Скорость света и методы ее измерения. Астрономический метод измерения скорости света Впервые осуществлен датчанином Олафом Ремером в 1676 г. Когда Земля очень близко подошла к Юпитеру (на расстояние L 1), промежуток времени между двумя появлениями спутника Ио оказался 42 ч 28 мин; когда же Земля удалилась от Юпитера на расстояние L 2, спутник стал выходить из тени Юпитера на 22 мин. позднее. Объяснение Ремера: это запаздывание происходит за счет того, что свет проходит дополнительное расстояние Δ l= l 2 – l 1.



Лабораторный метод измерения скорости света Метод Физо (1849). Свет падает на полупрозрачную пластину и отражается, проходя через вращающееся зубчатое колесо. Пучок, отраженный от зеркала, может попасть к наблюдателю, только пройдя между зубьями. Если знать скорость вращения зубчатого колеса, расстояние между зубьями и расстояние между колесом и зеркалом, то можно рассчитать скорость света. Метод Фуко – вместо зубчатого колеса вращающаяся зеркальная восьмигранная призма.


С= км/с.




Можно измерить частоту колебаний волны и независимо – длину волны (особенно удобно в радиодиапазоне), а затем рассчитать скорость света по формуле. с=λں По современным данным, в вакууме с=(,2 ± 0,8) м/с.

Экспериментальные методы определения скорости света

Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины с постоянно увеличивается. В данной таблице дан неполный перечень экспериментальных работ по определению скорости света.

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

Эксперимента

погрешность,

Вебер-Кольрауш

Максвелл

Майкельсон

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Затмение спутника юпитера

Аберрация света

Движущиеся тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

Первое удачное измерение скорости света относится к 1676 г. Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера. Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Рис. 1. Метод Ремера. С - Солнце, Ю - Юпитер, З - Земля

За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин. Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.). Скорость света, измеренная Рёмером, была равна: c= 214300 км/с.

По истечение еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее - когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+r)/с, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера.

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4r/с, поэтому с=4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение:

Этот результат был первым измерением скорости света. Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Рис. 2

Определение скорости света по наблюдению аберрации в 1725-1728 гг. Брадлей предпринял наблюдение с целью выяснить, существует ли годичный параллакс звезд, т.е. кажущееся смещение звезд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды.

Брадлей действительно обнаружил подобное смещение. Он объяснил наблюдаемое явление, названное им аберрацией света, конечной величиной скорости распространения света и использовал его для определения этой скорости.

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c. У него получилось значение скорости света равной 308000 км/с. Важно заметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается неизменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

Рис 3 . Схема опыта по определению скорости света методом зубчатого колеса

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

Впервые скорость света была определена датским астрономом Ремером в 1676 г. До этого времени среди ученых существовало два противоположных мнения. Одни полагали, что скорость света бесконечно велика. Другие же хотя и считали ее очень большой, тем не менее конечной. Ремер подтвердил второе мнение. Он правильно связал нерегулярности во времени затмений спутников Юпитера со временем, которое необходимо свету для прохождения по диаметру орбиты Земли вокруг Солнца. Он впервые сделал вывод о конечной скорости распространения света и определил ее величину. По его подсчетам, скорость света получилась равной 300870 км/с в современных единицах. (Данные взяты из книги: Г. Липсон. Великие эксперименты в физике.)

Фуко метод

Метод измерения скорости света, заключающийся в последовательном отражении пучка света от быстро вращающегося зеркала, затем от второго неподвижного зеркала, расположенного на точно измеренном расстоянии, и затем вновь от первого зеркала, успевшего повернуться на некоторый малый угол. Скорость света определяют (при известных скорости вращения первого зеркала и расстоянии между двумя зеркалами) по изменению направления трижды отражённого светового луча. Используя этот метод, скорость света в воздухе впервые измерил Ж. Б. Л. Фуко в 1862.

В 1878–82 и 1924–26 провёл измерения скорости света, долгое время остававшиеся непревзойдёнными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885–87) подтвердил с большой точностью независимость скорости света от скорости движения Земли.

На том же принципе основано и действие Угловых отражателей оптического диапазона, который представляет собой небольшую трёхгранную призму из прозрачного стекла, грани которой покрыты тонким слоем металла. Такой У. о. обладает высоким Sэф из-за большого отношения а/l. Для получения всенаправленного У. о. используют систему нескольких призм. Оптические У. о. получили распространение после появления лазеров. Они используются в навигации, для измерения расстояний и скорости света в атмосфере, в экспериментах с Луной и др. Оптические У. о. в виде цветного стекла со многими углублениями тетраэдрической формы применяются как средство сигнализации в автодорожном хозяйстве и в быту.

Знаменитый американский ученый Альберт Майкельсон почти всю жизнь посвятил измерению скорости света.

