Матрицы. Виды матриц. Операции над матрицами и их свойства.

Определитель матрицы n-го порядка. N, Z,Q, R,C,

Матрицей порядка m*n называется прямоугольная таблица из чисел, содержащая m-строк и n - столбцов.

Равенство матриц:

Две матрицы называются равными, если число строк и столбцов одной из них равно соответственно числу строк и столбцов другой и соответст. эл-ты этих матриц равны.

Замечание: Эл-ты имеющие одинаковые индексы являются соответствующими.

Виды матриц:

Квадратная матрица: матрица называется квадратной, если число её строк равно числу столбцов.

Прямоугольная: матрица называется прямоугольной, если число строк не равно числу столбцов.

Матрица строка: матрица порядка 1*n (m=1) имеет вид a11,a12,a13 и называется матрицей строки.

Матрица столбец:………….

Диагональная: диагональ квадратной матрицы, идущая от верхнего левого угла к правому нижнему углу, то есть состоящая из элементов а11,а22……-называется главной диагональю. (опред: квадратная матрица все элементы которой равны нулю, кроме тех, что расположены на главной диагонали, называется диагональной матрицей.

Единичная: диагональная матрица называется единичной, если все элементы расположены на главной диагонали и равны 1.

Верхняя треугольная: А=||aij|| называется верхней треугольной матрицей, если aij=0. При условии i>j.

Нижняя треугольная: aij=0. i

Нулевая: это матрица Эл-ты которой равны 0.

Операции над матрицами.

1.Транспонирование.

2.Умножение матрицы на число.

3.Сложение матриц.


4.Умножение матриц.

Основные св-ва действия над матрицами.

1.A+B=B+A (коммутативность)

2.A+(B+C)=(A+B)+C (ассоциативность)

3.a(A+B)=aA+aB (дистрибутивность)

4.(a+b)A=aA+bA (дистриб.)

5.(ab)A=a(bA)=b(aA) (асооц.)

6.AB≠BA (отсутствует комму.)

7.A(BC)=(AB)C (ассоц.) –выполняется, если опред. Произведений матриц выполняется.

8.A(B+C)=AB+AC (дистриб.)

(B+C)A=BA+CA (дистриб.)

9.a(AB)=(aA)B=(aB)A

Определитель квадратной матрицы – определение и его свойства. Разложение определителя по строкам и столбцам. Способы вычисления определителей.

Если матрица А имеет порядок m>1, то определитель этой матрицы – число.

Алгебраическим дополнением Aij эл-та aij матрицы А называется минор Mij, умноженный на число

ТЕОРЕМА1: Определитель матрицы А равен сумме произведений всех элементов произвольной строки (столбца) на их алгебраические дополнения.

Основные свойства определителей.

1. Определитель матрицы не изменится при её транспонировании.

2. При перестановки двух строк (столбцов) определитель меняет знак, а абсолютная величина его не меняется.

3. Определитель матрицы, имеющий две одинаковые строки (столбцы) равен 0.

4.При умножении строки (столбца) матрицы на число её определитель умножается на это число.

5. Если одна из строк (столбцов) матрицы состоит из 0, то определитель этой матрицы равен 0.

6. Если все элементы i-ой строки (столбца) матрицы представлены в виде суммы двух слагаемых, то её определитель можно представить в виде суммы определителей двух матриц.

7. Определитель не изменится, если к элементам одного столбца (строки) прибавить соответственно эл-ты другого столбца (строки) предварительно умнож. на одно и того же число.

8.Сумма произвольных элементов какого либо столбца (строки) определителя на соответствующее алгебраическое дополнение элементов другого столбца (строки) равна 0.

https://pandia.ru/text/78/365/images/image004_81.gif" width="46" height="27">

Способы вычисления определителя:

1. По определению или теореме 1.

2. Приведение к треугольному виду.

Определение и свойства обратной матрицы. Вычисление обратной матрицы. Матричные уравнения.

Определение: Квадратная матрица порядка n, называется обратной к матрице А того же порядка и обозначается

Для того чтобы для матрицы А существовала обратная матрица необходимо и достаточно, чтобы определитель матрицы А был отличен от 0.

Свойства обратной матрицы:

1. Единственность: для данной матрицы А её обратная – единственная.

2. определитель матрицы

3. Операция взятия транспонирования и взятие матрицы обратной.

Матричные уравнения:

Пусть А и В две квадратные матрицы того же порядка.

https://pandia.ru/text/78/365/images/image008_56.gif" width="163" height="11 src=">

Понятие линейной зависимости и независимости столбцов матрицы. Свойства линейной зависимости и линейной независимости системы столбцов.

