желудочком сердца при каждом его сокращении. Минутный объем крови - количество крови, выбрасываемое желудочком в течение одной минуты.

Систолический объем крови у спортсменов около 200 мл., у нетренированных - 130 мл. Минутный объем у спортсменов 35 - 42 л., унетренированных - 22 - 25 л. Наибольший систолический объем наблюдается при частоте сердечных сокращений от 130 до 180 ударов в минуту. При частоте сердечный сокращении выше 180 ударов в минуту систолический объем начинает сильно снижаться. Поэтому лучшие возможности для тренировки сердца имеют место при физических нагрузках, когда частота пульса находится в пределах 130-180 ударов в минуту.

При интенсивной физической работе сердца нетренированного человека не может проявить работоспособность, обеспечивающую питание работающих органов. Для выполнения быстрого бега, например, надо прокачать 30 л/мин. А предел возможности нетренированного сердца 25 л/ мин. Поэтому длительно быстро бежать нетренированный человек не может; длительная интенсивная мышечная работа может вызвать у такого человека обморочное состояние в результате недостатка кислорода и питательных веществ.

В покое полный кругооборот кровь совершает за 21 - 22 сек., при физической работе за 8 сек. и меньше. В результате увеличения скорости значительно повышается снабжение тканей кислородом и питательными веществами.

Движению крови по венам способствует деятельность окружающих их мышц (мышечный насос). Чем чаще сокращаются и расслабляются мышцы, чем полнее их расслабление и сокращение, тем большую помощь сердцу оказывает мышечный насос. Особенно эффективно он работает при ходьбе, беге, беге на лыжах, на коньках, при плавании, гребле и т.п. Мышечный насос способствует более быстрому отдыху сердца после интенсивной физической нагрузки.

Дыхательная система.

Дыхание - это не просто «вдох - выдох» . Дыхание - это комплекс физиологических процессов, осуществляемый дыхательным аппаратом и системой кровообращения, обеспечивающий питание тканей организма кислородом и выведением из них углекислого газа. Дыхательный aппарат человека состоит из легких, находящихся в полости грудной клетки; воздухоносных путей - полость носа, носоглотка, глотка, трахея, бронхи; грудной клетки и дыхательной мускулатуры. Разветвляющиеся бронхи заканчиваются мельчайшими закрытыми альвеолярными ходами, в стенках которых имеется большое количество шаровидных выпячиваний - легочных пузырьков (альвеол). Каждая альвеола окружена густой сетью кровеносных капилляров. Общая поверхность легочных пузырьков более 100 кв.м.

Легкие располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой - плеврой, такая же оболочка выстилает изнутри полость грудной клетки.

Расширение полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры. Выдох в покое производится пассивно, при расслаблении мышц осуществляется выдох игрудная клетка под воздействием силы тяжести и атмосферного давления уменьшается.

Следует различать : внешнее дыхание, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови - в атмосферный воздух; перенос газов кровью; и тканевое дыхание - потребление клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии для обеспечения процессов жизнедеятельности.

Внешнее дыхание осуществляется в альвеолах легких, где через полупроницаемые стенки альвеол и капилляров молекулы кислорода и углекислого газа осуществляют переход за сотые доли секунды.

После переноса кислорода кровью к тканям кислород переходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь и через легкие выводится из организма.

Совместная работоспособность системы дыхания и кровообращения оценивается рядом показателей: частотой дыхания, дыхательным объемом, легочной вентиляцией, жизненной емкостью легких, кислородным запросом, потреблением кислорода.

Частота дыхания в среднем в покое 12-20 циклов в минуту. Один цикл состоит из вдоха, выдоха и дыхательной паузы. У женщин частота дыхания на 1 - 2 цикла больше. У спортсменов частота дыхания снижается до 8 - 12 циклов в минуту. При физической работе частота дыхания увеличивается у лыжников и бегунов до 20 - 28, пловцов да 36 - 45. Бывали случаи увеличения частоты дыхания до 75 циклов в минуту.

Дыхательный объем - количество воздуха проходящее через легкие при одном дыхательном цикле. В покое объем - 350-800 мл. При интенсивной работе объем увеличивается до 2,5 л.

Легочная вентиляция - объем воздуха, который проходит через легкие за одну минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. В покое легочная вентиляция составляет 5-9л. Но может увеличиться при соревнованиях в 10-20 раз.

Жизненная емкость легких (ЖЕЛ) максимальное количество воздуха, которое может выдохнуть человек после максимального вдоха. В среднем это 3800-4200 мл. у мужчин и 3000-3500 у женщин.

Кислородный запрос - количество кислорода необходимое организму в одну минуту для окислительных процессов в покое или для обеспечения работы различной интенсивности. Кислородный запрос соответствует величине расхода энергии на выполняемую работу. В покое для обеспечения процесса жизнедеятельности организма требуется 250-300 мл кислорода в минуту. Интенсивная работа требует 5-6 литров кислорода в минуту.

Суммарный (общий кислородный) запрос — количество кислорода, необходимое для обеспечения выполнения всей предстоящей работы.

Потребление кислорода - количество кислорода фактически использованного организмом в покое или при выполнении какой-либо работы за одну минуту.

Максимальное потребление кислорода (МПК) - наибольшее количество кислорода которое может быть усвоено организмом при предельно тяжелой для него работе. МПК является важным критерием функционального состояния дыхания и кровообращения.

Обычный уровень МПК 2-3,5 л/мин. У спортсменов 4-6 л/мин и более. Рационально рассчитывать относительное МПК на один килограмм массы тела.

МПК является показателем аэробной (кислородной) производительности организма, т.е. его способности выполнять интенсивную физическую работу при достаточном количестве поступающего в организм кислорода. Считается, что для повышения уровня аэробной производительности следует выполнять тренировочные нагрузки с частотой пульса 150-180 уд/мин.

Кислородный долг - количество кислорода, необходимое для окисления продуктов обмена веществ, накопившихся при физической работе. При длительной интенсивной работе возникает суммарный кислородный долг, который ликвидируется после окончания работы. Величина максимально возможного суммарного кислородного долга имеет предел (потолок). У нетренированных людей он находится в пределах 10л, у тренированных может достигать 20л и более. Кислородный долг возникает, когда кислородный запрос человека выше потолка потребления кислорода.