Однажды ученый осматривал предполагаемый путь светового луча вдоль полотна железной дороги. Он хотел построить еще более совершенную установку для еще более точного метода измерения скорости света. До этого он уже работал над этой проблемой несколько лет и добился самых точных для того времени значений. Поведением ученого заинтересовались газетные репортеры и, недоумевая, спросили, что он тут делает. Майкельсон объяснил, что он измеряет скорость света.

– А зачем? – последовал вопрос.

– Потому что это дьявольски интересно, – ответил Майкельсон.

И никто не мог предполагать, что эксперименты Майкельсона станут фундаментом, на котором будет построено величественное здание теории относительности, дающей совершенно новое представление о физической картине мира.

Пятьдесят лет спустя Майкельсон все еще продолжал свои измерения скорости света.

Kaк-то раз великий Эйнштейн задал ему такой же вопрос:

– Потому что это дьявольски интересно! – спустя полвека ответил Майкельсон и Эйнштейну.

Метод Физо

В 1849 г. А. Физо поставил лабораторный опыт по измерению скорости света. Свет от источника 5 проходил через прерыватель К (зубья вращающегося колеса) и, отразившись от зеркала 3, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Это наступит при условии, что время прохождения света туда и обратно t=2L/c окажется равным времени поворота зубчатого колеса на половину прорези t2=T/(2N)=1/(2Nv). Здесь L – расстояние от зубчатого колеса до зеркала; Т – период вращения зубчатого-колеса; N – число зубцов; v=1/T – частота вращения. Из равенства t1=t2 следует расчетная формула для определения скорости света данным методом:

c=4LNv

Используя метод вращающегося затвора, Физо в 1849 г. получил значение скорости света с=3,13-10**5 км/с, что было совсем неплохо по тем временам. В дальнейшем использование различных затворов позволило существенно уточнить значение ско- рости света. Так, в 1950 г. получено значение скорости света (в вакууме), равное:

с= (299 793,1 ±0,25) км/с.

Остроумное решение сложной задачи определения скорости света было найдено в 1676 г. датским астрономом Олафом Ремером.

Олаф Ремер, наблюдая движение спутников Юпитера, заметил, что во время затмения спутник выходит из области тени периодически запаздывая. Ремер объяснил это тем, что к моменту очередного наблюдения Земля находится в иной точке своей орбиты, чем в предыдущий раз, и, следовательно, расстояние между ней и Юпитером иное. Максимальная величина, на которую возрастает это расстояние, равняется диаметру земной орбиты. И именно тогда, когда Земля больше всего удалена от Юпитера, спутник выходит из тени с наибольшим запаздыванием.

Сопоставив эти данные, Ремер пришел к выводу, что свет от спутника проходит расстояние, равное диаметру земной орбиты – 299 106 тыс. км в 1320 сек. Такой вывод не только убеждает в том, что скорость распространения света не может быть мгновенной, но и позволяет определить величину скорости; для этого надо разделить величину диаметра орбиты Земли на время запаздывания спутника.

По вычислениям Ремера, скорость распространения света оказалась равной 215 тыс. км / сек.

Последующие, более совершенные методы наблюдения за временем запаздывания спутников Юпитера позволили уточнить эту величину. Скорость распространения света, по современным данным, равна 299 998,9 км/сек. Для практических расчетов принимают скорость света в вакууме равной 300 тыс. км/сек. Огромная величина скорости света ошеломила не только современников Ремера, но и послужила поводом для отрицания корпускулярной теории света.

Если свет представляет собой поток корпускул, то при такой скорости движения энергии их должна быть очень велика. Удары корпускул при падении на тела должны быть ощутимы, т. е. Свет должен оказывать давление!

Следующим после Ремера скорость света измерял Джеймс Брадлей.

Переезжая однажды через р.Темзу, Брадлей обратил внимание на то, что во время движения лодки ветер дул как будто по другому направлению, чем это было на самом деле. Это наблюдение, вероятно, и дало ему основание объяснить аналогичным явлением кажущееся движение неподвижных звезд, называемое аберрацией света.

Свет звезды достигает Земли подобно тому, как капли отвесно падающего дождя падают на окна движущегося вагона. Движение луча света и движение Земли складываются.

Следовательно, чтобы свет от звезды, расположенной перпендикулярно к плоскости движения Земли, попадал в телескоп, его необходимо наклонить на некоторый угол, который зависит не от расстояния до звезды, а только, от скорости света и скорости движения Земли (она была уже в то время известна – 30 км / сек).

Измерив угол, Брадлей нашел, что скорость света равна 308 тыс. км/сек. Измерения Брадлея, как и Ремера, не разрешали спорного вопроса о значении постоянной в законе преломления, так как Брадлей и Ремер определяли скорость сета не в какой-либо среде, а в космическом пространстве.