Столбцы А1,А2…Аn называются линейно зависимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Столбцы А1,А2…Аn называются линейно независимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Линейная комбинация называется тривиальной, если все коэффициенты С(l) равны 0 и не тривиальной в противном случае.


https://pandia.ru/text/78/365/images/image010_52.gif" width="88" height="24">

2.для того чтобы столбцы были линейно зависимы необходимо и достаточно, чтобы какой-нибудь столбец являлся линейной комбинацией других столбцов.

Пусть 1 из столбцов https://pandia.ru/text/78/365/images/image014_42.gif" width="13" height="23 src=">является линейной комбинацией других столбцов.

https://pandia.ru/text/78/365/images/image016_38.gif" width="79" height="24"> линейно зависимы, то и все столбцы линейно зависимы.

4. Если система столбцов линейно независима, то любая её подсистема так же линейно независима.

(Всё что сказано относительно столбцов, справедливо и для строк).

Миноры матрицы. Базисные миноры. Ранг матрицы. Метод окаймляющих миноров вычисления ранга матрицы.

Минором порядка к матрицы А называется определитель элементы которого расположены на пересечении к-строк и к-стролбцов матрицы А.

Если все миноры к-го порядка матрицы А =0, то любой минор порядка к+1 тоже равен 0.

Базисный минор.

Рангом матрицы А называется порядок её базисного минора.

Метод окаймляющих миноров: - Выбираем не нулевой элемент матрицы А (Если такого элемента не существует, то ранг А =0)

Окаймляем минор предыдущий 1-го порядка минором 2-го порядка. (Если этот минор не равен 0, то ранг >=2) Если ранг этого минора =0, то окаймляем выбранный минор 1-го порядка другими минорами 2-го порядка. (Если все миноры 2-го порядка =0, то ранг матрицы = 1).

Ранг матрицы. Способы нахождения ранга матрицы.

Рангом матрицы А называется порядок его базисного минора.

Способы вычисления:

1) Метод окаймляющих миноров: -Выбираем ненулевой элемент матрицы А (если такого элемента нет, то ранг =0) – Окаймляем минор предыдущий 1-го порядка минором 2-го порядка..gif" width="40" height="22">r+1 Mr+1=0.

2)Приведение матрицы к ступенчатому виду: этот метод основан на элементарных преобразованиях. При элементарных преобразованиях ранг матрицы не меняется.

Элементарными преобразованиями называются следующие преобразования:

Перестановка двух строк (столбцов).

Умножение всех элементов некоторого столбца (строки) на число не =0.

Прибавление ко всем элементам некоторого столбцы (строки) элементов другого столбца (строки), предварительно умноженных на одно и тоже число.

Теорема о базисном миноре. Необходимое и достаточное условие равенства нулю определителя.

Базисным минором матрицы А называется минор наибольшего к-го порядка отличного от 0.

Теорема о базисном миноре:

Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы А являются линейной комбинацией базисных строк (столбцов).

Замечания: Строки и столбцы на пересечении которых стоит базисный минор называются соответственно базисными строками и столбцами.

a11 a12… a1r a1j

a21 a22….a2r a2j

a31 a32….a3r a3j

ar1 ar2 ….arr arj

ak1 ak2…..akr akj

Необходимые и достаточные условия равенства нулю определителя:

Для того чтобы определитель n-го порядка =0, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Системы линейных уравнений, их классификация и формы записи. Правило Крамера.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

https://pandia.ru/text/78/365/images/image020_29.gif" alt="l14image048" width="64" height="38 id=">

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

https://pandia.ru/text/78/365/images/image022_23.gif" alt="l14image052" width="93" height="22 id=">

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

https://pandia.ru/text/78/365/images/image024_24.gif" alt="l14image056" width="247" height="31 id=">

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

https://pandia.ru/text/78/365/images/image026_23.gif" alt="l14image060" width="324" height="42 id=">

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Системы линейных уравнений. Условие совместимости линейных уравнений. Теорема Кронекера-Капелли.

Решением системы алгебраических уравнений называется такая совокупность n чисел C1,C2,C3……Cn, которая при подстановки в исходную систему на место x1,x2,x3…..xn обращает все уравнения системы в тождества.

Система линейных алгебраических уравнений называется совместной, если она имеет хотя бы одно решение.

Совместная система называется определённой, если она имеет единственное решение, и неопределённой, если она имеет бесчисленно много решений.

Условия совместности систем линейных алгебраических уравнений.

a11 a12 ……a1n x1 b1

a21 a22 ……a2n x2 b2

……………….. .. = ..

am1 am2…..amn xn bn

ТЕОРЕМА: Для того чтобы система m линейных уравнений с n неизвестными была совместной необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу матрицы А.

Замечание: Эта теорема даёт лишь критерии существования решения, но не указывает способа отыскивания решения.

10 вопрос.

Системы линейных уравнений. Метод базисного минора - общий метод отыскивания всех решений систем линейных уравнений.