Когда в клетки тканей поступает меньше кислорода, чем нужно для полного обеспечения потребностей в энергии, наступает кислородное голодание, или гипоксия. Причины гипоксии различны: внешние - загазованность, подъем на высоту: на уровне моря парциальное давление кислорода в атмосферном воздухе равно 159 мм рт. ст., на высоте 5000 м - до 75-80 мм рт. ст; внутренние - состояние дыхательного аппарата, проницаемость стенок альвеол и капилляров, количество эритроцитов в крови и процентного содержания в них гемоглобина, проницаемость оболочек клеток тканей.

Путь кислорода излегочныхальвеол к клеточным митохондриям (образованиям в клетках усваивающим кислород) довольно сложен, величина его потока зависит от совершенства функции каждого из участков этого пути (легкие, кровь, сердечно-сосудистая система, ткани и, наконец, клетка). Этот путь движения кислорода к клетке, а от нее к легким, получил название кислородного каскада. Систематическая физическая тренировка не только развивает функциональные способности органов внешнего дыхания, но и улучшает функцию всех участков пути, по которому следует кислород. Кислородное питание мышц имеет свои особенности.

Сокращенные мышцы сдавливают капилляры, замедляя кровоток и поступление кислорода. Доставку кислорода в работающей мышце берет на себя миоглобин — дыхательный пигмент мышечных клеток. Роль его важна еще и потому, что только мышечная ткань способна при переходе от покоя к интенсивной работе повышать потребление кислорода в сто раз. Совершенствование всего кислородного каскада в процессе физических тренировок значительно расширяет возможности организма в потреблении кислорода и создает основу для ликвидации гипоксических явлений в органах и тканях организма человека.

Органы значительно отличаются по своей способности переносить гипоксию различной длительности. Кора головного мозга - один из наиболее чувствительных к гипоксии органов Значительно менее чувствительна к недостаткам кислорода скелетная мускулатура. На ней не отражается даже двух - часовое полное кислородное голодание.

Большую роль в регуляции кислородного обмена как в органах и тканях, так и в организме в целом имеет углекислота. Между концентрацией в крови углекислого газа и доставкой кислорода тканям существуют строго определенные соотношения. Изменение содержания углекислого газа в крови оказывает влияние на центральные и периферические регуляторные механизмы, обеспечивающие улучшение снабжения организма кислородом, и служит мощным регулятором в борьбе с гипоксией.

Костная система.

У человека более 200 костей (85 парных и 36 непарных), которые в зависимости от формы и функции делятся на: трубчатые (кости конечностей); губчатые (выполняют в основном защитную и опорную функции - ребра, грудина, позвонки и др.); плоские (кости черепа, таза, поясов конечностей); смешанные (основание черепа).

В каждой кости содержатся все виды тканей, но преобладает костная, представляющая разновидность соединительной ткани. В состав кости входят органические и неорганические вещества. Неорганические (65-70% сухой массы) - это в основном фосфор и кальций. Органические (30-35%) - это клетки кости, коллагеновые волокна. Эластичность, упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями. Сочетание органических веществ и минеральных солей в живой кости придает ей необычайную крепость и упругость, которые можно сравнить с твердостью и упругостью чугуна, бронзы или меди. Кости детей более эластичны и упруги - в них преобладают органические вещества, кости же пожилых людей более хрупки - они содержат большое количество неорганических соединений.

При систематическом выполнении значительных по объему и интенсивности статических и динамических упражнений кости становятся более массивными, в местах прикрепления мышц формируются хорошо выраженные утолщения - костные выступы, бугры и гребни. Происходит внутренняя перестройка компактного костного вещества, увеличиваются количество и размеры костных клеток, кости становятся значительно прочнее.

Скелет человека состоит из позвоночника, черепа, грудной клетки, поясов конечностей и скелета свободных конечностей.

Позвоночник , состоящий 33-34 позвонков , имеет пять отделов: шейный (7 позвонков), грудной (12), поясничный (5), крестцовый (5), копчиковый (4-5). Позвоночный столб позволяет совершать сгибания вперед и назад, в стороны, вращательные движения вокруг вертикальной оси. В норме он имеет два изгиба вперед (шейный и поясничный лордозы) и два изгиба назад (грудной и крестцовый кифозы). Названные изгибы имеют функциональное значение при выполнении различных движений (ходьба, бег, прыжки и т.д.), они ослабляют толчки, удары и т.п., выполняя роль амортизатора.

Грудная клетка образована 12 грудными позвонками, 12 парами ребер и грудной костью (грудиной), она защищает сердце, легкие, печень и часть пищеварительного тракта.

Череп защищает от внешних воздействий головной мозг и центры органов чувств. Он состоит из 20 парных и непарных костей, соединенных друг с другом неподвижно, кроме нижней челюсти. Череп соединяется с позвоночником при помощи двух мыщелков затылочной кости с верхним шейным позвонком, имеющим соответствующие суставные поверхности.

Скелет верхней конечности образован плечевым поясом, состоящим из двух лопаток и двух ключиц, и свободной верхней конечностью, включающей плечо, предплечье и кисть. Плечо - это одна плечевая трубчатая кость; предплечье образовано лучевой и локтевой костями; скелет кисти делится на запястье (8 костей, расположенных в два ряда), пястье (5 коротких трубчатых костей) и фаланги пальцев (14 фаланг).

Скелет нижней конечности образован тазовым поясом (2 тазовых кости и крестец) и скелетом свободной нижней конечности, который состоит из трех основных отделов - бедра (одна бедренная кость), голени (большая и малая берцовые кости) и стопы (предплюсна - 7 костей, плюсна - 5 костей и 14 фаланг).

Все кости скелета соединены посредством суставов, связок и сухожилий. Суставы - подвижные соединения, область соприкосновения костей в которых покрыта суставной сумкой из плотной соединительной ткани, срастающейся с надкостницей сочленяющихся костей. Полость суставов герметично закрыта, она имеет небольшой объем, зависящий от формы и размеров сустава. Суставная жидкость уменьшает трение между поверхностями при движении, эту же функцию выполняет и гладкий хрящ, покрывающий суставные поверхности. В суставах могут происходить сгибание, разгибание, приведение, отведение.

Итак, опорно-двигательный аппарат состоит из костей, связок, мышц, мышечных сухожилий. Большинство сочленяющихся костей соединены связками и мышечными сухожилиями, образуя суставы конечностей, позвоночника и др. Основные функции - опора и перемещение тела и его частей в пространстве. При систематических занятиях физическими упражнениями и спортом суставы развиваются и укрепляются, повышается эластичность связок и мышечных сухожилий, увеличивается гибкость. И наоборот, при отсутствии движений разрыхляется суставной хрящ и изменяются суставные поверхности, сочленяющие кости, появляются болевые ощущения, возникают воспалительные процессы.