Идею нового метода измерения скорости света предложил Д. Араго. Осуществили ее двумя различными способами И. Физо и Л. Фуко.

Физо в 1849 г. тщательно измерил расстояние между двумя пунктами. В доном из них он поместил источник света, а в другом – зеркало, от которого свет должен отразиться и вновь вернуться к источнику.

Для того чтобы определить скорость распространения света, надо было очень точно измерить промежуток времени, который необходим свету для прохождения удвоенного пути от источника до зеркала.

Расстояние от источника, находящегося в предместье Парижа Сюрене, до зеркала, установленного на Монмартре, составляло 8633 м. Значит, удвоенное расстояние было 17 266 м. Время, в течении которого свет пройдет это расстояние, если воспользоваться результатами измерения скорости Ремера, будет не более шести стотысячных долей секунды.

Средств для измерения столь малых промежутков времени тогда не было.

Значит, эти измерения следовало исключить из опыта.

В Сюрене была установлена зрительная труба, направленная на Париж. Сбоку через другую трубку поступал свет от источника. От поверхности прозрачной стеклянной пластинки, расположенной в трубке под углом в 45 , свет частично отражался по направлению к Парижу.

В Париже на Монмартре была установлена другая зрительная труба, в которую попадал свет, отраженный прозрачной пластинкой.

Глядя в окуляр, можно было видеть источник света, расположенный за боковой трубкой. Окуляр трубы, установленной на Монмартре, был заменен зеркалом, благодаря чему свет возвращался в Сюрен.

Отраженный зеркалом на Монмартре свет, встречая на обратном пути внутри трубы прозрачную стеклянную пластинку, частично отражался от ее поверхности, а сект, прошедший через пластинку и окуляр трубы, попадал в глаз наблюдателя.

Зрительная труба в Сюрене, кроме боковой трубки, через которую поступал свет, имела прорезь в том месте, где располагался фокус объектива и окуляра. Сквозь прорезь проходило зубчатое колесо, которое приводилось в движение часовым механизмом. Когда колесо было неподвижно и установлено так, что свет проходил между зубцами, то в окуляре трубы был виден свет, отраженный от зеркала на Монмартре.

Когда колесо было приведено в движение, свет исчез. Произошло это в тот момент, когда свет, прошедши между зубцами колеса по направлению к Парижу, встретил на обратном пути зубец, а не промежуток между зубцами.

Для того чтобы свет в окуляре появился вновь, необходимо было удвоить число оборотов колеса.

При дальнейшем увеличении числа оборотов свет вновь исчез.

В опытах Физо зубчатое колесо имело 720 зубцов. Первое исчезновение сета наблюдалось, когда колесо совершало 12,67 оборота в секунду.

Один оборот оно делало за время, равное 1/12,67 сек. При этом промежуток между зубцами сменялся зубцом. Если зубцов 720, то промежутков тоже 720. Следовательно, смена происходит за время, равное 1/12,67*2*720 = 1/18245 сек.

За это время свет проходил удвоенное расстояние от Сюрена до Монмартра.

Следовательно, его скорость была равной 315 тыс. км/сек.

Таким остроумным методом удалось избежать измерений малых промежутков времени и все же определить скорость света.

Сравнительно большое расстояние между источником света и зеркалом не позволяло на пути света поместить какую-либо среду. Физо определял скорость света в воздухе.

Скорость света в других средах была определена Фуко в 1862 г. В опытах Фуко расстояние от источника до зеркала было всего в несколько метров. Это позволило поместить на пути света трубку, заполненную водой.

Фуко установил, что скорость распространения света в различных средах меньше, чем в воздухе. В воде, например, она составляет величину, равную скорости света в воздухе. Полученные результаты разрешили двухвековой спор между корпускулярной и волновой теориями о величине постоянной в законе преломления. Правильное значение в законе преломления дает волновая теория света.

Измерения скорости распространения света в различных средах позволили ввести понятие оптической плотности вещества.

Список использованной литературы

  1. Имитационное моделирование. – [Электронный ресурс] – Режим доступа: webcache.googleusercontent.com – Дата доступа: апрель 2014 года. – Загл. с экрана.