A=a21 a22…..a2n

Метод базисного минора:

Пусть система совместна и RgA=RgA’=r. Пусть базисный минор расписан в верхнем левом углу матрицы А.

https://pandia.ru/text/78/365/images/image035_20.gif" width="22" height="23 src=">…...gif" width="23" height="23 src=">…...gif" width="22" height="23 src=">…...gif" width="46" height="23 src=">-…..-a

d2 b2-a(2r+1)x(r+1)-..-a(2n)x(n)

… = …………..

Dr br-a(rr+1)x(r+1)-..-a(rn)x(n)

https://pandia.ru/text/78/365/images/image050_12.gif" width="33" height="22 src=">

Замечания: Если ранг основной матрицы и рассматриваемой равен r=n, то в этом случае dj=bj и система имеет единственное решение.

Однородные системы линейных уравнений.

Система линейных алгебраических уравнений называется однородной, если все ее свободные члены равны нулю.

AX=0 – однородная система.

АХ =В – неоднородная система.

Однородные системы всегда совместны.

Х1 =х2 =..=хn =0

Теорема 1.

Однородные системы имеют неоднородные решения, когда ранг матрицы системы меньше числа неизвестных.

Теорема 2.

Однородная система n-линейных уравнений с n-неизвестными имеет не нулевое решение, когда определитель матрицы А равен нулю. (detA=0)

Свойства решений однородных систем.

Любая линейная комбинация решения однородной системы сама является решением этой системы.

α1C1 +α2C2 ; α1 и α2– некоторые числа.

А(α1C1 +α2C2) = А(α1C1) +А(α2C2) = α1(А C1) + α2(АC2) = 0,т. к. (А C1) = 0; (АC2) = 0

Для неоднородной системы это свойство не имеет места.

Фундаментальная система решений.

Теорема 3.

Если ранг матричной системы уравнения с n-неизвестными равен r, то эта система имеет n-r линейно-независимых решений.

Пусть базисный минор в левом верхнем углу. Если r< n, то неизвестные х r+1;хr+2;..хn называются свободными переменными, а систему уравнений АХ=В запишем, как Аr Хr =Вr

C1 = (C11 C21 .. Cr1 , 1,0..0)

C2 = (C21 C22 .. C2r,0, 1..0) <= Линейно-независимы.

……………………..

Cn-r = (Cn-r1 Cn-r2 .. Cn-rr ,0, 0..1)

Система n-r линейно-независимых решений однородной системы линейных уравнений с n-неизвестными ранга r называется фундаментальной системой решений.

Теорема 4.

Любое решение системы линейных уравнений есть линейная комбинация решения фундаментальной системы.

С = α1C1 +α2C2 +.. + αn-r Cn-r

Если r

12 вопрос.

Общее решение неоднородной системы.

Сон (общ. неоднор.) = Соо +Сч (частное)

АХ=В (неоднородная система) ; АХ= 0

(АСоо) +АСч = АСч = В, т. к. (АСоо) = 0

Сон= α1C1 +α2C2 +.. + αn-r Cn-r + Сч

Метод Гаусса.

Это метод последовательных исключений неизвестных (переменных) – заключается в том, что с помощью элементарных преобразований, исходная система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находят все остальные переменные.

Пусть а≠0 (если это не так, то перестановкой уравнений добиваются этого).

1)исключаем переменную х1 из второго, третьего…n-ого уравнения, умножая первое уравнение на подходящие числа и прибавляя полученные результаты ко 2-ому, 3-ему…n-ому уравнению, тогда получаем:

Получаем систему равносильную исходной.

2)исключаем переменную х2

3) исключаем переменную х3 и т. д.

Продолжая процесс последовательного исключения переменных х4;х5...хr-1 получим для (r-1)-ого шага.

Число ноль последних n-r в уравнениях означают, что их левая часть имеет вид: 0х1 +0х2+..+0хn

Если хотя бы одно из чисел вr+1, вr+2… не равны нулю, то соответственное равенство противоречиво и система (1) не совместна. Таким образом, для всякой совместной системы эта вr+1 … вm равна нулю.

Последнее n-r уравнение в системе (1;r-1) являются тождествами и их можно не принимать во внимание.

Возможны два случая:

а)число уравнений системы (1;r-1) равно числу неизвестных, т. е. r=n (в этом случае система имеет треугольный вид).

б)r

Переход от системы (1) к равносильной ей системе (1;r-1) называется прямым ходом метода Гаусса.

О нахождение переменной из системы (1;r-1) – обратным ходом метода Гаусса.

Преобразования Гаусса удобно проводить, осуществляя их не с уравнениями, а с расширенной матрицей их коэффициентов.

13 вопрос.

Подобные матрицы.

Будем рассматривать только квадратные матрицы порядка n/

Матрица А называется подобной матрице В (А~В), если существует такая неособенная матрица S, что А=S-1BS.

Свойства подобных матриц.