Мышечная система обеспечивает движение человека, вертикальное положение тела, фиксацию внутренних органов в определенном положении, дыхательные движения, усиление кровообращения и лимфообращения (мышечный насос), теплорегуляцию организма вместе с другими системами.

У человека более 600 мышц, это 35 ~ 40% массы тела; у спортсменов 50% и более. Механическая деятельность мышц происходит в результате способности мышечных волокон переходить в состояние возбуждения, т.е. в деятельное состояние под влиянием биотоков, идущим к мышцам по нервным волокнам.

Работа мышц осуществляется за счет их напряжения или сокращения.

Напряжение, происходящее без изменения длины мышцы, характеризует статическую работу мышц. Сокращение мышц, происходящее с изменением их длины, характеризует динамическую работу мышц. Чаще всего мышцы работают в смешанном (ауксотоническом) режиме, одновременно напрягаясь и сокращаясь по длине. Сила, развиваемая мышцей, зависит от количества мышечных волокон, их поперечного сечения, а также от эластичности и исходной длины отдельной мышцы. Систематическая физическая тренировка увеличивает силу мышц именно за счет увеличения количества и утолщения мышечных волокон и за счет увеличения их эластичности.

Существует два вида мускулатуры : гладкая (непроизвольная) и поперечно-полосатая (произвольная). Гладкие мышцы расположены в стенках кровеносных сосудов некоторых внутренних органов. Они ссужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатые мышцы - это все скелетные мышцы, которые обеспечивают многообразные движения тела. К поперечно-полосатым мышцам относится также и сердечная мышца, автоматически обеспечивающая ритмичную работу сердца на протяжении всей жизни.

Мышцы туловища включают мышцы грудной клетки, спины и живота: большая грудная мышца, наружная косая мышца живота, прямая мышца живота, межреберные мышцы, трапециевидная мышца, ромбовидная мышца, мышца выпрямитель туловища, широчайшая мышца спины.

Мышцы верхних конечностей: двуглавая мышца плеча (бицепс), дельтовидная, трехглавая мышца плеча (трицепс).

Мышцы нижних конечностей: прямая мышца бедра (четырехглавая), портняжная, нежная, двуглавая, большая ягодичная мышца. Мышцы голени: икроножная, ахиллово сухожилие.

Пищеварительная система.

Пищеварение - это процесс физической и химической обработки пищи и превращение её в более простые и растворимые соединения, которые могут всасываться, переноситься кровью и усваиваться организмом. Система органов пищеварения (пищеварительный тракт) состоит из ротовой полости с тремя парами крупных слюнных желез, глотки, пищевода, желудка и тонкого кишечника, в состав которого входят двенадцатиперстная кишка (в которую открываются протоки желчного пузыря и поджелудочной железы), тощая и подвздошные кишки. Завершается тракт толстым кишечником. В каждом отделе пищеварительной системы происходят специализированные операции по обработке пищи, связанные с наличием в них специфических ферментов, поэтапно расщепляющих пищу.

В раннем юношеском возрасте (16-17 лет) происходит созревание системы пищеварения, совершенствование и стабилизация её регуляторных механизмов.

Органы выделения играют важную роль в сохранении постоянства внутренней среды: они удаляют из организма продукты обмена, которые не могут быть использованы, избыток воды и солей. В осуществлении процессов выделения участвуют легкие, кишечник, кожа и почки. Легкие удаляют из организма углекислый газ, пары воды, летучие вещества. Из кишечника с калом удаляются соли тяжелых металлов, избыток невсосавшихся пищевых веществ. Потовые железы кожи выделяют воду, соли, органические вещества. В покое человек теряет 20 - 40 мл пота в час. Их деятельность усиливается при напряженной мышечной работе и повышении температуры окружающей среды.

Основная роль в выделительных процессах принадлежит почкам, которые выводят из организма воду, соли, аммиак, мочевину, мочевую кислоту, восстанавливая постоянство осмотических свойств крови. Через почки удаляются некоторые ядовитые компоненты, образующиеся в организме при приеме лекарственных и других веществ. Почки поддерживают определенную постоянную реакцию крови. В период раннего юношеского возраста выделительная система по показателям роста и развития достигает уровня, характерного для взрослого человека.

Эндокринной системе принадлежит важная роль в регуляции функций организма. Органы этой системы - железы внутренней секреции - выделяют особые вещества - гормоны (греч. horman - возбуждать), оказывающие влияние на обмен веществ, структуру и функции органов и тканей организма. Железы внутренней секреции выделяют гормоны прямо в кровь, поэтому их называют эндокринными (греч. endon - внутри, krinein - выделять). Эндокринную систему образуют: гипофиз, эпифиз, щитовидная и паращитовидная железы, вилочковая и поджелудочная железы, надпочечники и половые железы.

Железы внутренней секреции функционально тесно связаны между собой и работают как единое целое - эндокринная система. Она находится под контролем нервной системы.

Все эндокринные железы имеют небольшие размеры и массу, богато снабжены кровеносными сосудами и постоянно выделяют небольшие порции гормонов.

Гипофиз расположен у основания продолговатого мозга. Он регулирует ростовые процессы организма, жировой, белковый, углеводный и водно-солевой обмен; в целом определяет физическое, половое и умственное развитие. Становление железы происходит в течение периода детства, достигает уровня, характерного для взрослого человека, к 15-16 года.

Щитовидная железа , функционирует совместно с паращитовидными, находится в шейном отделе и регулирует все виды обмена веществ, оказывает влияние на физическое, половое и умственное развитие. Недостаток гормонов железы в раннем детстве приводит к развитию кретинизма, избыток к базедовой болезни. В своем развитии достигает уровня, характерного для взрослого человека, к 15-16 годам.

Вилочковая железа находится в грудной полости. Это железа детства и юношества, она имеет небольшую массу в 6-15 лет. После 15 лет наблюдается её инволюция (обратное развитие). С деятельностью железы связан период наиболее интенсивного роста организма. Кроме того она является центральным органом иммунитета. Нарушение её приводит к серьезным отклонениям в обмене веществ.

Поджелудочная железа расположена в брюшной полости позади желудка. Гормоны этой железы участвуют в регуляции обмена углеводов и жиров. Недостаток их приводит к возникновению сахарного диабета. Созревание поджелудочной железы наступает рано, к 10 годам она по всем показателям достигает уровня, характерного для взрослого человека.