Одним из важных свойств, является скорость распространения света в пустоте и других оптических средах. Огромная величина скорости света по сравнению со скоростью распространения различных движущихся объектов, наблюдаемых человеком в практической жизни, ставило много затруднений и при объяснений многих оптических явлений и при практическом определении скорости света. Чтобы показать, как трудно воспринималась человеком возможность перемещения материи, в данном случае света, с огромными скоростями, можно привести пример определения скорости света, предпринятый итальянским ученым Галилео Галилеем, который вместе со своим сотрудником расположились на двух соседних вершинах гор и сигнализировали друг другу светом фонарей. Один участник этого эксперимента открывал крышку фонаря и одновременно включал часы. Второй участник, получив световой сигнал, также открывал фонарь и посылал свет в направлении первого экспериментатора, который, получив ответный сигнал, останавливал часы. Зная расстояние между вершинами гор и время прохождения светом этого расстояния туда и обратно, можно получить скорость света. Нам, конечно ясно, почему эта попытка определения скорости света не дало желаемых результатов.

Вскоре было понятно, что для того, чтобы измерить скорость распространения света с требуемой точностью, необходимо иметь большие расстояния, которые бы проходил свет, во-первых, и необходимо было отсчитывать время с очень высокой точностью, во вторых.

Для получения точных отсчетов времени используют модулирование света, при этом используют три основных метода модуляции:

  • Метод зубчатого колеса,
  • Метод вращающегося зеркала,
  • Метод электрического затвора.

Во всех этих методах время распространения определяется из измерения частоты модуляции.

Рассмотрим вкратце три эти варианта модуляции света на примерах.

Метод Физо. На рис.1.3.1 представлена принципиальная схема установки, используемая в методе Физо, где модуляция светового потока производится вращающимся зубчатым колесом. Свет от источника света 1 конденсорной системой направляется на полупрозрачное зеркало 2 , отразившись от которого проходит между зубьями вращающегося зубчатого колеса 5 . Далее, коллиматорная система 3 направляет пучок лучей на вогнутое зеркало 4 , отразившись от которого, свет проходит обратно по тому же пути до полупрозрачного зеркала 2 . Наблюдение производится глазом человека через окуляр 6 .

Если зубчатое колесо неподвижно, то свет пройдет через промежуток между зубцами, вернется обратно через тот же промежуток. Приведя во вращение зубчатое колесо, и увеличивая скорость вращения, можно добиться, что за время, пока свет идет от колеса 5 до зеркала 4 и обратно колесо повернется на ширину зуба и место промежутка займет зуб. В этом случае свет не будет попадать в окуляр 6 . Еще увеличив скорость вращения колеса можно получить прохождение света обратно через соседний промежуток и т.д.



Физо имел колесо с 720 зубцами и длину двойного пути светового пучка порядка 17 км . Из его опытов скорость света оказалась равной 3.15 . 10 10 см /с . Основная ошибка здесь связана с трудностью фиксирования момента затемнения. Дальнейшие усовершенствование этого метода привели к более точным результатам измерения скорости света.

Метод вращающегося зеркала. Этот метод, предложенный Уитстоном, был использован Фуко в 1960 году. Схема установки показана на рис. 1.3.2. От источника излучения 1 свет, пройдя через полупрозрачное зеркало 2 и объектив 3 направляется вращающимся зеркалом 4 на сферическое зеркало 5 . Отразившись от зеркала 5 , световой поток шел обратно и фокусировался наблюдательной системой в т. A (при неподвижном зеркале 4 ). При вращающемся зеркале за время прохождения светом дважды пути L , зеркало успевало повернуться на некоторый угол и, отраженный от него в обратном ходе световой поток фокусировался в точке B . Измеряя расстояние между A и B , мы получаем угол, на который поворачивается зеркало 4 и, следовательно, зная скорость вращения зеркала, время прохождения светом расстояния . При , найденное значение скорости распространения света оказалось равным 2.98 . 10 10 см /с . Расстояние между A и B было равным только 0.7 мм , и основной источник ошибок лежал в неточности измерения этого расстояния.

Метод электрического затвора Керра. В этом методе в качестве модулирующего устройства выступает ячейка Керра (ячейка Керра, заполненная полярной жидкостью и помещенная между скрещенными николями, пропускает свет только при наложении электрического поля). Схема установки представлена на рис. 1.3.3. Свет от ртутной лампы 1 проходит через затвор Керра на полупрозрачное зеркало 2 , отражается от него вправо и попадает на зеркало 3 . После отражения от зеркала 3 свет в обратном ходе лучей попадает на приемник энергии 8 .

Часть световой энергии проходит сквозь полупрозрачное зеркало и преодолев путь, определяемыми зеркалами 4 , 5 , 6 , 7 и обратно, также попадает на приемник 8 .

Точность этого метода определяется высокой частотой модуляции светового потока, создаваемой ячейкой Керра, находящейся под воздействием высокочастотного электрического поля, и возможностью точного измерения сдвига фаз двух световых потоков, поступающих от зеркала 3 и от зеркала 7 .

Значение, полученное для скорости света, равно . Современное общепринятое значение скорости света в вакууме .

Для оптических сред с показателем преломления скорость света определяется выражением: .