1)Матрица А подобна сама себе. (А~А)

Если S=Е, тогда ЕАЕ=Е-1АЕ=А

2)Если А~В, то В~А

Если А=S-1ВS => SAS-1= (SS-1)B(SS-1)=B

3)Если А~В и одновременно В~С, то А~С

Дано, что А=S1-1BS1, и В=S2-1CS2 => A= (S1-1 S2-1) C(S2 S1) = (S2 S1)-1C(S2 S1) = S3-1CS3, где S3 = S2S1

4)Определители подобных матриц равны.

Дано, что А~В, надо доказать, что detA=detB.

A=S-1 BS, detA=det(S-1 BS)= detS-1* detB* detS = 1/detS *detB*detS (сокращаем) = detB.

5)Ранги подобных матриц совпадают.

Собственные векторы и собственные значения матриц.

Число λ называется собственным значением матрицы А, если существует ненулевой вектор Х(матр. столбец) такой, что АХ= λ Х, вектор Х называется собственным вектором матрицы А, а совокупность всех собственных значений называется спектром матрицы А.

Свойства собственных векторов.

1)При умножении собственного вектора на число получим собственный вектор с тем же собственным значением.

АХ= λ Х; Х≠0

α Х => А(α Х) = α (АХ) = α(λ Х) = = λ (αХ)

2) Собственные векторы с попарно-различными собственными значениями линейно независимы λ1, λ2,.. λк.

Пусть система состоит из 1-ого вектора, сделаем индуктивный шаг:

С1 Х1 +С2 Х2 + .. +Сn Хn = 0 (1) – умножаем на А.

С1 АХ1 +С2 АХ2 + .. +Сn АХn = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn = 0

Умножаем на λn+1 и вычтем

С1 Х1 +С2 Х2 + .. +Сn Хn+ Сn+1 Хn+1 = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn+ Сn+1 λn+1 Хn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn + Cn+1 (λn+1 –λn+1)Xn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn = 0

Надо чтобы С1 =С2 =… = Сn = 0

Сn+1 Хn+1 λn+1 =0

Характеристическое уравнение.

А-λЕ называется характеристической матрицей для матрицы А.

Для того, чтобы ненулевой вектор Х был собственным вектором матрицы А, соответствующий собственному значению λ необходимо чтобы он являлся решением однородной системы линейно-алгебраических уравнений (А - λЕ)Х = 0

Нетривиальное решение система имеет тогда, когда det (А - XЕ) = 0 - это характеристическое уравнение.

Утверждение!

Характеристические уравнения подобных матриц совпадают.

det(S-1AS – λЕ) = det(S-1AS – λ S-1ЕS) =det(S-1 (A – λЕ)S) = det S-1 det(A – λЕ) detS= det(A – λЕ)

Характеристический многочлен.

det(A – λЕ)- функция относительно параметра λ

det(A – λЕ) = (-1)n Xn +(-1)n-1(a11+a22+..+ann)λn-1+..+detA

Этот многочлен и называется характеристическим многочленом матрицы А.

Следствие:

1)Если матрицы А~В, то сумма их диагональных элементов совпадает.

a11+a22+..+ann = в11+в22+..+вnn

2)Множество собственных значений подобных матриц совпадают.

Если характеристические уравнения матриц совпадают, то они необязательно подобны.

Для матрицы А

Для матрицы В

https://pandia.ru/text/78/365/images/image062_10.gif" width="92" height="38">

Det(Ag-λE) = (λ11 – λ)(λ22 – λ)…(λnn – λ)= 0

Для того чтобы матрица А порядка n была диагонализируема, необходимо, чтобы существовали линейно-независимые собственные вектора матрицы А.

Следствие.

Если все собственные значения матрица А различны, то она диагонализируема.

Алгоритм нахождения собственных векторов и собственных значений.

1)составляем характеристическое уравнение

2)находим корни уравнений

3)составляем систему уравнений для определения собственного вектора.

λi (A-λi E)X = 0

4)находим фундаментальную систему решений

x1,x2..xn-r, где r - ранг характеристической матрицы.

r =Rg(A - λi E)

5)собственный вектор, собственные значения λi записываются в виде:

X = С1 Х1 +С2 Х2 + .. +Сn-r Хn-r, где С12 +С22 +… С2n ≠0

6)проверяем, может ли матрица быть приведена к диагональному виду.

7)находим Ag

Ag = S-1AS S=

15 вопрос.

Базис прямой, плоскости, пространства.

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">│, ││). Модуль вектора равен нулю, тогда, когда этот вектор нулевой (│ō│=0)

4.Орт вектора.

Ортом данного вектора называется вектор, который направлен одинаково с данным вектором и имеет модуль, равный единице.

Равные вектора имеют равные орты.

5.Угол между двумя векторами.

Это меньшая часть площади, ограниченная двумя лучами, исходящими из одной точки и направленные одинаково с данными векторами.