Надпочечники располагаются над почками. Одни гормоны надпочечников (кортикоиды) принимают участие в регуляции углеводного и водно-солевого обмена, а также иммунитета, другие (адреналин) служит мобилизатором всех функций организма при стрессе. Наибольший скачок в развитии надпочечников отмечается в период полового созревания. Достигают уровня, характерного для взрослого человека, к 15-16 годам.

Половые железы. Мужские половые железы (семенники) находятся снаружи тела в мошонке, женские (яичники) - в полости малого таза. Семенники вырабатывают мужские половые гормоны (андрогены) и мужские и половые клетки (сперматозоиды). Яичники продуцируют женские половые гормоны (эстрогены) и женские половые клетки (яйцеклетки) Половые гормоны в течение всей жизни оказывают мощное действие на формирование тела, обмен веществ и половое поведение. Наибольшего развития половые железы достигают в подростковом возрасте. В период ранней юности (16-17 лет) их развитие достигает пика. Считается, что к этому периоду половые железы созрели, а организм подготовлен к детородной функции.

Эпифиз (шишковидная железа) является частью промежуточного мозга. Его основные функции - регуляция полового развития (его торможение) и жизненного цикла сон - бодрствование. Эпифиз - железа детства. Наибольшего развития она достигает в 6-7 лет. Далее начинается её обратное развитие. В подростково-юношеском возрасте функции эпифиза резко снижены.

В настоящее время основной методологической базой развития любой науки и отрасли знаний является использование системного анализа (Анохин П.К.,1975; Сорокин А.П., 1977; Судаков К В., 1987; Кочетков А.Г., Стрельникова И.Г., 1994; Лебединский В.Ю. Васильев В.Г., 1997 и др.). С его позиций физическая культура и спорт представляют собой сложную, полуоткрытую систему биосоциального уровня, которая должна характеризоваться целостностью и выделенностью.

Принципы системного подхода позволяют характеризовать ее целостность на основе:

  • 1) уже имеющихся знаний;
  • 2) анализа ее структурно-функциональной организации, условий и причин изменчивости;
  • 3) получение о ней новых знаний на основании более глубокой аналого-синтетической деятельности.

С позиций системного анализа невозможно представить функционирование этой системы без ее взаимодействия с внешней средой, которая должна быть от нее выделена, так как без взаимодействия с последней она будет нежизнеспособна, ибо должна с ней обмениваться веществом, энергией и информацией. Их взаимодействие носит сложный, многокомпонентный характер, потому что внешняя среда не однородна. Многочисленные ее параметры следует рассматривать и представлять в виде дискретно-существующих факторов (сигналов), отличающихся друг от друга характером действия (спецификой), силой и протяженностью во времени.

Следует также отметить, что любая система только тогда жизнеспособна и может эффективно функционировать, когда она представляет собой динамичную саморегулирующуюся организацию, системнообразующим фактором которой будет являться конечный полезный результат, инициированный воздействием факторов внешней среды.

Сказанное выше демонстрирует еще один признак систем - организацию. То есть все элементы (компоненты), составляющие систему, должны быть организованы в пространстве и во времени, взаимодействуя на достижение конечного полезного результата. Эта ее организация проявляется лишь в процессе взаимодействия самой системы с факторами внешней среды (суперсистемы) и характеризуется пространственной закрепленностью и временными отношениями, обуславливающими ее целостность.

Пространственная закрепленность взаимодействующих элементов системы представляет собой ее структуру (взаимодействие элементов, описанное в пространстве), а функция - это взаимодействие элементов, описанное во времени - то есть это та ее работа, которая направлена на получение конечного полезного результата.

Формирование и функционирование любой как биологической, так и биосоциальной системы возможно только при наличии системообразующего фактора, который является внешним относительно этой системы и составляет часть взаимодействия самой системы и внешней среды (суперсистемы). Это взаимодействие совершается и проявляется с использованием переноса вещества, энергии и информации, а сама система должна обладать свойствами: самоорганизации, саморегуляции и самовоспроизведения, которые адекватно изменяются по отношению к динамике условий внешней среды.

Следовательно, с позиций системного анализа сферу физической культуры и спорта следует представить как сложную биосоциальную систему, состоящую из трех основных компонентов, каждый из которых имеет свой системообразующий фактор и конечный полезный результат.

Массовые занятия физической культурой и уровень физического здоровья (I) нации являются базой для развития как массового спорта (II), так и спорта высших достижений (III), а без ее достаточного эффективного функционирования не возможно их успешное развитие.

Кроме того, с учетом динамики изменения морфофункциональных характеристик организма человека в возрастном аспекте следует говорить о трех основных этапах функционирования этой подсистемы «физическое воспитание»: Период развития организма человека (до зрелого возраста) - здоровьеформирование.

I. Зрелый возраст - здоровьссохраненне

II. Инвалюция (старшие возрастные группы) - здоровьесберсжение (поддержание здоровья).

Кроме того, в процессе формирования и функционирования любой биосоциальной системы отмечается специализация образующих ее элементов, которые являются системами более низкого уровня организации.

Выделяются три их основные группы:

  • 1. «рабочие» элементы;
  • 2. элементы «обеспечения»;
  • 3. элементы «регуляции».
  • 1. Рабочие элементы - это главные, основные элементы системы, через взаимодействие которых реализуется достижение конечного полезного результата

Понятно, что ведущим компонентом в этом взаимосодействии всегда будет учитель, преподаватель, тренер, от квалификации и профессионализма которых и будет зависеть достижение соответствующего образовательного и воспитательного эффекта (конечного полезного результата).

Удивительно наблюдать, что очень много наших тренеров работает за границей (спортивная гимнастика и др.), а их ученики и дети достигают выдающихся успехов, вплоть до уровня Олимпийского чемпиона. Не думается, чтобы они были бы не востребованы на родине, когда наши успехи в этих видах спорта малоутешительны.

2. Элементы обеспечения - включают в себя финансовое, материальнo-техническое, медико-биологическое, научно-методическое и т.д. обеспечение, без достаточного развития которых, на современном этапе невозможна результативная работа рабочих элементов этой системы.

В этом плане впечатляют успехи китайского спорта, который взял все лучшее из нашего и мирового опыта и даже превзошел его. Создана отличная материально-техническая база, особенно в вузах, выделяются достаточные финансовые средства, привлекаются со всего мира, включая и Россию, лучшие, высококвалифицированные тренерские, научные, медицинские кадры, что обеспечивает достижение высоких результатов в различных видах спорта.

3. Элементы регуляции - обеспечивают регламентацию (нормативно-правовые документы и др.) деятельности самой системы (физическая культура и спорт), взаимодействие ее с другими системами своего (здравоохранения, образования и др.) уровня, самих элементов в системе и ее взаимодействие с суперсистемами государственного, общественного и международного уровня.

В последнее время на федеральном уровне принят Закон о физической культуре и спорте, однако в субъектах Российской Федерации и на муниципальном уровне не все его положения в настоящее время осознаны и реализованы, особенно статьи о мониторинге здоровья населения, физического развития детей, подростков и молодежи.

Исходя из вышеизложенного и из современного состояния в России сферы физической культуры и спорта, следует большое внимание уделить на следующие основные моменты, с учетом которых следует провести реорганизацию этого направления деятельности в государственных структурах.

Необходимо:

  • 1. привести организационные формы этой деятельности в соответствие с новыми общественно-политическими и социально - экономическими условиями жизни в нашем государстве;
  • 2. главный акцент в физической культуре должен быть сделан на уровень физического здоровья различных групп населения, особенно подрастающего поколения;
  • 3. необходимо совершенствовать систему и условия физического воспитания обучающихся, особенно по месту их жительства и учебы;
  • 4. обеспечить развитие системы подготовки специализированных кадров (учителя, тренеры, спортивные врачи, психологи), которые должны обладать высокой квалификацией для успешной работы в области физической культуры, спорта и других смежных отраслей знаний;
  • 5. нужно повысить престижность работы учителей физической культуры и тренеров по разным видам спорта, включая ее конкурентность с другими государствами, и обеспечивая им достойный уровень заработной платы. Оценка эффективности их работы должна осуществляться по успешности достижения конечного полезного результата;
  • 6. повысить уровень материально-технического обеспечения условий занятий физической культурой и спортом, особенно в вузах и других учебных заведениях, которые должны стать одной из базовых основ для успешного развития как массового спорта, так и спорта высших достижений;
  • 7. необходимо вернуться к более качественному, инновационному, научно - методическому и медико-биологическому обеспечению (комплексные научные группы) физкультурно-оздоровительной и спортивной работы;
  • 8. для повышения конкурентоспособности в спорте высших достижений необходимо организовать несколько (возможно по одному в каждом федеральном округе) специализированных центров подготовки высококлассных спортсменов по различным видам спорта с их финансированием как из федерального бюджета, так и из бюджета субъектов РФ. Эффективность работы этих центров также должна оцениваться и премироваться в соответствии с уровнем достигнутых результатов. Достойным примером могут служить центр подготовки борцов (г. Красноярск) или центр подготовки по спортивной ходьбе (Республика Мордовия).

В то же время, на любом этапе научного исследования и подготовки высококвалифицированного специалиста, а тем более на их начальной стадии, где закладываются фундаментальные знания о строении и функционировании человеческого организма в целом, непременно должны осуществляться и использоваться принципы системного подхода, позволяющие характеризовать целостность объекта (биосистемы различного уровня организации) на основе:

  • 1) уже имеющихся знаний;
  • 2) анализа структурно-функциональной организации системы, условий, причин изменчивости и факторов формирования ее структур;
  • 3) получения новых знаний об объекте на основании более глубокой аналого-синтетической деятельности исследователя и обучаемого.

С позиций системного подхода невозможно представить формирование и функционирование любой биологической системы и спортсмена, в частности, без ее взаимодействия с внешней средой, так как без взаимодействия с последней она нежизнеспособна. Это можно обосновать также тем, что в живой природе практически не встречаются полностью закрытые, автономные системы, поскольку для обеспечения их жизнедеятельности необходим обмен с внешней средой веществом, энергией и информацией, иначе биосистема погибнет. Нежизнеспособны также и открытые биологические системы.

Взаимодействие организма или его систем с окружающей их средой носит сложный многокомпонентный характер, наиболее полно разобраться в котором можно только на основе системного анализа. Прежде всего сама окружающая нас среда неоднородна, как по составу, так и по интенсивности воздействия ее на организм человека и животных. Многочисленные ее параметры можно и следует представить в виде дискретно существующих факторов (сигналов), отличающихся друг от друга характером действия (спецификой), силой и протяженностью во времени.

На основании вышеизложенного следует отметить, что биосистема любого уровня организации характеризуется не только целостностью, но и должна обладать выделенностъю (изолированность) от внешней среды. Воздействие на нее факторов внешней среды будет являться одним из основных звеньев и пусковым механизмом, определяющим не только морфофункциональные особенности их строения, но и направленность, выраженность приспособительных изменений структуры систем любого уровня организации, в частности опорно-двигательного аппарата.

Таким образом, одним из основных признаков и свойств живой системы является ее выделенность, то есть система имеет разграничительные с суперсистемой (внешней для нее средой) элементы, которые составляют ее субсистемы, организованы в пространстве (структурная характеристика) и во времени (характеристика функции и процесса). Выделенность системы из суперсистемы (внешней среды) как в пространстве, так и во времени согласуется со способностью биосистем формировать ее неравновесное состояние с суперсистемой и механизмы его удержания. Неравновесность живой системы с внешней средой определяется выработкой ею механизмов поддержания относительного постоянства своей организационной структуры и функции, то есть механизмов гомеостаза и гомеокинеза.

Обособленность систем имеет также существенный качественный характер, а не только пространственный или временной, поскольку каждая система любого уровня организации имеет свой структурный, функциональный, термодинамический гомеостаз и отличается как от предыдущей, так и от последующих систем в их иерархической организации.

Осуществление и реализация пространственного и временного континуума живой системы возможно только лишь при получении вещества, энергии и информации из источников суперсистемы, использование которых имеет место в процессе их взаимодействия. Из этого следует, что полного изосостояния системы с внешней для нее средой (суперсистемой) не может быть, поскольку в этом случае будет иметь место потеря кардинальных свойств живой системы - ее выделенности и целостности, - которые обеспечиваются разграничительными структурами системы и структурами воспроизводства элементов ее взаимодействия с внешней средой.