Сложение векторов. Умножение вектора на число.

1)Сложение двух векторов

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">+ │≤│ │+│ │

2)Умножение вектора на скаляр.

Произведением вектора и скаляра называют новый вектор, который имеет:

а) = произведения модуля умножаемого вектора на абсолютную величину скаляра.

б) направление одинаковое с умножаемым вектором, если скаляр положителен, и противоположное, если скаляр отрицателен.

λ а(вектор)=>│ λ │= │ λ │=│ λ ││ │

Свойства линейных операций над векторами.

1.Закон коммунитативности.

2. Закон ассоциативности.

3. Сложение с нулем.

а(вектор)+ō= а(вектор)

4.Сложение с противоположным.

5. (αβ) = α(β) = β(α)

6;7.Закон дистрибутивности.

Выражение вектора через его модуль и орт.

Максимальное число линейно-независимых векторов называются базисом.

Базисом на прямой является любой ненулевой вектор.

Базисом на плоскости являются любые два некаллениарных вектора.

Базисом в пространстве является система любых трех некомпланарных векторов.

Коэффициент разложения вектора по некоторому базису называется компонентами или координатами вектора в данном базисе.

https://pandia.ru/text/78/365/images/image075_10.gif" height="11 src=">.gif" height="11 src="> выполнить действие сложения и умножения на скаляр, то в результате любого числа таких действий получим:

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-зависимыми, если существует их нетривиальная линейная комбинация, равная ō.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-НЕзависимыми, если не существует их нетривиальная линейная комбинация.

Свойства линейно-зависимых и Независимых векторов:

1)система векторов, содержащая нулевой вектор линейно-зависима.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> были линейно-зависимыми, необходимо, чтобы какой-нибудь вектор являлся линейной комбинацией других векторов.

3)если часть векторов из системы а1(вектор), а2(вектор)… ак(вектор) линейно-зависимы, то и все вектора линейно-зависимы.

4)если все вектора https://pandia.ru/text/78/365/images/image076_9.gif" height="11 src=">.gif" width="75" height="11">

https://pandia.ru/text/78/365/images/image082_10.gif" height="11 src=">.gif" height="11 src=">)

Линейные операции в координатах.

https://pandia.ru/text/78/365/images/image069_9.gif" height="12 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" width="65" height="13 src=">

Свойства скалярного произведения:

1. Комутативность

3. (a;b)=0, тогда и только тогда, когда векторы ортоганальны или какой нибудь из векторов равен 0.

4. Дистрибутивность (αa+βb;c)=α(a;c)+β(b;c)

5. Выражение скалярного произведения a и b через их координаты

https://pandia.ru/text/78/365/images/image093_8.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image095_8.gif" width="254" height="13 src=">

При выполнении условия () , h, l=1,2,3

https://pandia.ru/text/78/365/images/image098_7.gif" width="176" height="21 src=">

https://pandia.ru/text/78/365/images/image065_9.gif" height="11"> и называется третий вектор который удовлетворяет следующим уравнениям:

3. – правая

Свойства векторного произведения:

4. Векторное произведение координатных ортов

Ортонормированый базис.

https://pandia.ru/text/78/365/images/image109_7.gif" width="41" height="11 src=">

https://pandia.ru/text/78/365/images/image111_8.gif" width="41" height="11 src=">

Часто для обозначения ортов ортонормированного базиса используются 3 символа

https://pandia.ru/text/78/365/images/image063_10.gif" width="77" height="11 src=">

https://pandia.ru/text/78/365/images/image114_5.gif" width="549" height="32 src=">

Если - это ортонормированный базис, то

https://pandia.ru/text/78/365/images/image117_5.gif" width="116" height="15">- уравнение прямой параллельной оси ОХ

2) - уравнение прямой параллельной оси ОУ

2. Взамное расположение 2-х прямых.

Теорема 1 Пусть относительно аффинной системы координат даны уравнения прямых

А) Тогда необходимое и достаточное условие когда они пересекаются имеет вид:

Б) Тогда необходимое и достаточное условие того что прямые паралельны является условие:

B) Тогда необходимым и достаточным условием того что прямые сливаются в одну является условие:

3. Расстояние от точки до прямой.

Теорема. Расстояние от точки до прямой относительно декартовой системы координат:

https://pandia.ru/text/78/365/images/image127_7.gif" width="34" height="11 src=">

4. Угол между двумя прямыми. Условие перпендикулярности.

Пусть 2 прямые заданы относительно декартовой системы координат общими уравнениями.

https://pandia.ru/text/78/365/images/image133_4.gif" width="103" height="11 src=">

Если , то прямые перпендикулярны.

24 вопрос.

Плоскость в пространстве. Условие комплонарности вектора и плоскости. Расстояние от точки до плоскости. Условие параллельности и перпендикулярности двух плоскостей.