Следует также отметить, что каждая биологическая система различного иерархического уровня только тогда жизнеспособна, когда она представляет собой динамическую саморегулирующуюся организацию, системообразующим фактором которой будет являться конечный полезный результат, инициированный воздействием факторов внешней среды (Анохин П.К., 1968, 1975; Сорокин А.П., 1973, 1977, 1977, 1982; Судаков К.В., 1987; Макаров А.К., Лебединский В.Ю., Корытов Л.И., 1989; Васильев В.Г., Лебединский В.Ю., 1990; Лебединский В.Ю., Васильев В.Г., Корытов Л.И., 1990; Кочетков А.Г., Сорокин А.П., Стельникова И.Г., 1992; Лебединский В.Ю., Васильев В.Г., 1993; Кочетков А.Г., Стельникова И.Г., 1994; Шпорин Э.Г. с соав., 2011 и др).

Становится ясным, что организм человека является сложной многоуровневой полуоткрытой биосоциальной системой, которая состоит из подсистем различного уровня организации. В то же время, живая система любого конкретного уровня организации является частью, компонентом (субсистемой) системы более высокого иерархического уровня (суперсистемы). Она для этой системы будет являться внешней средой.

В свою очередь, эти системы также состоят из субсистем более низкого уровня организации, для которых они сами уже представляют внешнюю среду. Сказанное выше отражает признак иерархии, который характерен для живых систем, а сама иерархия определяет наличие исходящих из нее следующих обязательных характеристик живых систем: признак относительной автономности и признак соподчиненности.

Системы более высокого уровня организации, образующиеся в результате объединения и взаимодействия систем предыдущей ступени иерархического уровня, всегда относительно обособлены одна от другой и от внешней среды (суперсистемы) для каждой из них.

Критериями иерархических уровней систем служат:

  • 1) наличие органического отношения целого и его основных элементов между системами одного уровня организации и образованиями другого уровня;
  • 2) наличие существенных специфических признаков, присущих системам каждого из основных уровней организации живой материи.

Н.П.Наумов (1964) насчитывает девять уровней организации живой материи, подразделяемых на три основных группы:

  • 1) биологические микросистемы (молекулярный, мицеллярный, клеточный);
  • 2) биологические мезосистемы (тканевой, органный, орга- низменный);
  • 3) биологические макро- и мегасистемы (видовой, популяционный, биоценозов и биосферный).

А.П.Сорокин (1977) дополнительно к этим уровням вводит уровень «система органов» и другие уровни. Г.Г.Автандилов (1990) выделяет десять структурно-функциональных уровней биологической организации.

На наш взгляд, исходя из результатов изучения строения человеческого организма и его различных структурных компонентов (система органов, орган, клетка и др.) с использованием системного подхода, достаточно различать следующие иерархические уровни организации, которые соответствуют основным обязательным и необходимым признакам (целостность, выделенностъ, наличие специфических признаков и т.д.) живых систем.

Наряду с этим, в соответствие с работами Анохина П.К., 1968, 1975 и Судакова К.В., 1987, выделяются и функциональные системы, которые могут объединять не только системы, но и их элементы различного иерархического уровня для достижения конечного полезного результата. К ним можно отнести функциональные системы, представляющие собой взаимосодействие нейронов по обработке информации, принятию решения и реализации ответных реакций на воздействие факторов внешней среды. Кроме того, к ним можно отнести такие функциональные системы, как система кислородообеспечения организма, система обеспечения организма пластическими и энергетическими веществами, система выведения продуктов метаболизма, и т.д.

Так, например, функциональная система кислородообеспечения организма будет представлять собой взаимосодействие аппарата внешнего дыхания, сердечно-сосудистой системы (уровень системы органов), интерстециального сектора органов (органный уровень) и тканевое дыхание (клеточный уровень), последовательно через которые в организм поступает кислород и в обратном направлении выводится углекислый газ.

Аналогичным образом включает в свой состав биосистемы и их элементы различного иерархического уровня и функциональная система обеспечения организма пластическими, энергетическими веществами и водой: аппарат внешнего пищеварения, сердечно-сосудистая система (уровень системы органов), интерстециальный сектор органов (органный уровень) и внутриклеточная утилизация пластических, энергетических веществ (клеточный уровень). В обратном направлении осуществляется выведение продуктов их метаболизма во внешнюю среду, которая для каждого компонента этой функциональной системы будет являться частью суперсистемы, а для аппарата внешнего пищеварения - внешней средой.

Если рассматривать функциональную систему выведения продуктов метаболизма в более широком смысле, которая также начинается с клеточного уровня, то в ее составе как завершающий отдел кроме аппарата внешнего дыхания и внешнего пищеварения, граничащих с внешней средой следует рассматривать и мочевую систему с кожей, через функционирование которых также реализуется выведение в нее продуктов метаболизма и жидкости, но через потовые железы кожи оно осуществляется в минимальном объеме.

Сказанное выше демонстрирует еще один признак биосистемы - организацию, то есть все элементы (компоненты), составляющие систему, - субсистемы более низкого уровня организации - организованы в пространстве и во времени, взаимодействуя на достижение конечного полезного результата. Эта организация систем проявляется лишь в процессе взаимодействия самой системы с фактором внешней среды (суперсистемы) и характеризуется пространственной закрепленностью и временными отношениями, обусловливающими целостность как самой системы, так и суперсистемы.

Пространственная закрепленность взаимодействующих элементов системы представляет ее структуру, то есть любая живая система структурирована. Таким образом, структура системы - это взаимодействие элементов системы, описанное и пространстве, а функция - это взаимодействие элементов системы, описанное во времени, это та работа системы, которая направлена на получение конечного полезного результата.

Формирование и функционирование любой биосистемы возможно только при наличии системообразующего фактора, который является внешним относительно этой системы сигналом и составляет часть взаимодействия самой системы и среды (суперсистемы). Это взаимодействие всегда совершается и проявляется переносом вещества, энергии и информации и реализуется (в широком смысле) через различные виды движения.

Кроме того, это взаимодействие происходит на пространственных контактно - разграничительных структурах системы, которые и являются результатом (следствием) такого взаимодействия. Чем более выражены разграничительные структуры системы и суперсистемы, тем более выделена сама система, и тем более сложным и специализированным становится процесс ее обмена с суперсистемой веществом, энергией и информацией.

Наряду с этим в живых системах выявляется еще один существенный признак - наличие механизмов восстановления элементов или компонентов системы, утраченных в процессе взаимодействия (функции), а также репродукция (размножение) и самой системы в целом.

Таким образом, любая биосистема обладает следующими основными свойствами: самоорганизация, саморегуляция и самовоспроизведение.

В процессе формирования и функционирования любой биологической системы отмечается специализация ее основных элементов. По А.П.Сорокину (1977) выделяются «рабочие» элементы, через деятельность которых осуществляются специфические ответные реакции (функция) системы на воздействие факторов внешней среды; элементы «регуляции», осуществляющие координацию и регуляцию ответных реакций, и элементы «обеспечения», осуществляющие трофические, пластические процессы в системе, восстановление утраченных структур и репродукцию.

Резюмируя сказанное, можно выделить следующие обязательные основные компоненты живых систем различного иерархического уровня:

  • 1) пространственные контактно-разграничительные структуры;
  • 2) специфические «рабочие» элементы;
  • 3) элементы «регуляции»;
  • 4) элементы «обеспечения», наличие которых не только обязательно (иначе теряется смысловое представление о системах), но и характерно для биологической и биосоциальной систем любого уровня организации.

С учетом вышеизложенного следует отметить, что человеческий организм, являясь самостоятельной биологической системой и в то же время элементом социальных, экологических и других суперсистем, состоя из подсистем более низкого уровня организации (уровень «система органов»):

  • 1) кожа, слизистые оболочки внутренних органов и др. - пространственные контактно-разграничительные структуры, обеспечивающие его выделенность от внешней среды, через которые осуществляется обмен с ней веществом, энергией и информацией;
  • 2) структуры опорно-двигательного аппарата (сома) - «рабочие» элементы, через деятельность которого осуществляется реализация любых ответных реакций организма на воздействие факторов внешней среды;
  • 3) нервная система, эндокринные органы и др. - элементы «регуляции», которые осуществляют восприятие информации из внешней для нее среды, от элементов самой системы, ее обработку, координацию деятельности элементов системы и регуляцию ее ответных реакций, зависящих от характера (свет, звук, запах, вкус, температура, тактильная чувствительность и др.) и интенсивности воздействия внешних раздражителей;
  • 4) аппарат внешнего пищеварения, внешнего дыхания, сердечно-сосудистая система, мочеполовой аппарат и др. - элементы «обеспечения», через деятельность которых осуществляются и поддерживаются обменные, пластические процессы - метаболизм в организме и репродукция.

Иерархическую организацию биосистем организма, его внутренних сред и коммуникационных систем, обеспечивающих трофические, пластические процессы в нем, обмен веществом, энергией и водой между подсистемами различного уровня организации и самого организма с внешней средой.

Схему иерархической организации коммуникационных систем организма можно представить следующим образом:

  • 1. Аппараты, системы органов.
  • 2. Барьеры между внешней и внутренней средой организма (кровью) -- аэрогематический барьер и др.
  • 3. Гематотканевые барьеры.
  • 4. Кожа, слизистые оболочки.

® -- воздействие факторов внешней среды и выведение экскретов.

Исходя из анализа предлагаемой схемы, можно легко представить выделенность биосистем основных уровней организации и проследить то, что обмен веществом, энергией и водой не только между организмом и внешней средой, но и в самом организме осуществляется поэтапно (соответственно иерархическим уровням организации биосистем) и происходит через различные оболочки, барьеры и мембраны.

Основными этапами этого обмена будут являться:

  • 1) внешняя среда кровь;
  • 2) кровь интерстициальная жидкость;
  • 3) интерстициальная жидкость цитоплазма кариоплазма.

В обратном направлении происходит выведение экскретов во внешнюю для системы среду.

Исходя их вышеизложенного, еще раз следует подчеркнуть, что организм человека как биологическая система (суперсистема) состоит из взаимосодействующих на получение конечного полезного результата элементов, которые являются уже самостоятельными системами более низкого уровня организации - уровень системы органов.

К ним в организме человека и животных следует относить: опорно-двигательный аппарат («рабочие» элементы суперсистемы), аппарат внешнего дыхания (дыхательная система), аппарат внешнего пищеварения (пищеварительная система), мочеполовой аппарат и сердечно-сосудистую систему, которые относятся к элементам «обеспечения» суперсистемы.

К элементам «регуляции» суперсистемы (организм) наряду с воздействием факторов внешней среды следует относить: нервную систему, эндокринные органы.

Все эти элементы суперсистемы так же, как и сама система обладают выделенностью от внешней среды, которая обеспечивается наружными оболочками. Так, сердечно-сосудистая система, являясь замкнутым образованием, состоящим из различных сосудов, с одной стороны граничит с внешней средой в органах внешнего дыхания (аэрогематический барьер), в желудочно-кишечном тракте, в мочеполовой системе, в коже, обмениваясь с ней веществом и энергией. С другой стороны - она граничит со внутренней средой органов (гематотканевые барьеры), обмениваясь также уже с их интерстециальным пространством веществом и энергией.

Аппарат внешнего дыхания, внешнего пищеварения, мочеполовой, опорно-двигательный аппарат, эндокринная, нервная системы и т.д. также обладают определенной выделенностью от внешней среды.

В свою очередь, если рассматривать эти системы как самостоятельные биологические системы (уровень системы органов), они также состоят из структурных элементов, которые можно рассматривать как самостоятельные системы более низкого иерархического (органного) уровня организации.

Так, любой орган как самостоятельная биологическая система также имеет четыре группы основных обязательных структурных компонентов, которые свойственны любым живым системам этого уровня организации:

1. Пространственные контактно-разграничительные структуры (наружные соединительно-тканные оболочки органов); внутренняя среда органов (интерстиции) также отделена от внешней для нее среды (кровь) гематотканевыми барьерами.

Однако, внутриорганное сосудистое русло следует рассматривать как элемент обеспечения самой биологической системы органного уровня организации вследствие того, что оно не только входит в структурную организацию органов, обеспечивая взаимодействие с их структурными элементами, но и через них (внутриорганная капиллярная сеть) осуществляется поступление в эту систему необходимых для ее жизнедеятельности пластических, энергетических веществ, воды и выведение продуктов метаболизма;

  • 2. «рабочие» элементы - это те элементы в нем, которые обеспечивают выполнение специфической работы (функции) биосистем органного уровня организации. Так, в мышцах - это будут мышечные клетки, в эндокринных органах - секретирующие клетки, в нервной системе - нейроны, а в костной ткани - специфические структуры соединительно-тканной природы (костные пластинки, костные балки) и т.д.;
  • 3. элементы «обеспечения». На уровне органа к ним в первую очередь следует относить его интерстициальный сектор, образованный соединительной тканью, через который к специфическим рабочим элементам органа (клеткам) поступают пластические, энергетические вещества, вода, а с ней и гуморальные факторы регуляции жизнедеятельности этих живых систем.