1. Условие комплонарности вектора и плоскости.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image140.jpg" alt="Безымянный4.jpg" width="111" height="39">

https://pandia.ru/text/78/365/images/image142_6.gif" width="86" height="11 src=">

https://pandia.ru/text/78/365/images/image144_6.gif" width="148" height="11 src=">

https://pandia.ru/text/78/365/images/image145.jpg" alt="Безымянный5.jpg" width="88" height="57">

https://pandia.ru/text/78/365/images/image147_6.gif" width="31" height="11 src=">

https://pandia.ru/text/78/365/images/image148_4.gif" width="328" height="24 src=">

3. Угол между 2-я плоскостями. Условие перпендикулярности.

https://pandia.ru/text/78/365/images/image150_6.gif" width="132" height="11 src=">

Если , то плоскости перпендикулярны.

25 вопрос.

Прямая линя в пространстве. Различные виды уравнения прямой линии в пространстве.

https://pandia.ru/text/78/365/images/image156_6.gif" width="111" height="19">

2. Векторное уравнение прямой в пространстве.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image162_5.gif" width="44" height="29 src=">

4. Каноническое уравнение прямое.

https://pandia.ru/text/78/365/images/image164_4.gif" width="34" height="18 src=">

https://pandia.ru/text/78/365/images/image166_0.jpg" alt="Безымянный3.jpg" width="56" height="51">

Матрицы и определители

1. 1 Матрицы. Понятия.

Прямоугольной матрицей размера m x n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать матрицу в виде

или сокращенно в виде A = (a ij) (i = ; j = ). Числа a ij , составляющие данную матрицу, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. Две матрицы A = (a ij) и B = (b ij) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a ij = b ij .

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. Матрица размера m x n , все элементы которой равны нулю, называются нулевой матрицей и обозначается через 0. Элементы матрицы с одинаковыми индексами называют элементами главной диагонали. Если число строк матрицы равно числу столбцов, то есть m = n , то матрицу называют квадратной порядка n . Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными матрицами и записываются так:

Если все элементы a ii диагональной матрицы равны 1, то матрица называется единичной и обозначается буквой Е:

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование матрицы, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Пусть дана матрица (4.1). Переставим строки со столбцами. Получим матрицу

которая будет транспонированной по отношению к матрице А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Основные операции над матрицами.

Основными арифметическими операциями над матрицами являются умножение матрицы на число, сложение и умножение матриц.



Перейдем к определению основных операций над матрицами.

Сложение матриц : Суммой двух матриц, например: A и B, имеющих одинаковое количество строк и столбцов, иными словами, одних и тех же порядков m и n называется матрица С = (Сij)(i = 1, 2, …m; j = 1, 2, …n) тех же порядков m и n, элементы Cij которой равны.

Cij = Aij + Bij (i = 1, 2, …, m; j = 1, 2, …, n) (1.2)

Для обозначения суммы двух матриц используется запись C = A + B. Операция составления суммы матриц называется их сложением

Итак по определению имеем:

Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:

1) переместительным свойством: A + B = B + A

2) сочетательным свойством: (A + B) + C = A + (B + C)

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n) на вещественное число называется матрица C = (Cij) (i = 1, 2, … , m; j = 1, 2, …, n), элементы которой равны

Cij = Aij (i = 1, 2, …, m; j = 1, 2, …, n). (1.3)

Для обозначения произведения матрицы на число используется запись C = A или C = A . Операция составления произведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) распределительным свойством относительно суммы матриц:

(A + B) = A + B

2) сочетательным свойством относительно числового множителя:

3) распределительным свойством относительно суммы чисел:

( + ) A = A + A.

Замечание: Разностью двух матриц A и B одинаковых порядков естественно назвать такую матрицу C тех же порядков, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.

Перемножение матриц :

Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n), имеющей порядки соответственно равные m и n, на матрицу B = (Bij) (i = 1, 2, …, n;

j = 1, 2, …, p), имеющую порядки соответственно равные n и p, называется матрица C = (Сij) (i = 1, 2, … , m; j = 1, 2, … , p), имеющая порядки, соответственно равные m и p, и элементы Cij, определяемые формулой

Cij = (i = 1, 2, …, m; j = 1, 2, …, p) (1.4)

Для обозначения произведения матрицы A на матрицу B используют запись

C = AB. Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц. Из сформулированного выше определения вытекает, что матрицу A можно умножить не на всякую матрицу B: необходимо чтобы число столбцов матрицы A было равно числу строк матрицы B. Для того чтобы оба произведения AB и BA не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка.

Формула (1.4) представляет собой правило составления элементов матрицы C,

являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: Элемент Cij, стоящий на пересечении i-й строки и j-го столбца матрицы C = AB, равен сумме попарных произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B. В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка

Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B:

1) сочетательное свойство: (AB) C = A (BC);

2) распределительное относительно суммы матриц свойство:

(A + B) C = AC + BC или A (B + C) = AB + AC.