Кроме того, не следует забывать, как отмечалось выше, и о состоянии внутриорганного сосудистого русла, которое также можно отнести к элементам обеспечения биосистемы этого уровня.

Наряду с этим, волокнистые структуры соединительной ткани образуют внутренний опорный каркас органа (строму), который вместе с его наружной оболочкой предопределяет не только форму, но и особенности его внешнего строения;

4. элементы «регуляции». К этим элементам системы органного иерархического уровня следует относить внутриорганную нервную систему, обеспечивающую как соматическую, так и вегетативную регуляцию процесса их жизнедеятельности

Необходимо также учитывать и регуляторные воздействия на функционирование этой системы и гуморальных факторов, которые поступают в орган через кровь.

В тоже время, если рассматривать следующий иерархический уровень организации биосистем, то характерным для всех живых систем признаком - выделенностью - будет обладать клетка, которая может рассматриваться с позиций системного анализа как самостоятельная биологическая система. Выделение тканей как самостоятельных биологических систем достаточно необоснованно и проблематично, так как они не обладают этим признаком.

Следовательно, любая клетка, как самостоятельная биологическая система также состоит из четырех групп основных обязательных компонентов (субклеточные структуры) и они уже могут рассматриваться как самостоятельные системы более низкого уровня организации:

  • 1. пространственные контактно-разграничительные структуры. Каждая клетка от внешней среды, которой для нее является интерстиции органов, отделена своей наружной оболочкой;
  • 2. «рабочие» элементы в клетках представлены различными структурами с учетом специфики рассматриваемого органа. Если анализировать мышечную клетку, то этими элементами будут являться миофибриллы, если рассматривать секретирующие клетки, то к ним следуют относить ее секреторный аппарат и т.д.;
  • 3. элементы «обеспечения». К ним следует отнести клеточные структуры, которые обеспечивают ее жизнедеятельность, утилизируя кислород, пластические, энергетические вещества и выводя во внешнюю для нее среду (интерстиции органов) продукты жизнедеятельности (митохондрии, выделительные вакуоли и др.);
  • 4. элементы «регуляции». Основным фактором, определяющим регуляцию жизнедеятельности клетки является тот генетический код, который заложен в ее ядре. Кроме того, она обеспечивается и той информацией, которая поступает к ней из внешней для нее среды - интерстиция органов и от нейронов.

Следующий момент, на котором следует остановиться - это факторы регуляции жизнедеятельности биологических систем различного уровня организации, которые могут быть не только факторами формирования, но и причинами изменчивости их структур.

В первую очередь их следует разделить на две основных группы: внесистемные (воздействие факторов внешней среды) и внутрисистемные.

Ко второй группе этих факторов следует относить:

  • 1. генетический фактор, который в основном работает на клеточном уровне;
  • 2. фактор взаимодействия элементов в системе (межклеточные, межорганные взаимоотношения и т.д.);
  • 3. фактор функции;
  • 4. нейро-гуморальная регуляция.

В различные периоды роста, развития, созревания, зрелости и инволюции биосистем (по Сорокину А.П., 1977, - их юность, зрелость и старость) в условиях нормы, при формировании пред- и патологических изменений каждый из этих факторов может занимать лидирующее положение и определять направленность и выраженность морфофункциональных перестроек системы любого уровня организации.

Так, в пренатальный и ранний постнатальный периоды развития организма ребенка в морфогенезе его структур доминирует генетический фактор, который предопределяет характер онтогенетического развития биосистем различного уровня организации, общие принципы их строения, взаимоотношение, взаиморасположение элементов в системах и возможность их функционирования. На более высоких уровнях организации биосистем (орган, система органов, организм) и в более поздние этапы онтогенеза влияние генетического фактора дополняется и корректируется через действие других факторов: фактора межклеточных, межорганных взаимоотношений, фактора функции, нейро-гуморальной регуляции и т.д.

Фактор взаимодействия элементов в системе (межклеточные, межорганные взаимоотношения и т.д.) в наибольшей степени просматривается при анализе внешнего строения различных органов с учетом их межорганных взаимоотношений. Так, на внешней поверхности различных внутренних органов и костей четко просматривается след от их взаимодействия с прилежащими структурами (органы, сосуды, нервы и др.): ямки, углубления, борозды, вдавления, впадины, ворота органов, вырезки, суставные поверхности, отверстия, отростки, вертелы, мыщелки, бугры, линии, гребни.

Фактор функции начинает действовать с того момента, когда возникает взаимодействие структур биосистемы с внешней для нее средой, а его влияние сохраняется на всем протяжении постнатального онтогенеза с той или иной степенью значимости, которая определяется, в первую очередь, спецификой и интенсивностью выполняемой ею работы.

Так, при усилении функционирования биосистемы отмечается в основном гипертрофия ее специфических «рабочих» элементов, вследствие чего, могут увеличиваться и внешние ее габаритные размеры.

При снижении ее функциональной активности отмечается обратный процесс - гипотрофия, сопровождающаяся уже уменьшением ее внешних параметров и снижением количественных объемных характеристик, тех ее элементов, которые реализуют ее работу на получение конечного полезного результата. Если функция биосистемы максимально снижена или практически отсутствует, то эти изменения могут дойти до уровня атрофических, стать причиной развития в ней патологических процессов, возникновения ряда заболеваний и завершиться в конечном итоге гибелью самой системы.

Нейро-гуморальная регуляция, являясь неспецифическим фактором морфогенеза, не определяет конструктивные особенности организации и структуры биосистем. Однако, она изменяет в них характер и интенсивность пластических и энергетических процессов, через перестройку которых и может оказывать влияние на реорганизацию их структур. По сравнению с другими факторами морфогенеза, она достигает наибольшего влияния в более старших возрастных группах. В тоже время, гуморальная регуляция, являясь ее более древней разновидностью, очень тесно сопряжена с особенностями количественных и качественных характеристик химических веществ, поступающих в организм человека и животных из внешней среды, что может существенно инициировать значимые изменения как функции, так и структуры биологических систем различного иерархического уровня.

Нервная регуляция представляет собой деятельность собственно-функциональных систем (Анохин П.К., 1968, 1975 и Судаков К.В., 1987), состоящих из высокоспециализированных нейронов, обеспечивающих восприятие, переработку информации на различном уровне, принятие решений и регуляцию ответных реакций системы на воздействие факторов внешней среды, обеспечивая достижение ею конечного полезного результата.