Вопрос о перестановочном свойстве произведения матриц имеет смысл ставить лишь для квадратных матриц одинакового порядка. Элементарные примеры показывают, что произведений двух квадратных матриц одинакового порядка не обладает, вообще говоря, перестановочным свойством. В самом деле, если положить

A = , B = , то AB = , а BA =

Те же матрицы, для произведения которых справедливо перестанавочное свойство, принято называть коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Среди всех диагональных матриц с совпадающими элементами на главной диагонали особо важную роль играют две матрицы. Первая из этих матриц получается, когда все элементы главной диагонали равны единице, называется единичной матрицей n-ого порядка и обозначается символом E . Вторая матрица получается при всех элементах равных нулю и называется нулевой матрицей n-ого порядка и обозначается символом O. Допустим, что существует произвольная матрица A, тогда

AE = EA = A, AO = OA = O.

Первая из формул характеризует особую роль единичной матрицы Е, аналогичную то роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул, но и элементарно проверяемое равенство: A + O = O + A = A. Понятие нулевой матрицы можно вводить и не для квадратных матриц.

Ранг матрицы

Рассмотрим прямоугольную матрицу (4.1). Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n . Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

0 ≤ r(A) ≤ min (m,n).

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так:

Канонической матрицей называется матрица, у которой в начале

главной диагонали стоят подряд несколько единиц (число которых

может равняться нулю), а все остальные элементы равны нулю,

например, .

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Обратная матрица

Рассмотрим квадратную матрицу

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через А -1 . Обратная матрица вычисляется по формуле

А -1 = 1/Δ , (4.5)

где А ij - алгебраические дополнения элементов a ij .

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

2. Определители

Для каждой квадратной матрицы определено число, называемое определителем матрицы, детерминантом матрицы или просто определителем (детерминантом).

Определение. Определителем квадратной матрицы первого порядка называется число, равное единственному элементу этой матрицы: A={a}, detA=|A|=a.

Пусть A - произвольная квадратная матрица порядка n, n>1:

Определение Определителем n-го порядка (определителем квадратной матрицы n-го порядка n), n>1, называется число, равное

где - определитель квадратной матрицы полученной из матрицы A вычеркиванием превой строки и j-го столбца.

Для определителей 2-го и 3-го порядка легко получить простые выражения через элементы матрицы.

Определитель 2-го порядка:

Определитель 3-го порядка:

2.1. Минор и алгебраическое дополнение элемента

Определение. Минором элемента матрицы называется определитель матрицы, полученной вычеркиванием строки и столбца, в которых расположен элемент. Обозначаем: минор элемента a ij - .

Определение. Алгебраическим дополнением элемента матрицы называется его минор, умноженный на -1 в степени, равной сумме номеров строки и столбца, в которых расположен элемент. Обозначаем: алгебраическое дополнение элемента a ij - .

Таким образом можно переформулировать определение определителя n-го порядка:

определитель n-го порядка, n>1, равен сумме произведений элементов первой строки на их алгебраические дополнения.

Пример.

Теорема о вычислении определителя разложением по любой строке

Теорема. Определитель n-го порядка, n>1, равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример. Вычислим определитель из предыдущего примера разложением по второй строке:

Следствие. Определитель треугольной матрицы равен произведению диагональных элементов. (Доказать самостоятельно).

Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.

Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

Равенство матриц.

A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

Действия над матрицами.

1. Сложение матриц - поэлементная операция

2. Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.

Покажем операцию умножения матриц на примере

5. Возведение в степень

m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц

6. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

Строки и столбцы поменялись местами

Пример

Свойства опрераций над матрицами

(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

(λA)"=λ(A)"

(A+B)"=A"+B"

(AB)"=B"A"

Виды матриц

1. Прямоугольные: m и n - произвольные положительные целые числа

2. Квадратные: m=n

3. Матрица строка: m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

4. Матрица столбец: n=1 . Например

5. Диагональная матрица: m=n и a ij =0 , если i≠j . Например

6. Единичная матрица: m=n и

7. Нулевая матрица: a ij =0, i=1,2,...,m

j=1,2,...,n

8. Треугольная матрица: все элементы ниже главной диагонали равны 0.

9. Симметрическая матрица: m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A"=A

Например,

10. Кососимметрическая матрица: m=n и a ij =-a ji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем a ii =-a ii )

Ясно, A"=-A

11. Эрмитова матрица: m=n и a ii =-ã ii (ã ji - комплексно - сопряженное к a ji , т.е. если A=3+2i , то комплексно - сопряженное Ã=3-2i )

Некоторые свойства операций над матрицами.
Матричные выражения

А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами .

Некоторые свойства операций над матрицами

Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.

Рассмотрим некоторые исключения из правила , которые потребуются для выполнения практических задач.

Если у квадратной матрицы существует обратная матрица , то их умножение коммутативно:

Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: , и т.д.

При этом справедливо следующее свойство : если произвольную матрицу умножить слева или справа на единичную матрицу подходящих размеров, то в результате получится исходная матрица:

Как видите, здесь также имеет место коммутативность матричного умножения.

Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: .

Желающие могут провести проверку и убедиться, что:

Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.

Коммутативность числового множителя относительно умножения матриц

Для матриц и действительного числа справедливо следующее свойство:

То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.

Примечание : вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.

Пример 4

Вычислить произведение

Решение :

(1) Согласно свойству перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!

(2) – (3) Выполняем матричное умножение.

(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .

Ответ :

Маленькая шарада для самостоятельного решения:

Пример 5

Вычислить , если

Решение и ответ в конце урока.

Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь .

Прицепим к локомотиву ещё один вагон:

Как умножить три матрицы?

Прежде всего, ЧТО должно получиться в результате умножения трёх матриц ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)

Произведение трёх матриц можно вычислить двумя способами:

1) найти , а затем домножить на матрицу «цэ»: ;

2) либо сначала найти , потом выполнить умножение .

Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения :

Пример 6

Перемножить матрицы двумя способами

Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.

1) Используем формулу

Действие первое:

Действие второе:

2) Используем формулу

Действие первое:

Действие второе:

Ответ :

Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ . Так, во втором пункте на втором шаге выполняем умножение , но ни в коем случае не . С обычными числами такой бы номер прошёл, а с матрицами – нет.

Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:

Пример 7

Найти произведение трёх матриц

Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.

Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.

Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:

Как возвести матрицу в куб и более высокие степени?

Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу в куб, нужно вычислить произведение:

Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: . А матрица, умноженная сама на себя – это квадрат матрицы:

Таким образом, получаем рабочую формулу:

То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу умножить на матрицу .

Пример 8

Возвести матрицу в куб.

Это небольшая задачка для самостоятельного решения.

Возведение матрицы в четвёртую степень проводится закономерным образом:

Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: – это произведение трёх матриц.

1) . Иными словами, сначала находим , затем домножаем его на «бэ» – получаем куб, и, наконец, выполняем умножение ещё раз – будет четвёртая степень.

2) Но существует решение на шаг короче: . То есть, на первом шаге находим квадрат и, минуя куб, выполняем умножение

Дополнительное задание к Примеру 8:

Возвести матрицу в четвёртую степень.

Как только что отмечалось, сделать это можно двумя способами:

1) Коль скоро известен куб, то выполняем умножение .

2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень , то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой .

Оба варианта решения и ответ – в конце урока.

Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:

1) находим ;
2) находим ;
3) возводим матрицу в пятую степень: .

Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.

Во втором разделе урока ожидается не менее пёстрая тусовка.

Матричные выражения

Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки , затем выполняется возведение в степень / извлечение корней , потом умножение / деление и в последнюю очередь – сложение /вычитание .

Если числовое выражение имеет смысл, то результат его вычисления является числом , например:

Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.

Рассмотрим матричное выражение , где – некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.

В первом слагаемом сначала нужно транспонировать матрицу «бэ»: , потом выполнить умножение и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение . Скобки, как и в числовых выражениях, меняют порядок действий: – тут сначала выполняется умножение , потом полученная матрица транспонируется и умножается на 2.

Во втором слагаемом в первую очередь выполняется матричное умножение , и обратная матрица находится уже от произведения. Если скобки убрать: , то сначала необходимо найти обратную матрицу , а затем перемножить матрицы: . Нахождение обратной матрицы также имеет приоритет перед умножением .

С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.

Если матричное выражение имеет смысл, то результат его вычисления является матрицей .

Все задания будут из реальных контрольных работ, и мы начнём с самого простого:

Пример 9

Даны матрицы . Найти:

Решение :порядок действий очевиден, сначала выполняется умножение, затем сложение.


Сложение выполнить невозможно, поскольку матрицы разных размеров.

Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.

Пробуем вычислить второе выражение:

Тут всё нормально.

Ответ : действие выполнить невозможно, .

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Следующее свойство определителя связано с понятиями минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, на пересечении которых этот элемент расположен.

Например, минором элемента определителя называется определитель .

Алгебраическим дополнением элементаопределителя называется его минор, умноженный на, гдеi − номер строки, j − номер столбца, на пересечении которых находится элемент . Алгебраическое дополнение обычно обозначается. Для элементаопределителя 3-го порядка алгебраическое дополнение

9. Определитель равен сумме произведений элементов какой-либо строки (столбца) на соответствующие им алгебраические дополнения.

Например, определитель можно разложить по элементам первой строки

,

или второго столбца

Свойства определителей применяются для их вычисления.