Большинство возобновляемых видов энергии – гидроэнергия, механическая и тепловая энергия мирового океана, ветровая и геотермальная энергия – характеризуется либо ограниченным потенциалом, либо значительными трудностями широкого использования. Суммарный потенциал большинства возобновляемых источников энергии позволит увеличить потребление энергии с нынешнего уровня всего лишь на порядок. Но существует еще один источник энергии – Солнце. Солнце, звезда спектрального класса 2, желтый карлик, очень средняя звезда по всем своим основным параметрам: массе, радиусу, температуре и абсолютной величине. Но эта звезда имеет одну уникальную особенность – это «наша звезда», и человечество обязано всем своим существованием этой средней звезде. Наше светило поставляет Земле мощность около 10 17 Вт – такова сила «солнечного зайчика» диаметром 12,7 тыс. км, который постоянно освещает обращенную к Солнцу сторону нашей планеты. Интенсивность солнечного света на уровне моря в южных широтах, когда Солнце в зените, составляет 1 кВт/м 2 . При разработке высокоэффективных методов преобразования солнечной энергии Солнце может обеспечить бурно растущие потребности в энергии в течение многих сотен лет.

Доводы противников крупномасштабного использования солнечной энергии сводятся в основном к следующим аргументам:

1. Удельная мощность солнечной радиации мала, и крупномасштабное преобразование солнечной энергии потребует очень больших площадей.

2. Преобразование солнечной энергии очень дорого и требует практически нереальных материальных и трудовых затрат.

Действительно, как велика будет площадь Земли, покрытой преобразовательными системами, для производства заметной в мировом энергетическом бюджете доли электроэнергии? Очевидно, что эта площадь зависит от эффективности используемых преобразовательных систем. Для оценки эффективности фотоэлектрических преобразователей, осуществляющих прямое преобразование солнечной энергии в электрическую с помощью полупроводниковых фотоэлементов, введем понятие коэффициента полезного действия (КПД) фотоэлемента, определяемого как отношение мощности электроэнергии, вырабатываемой данным элементом, к мощности падающего на поверхность фотоэлемента солнечного зайчика. Так, при КПД солнечных преобразователей, равном 10% (типичные значения КПД для кремниевых фотоэлементов, широко освоенных в серийном промышленном производстве для нужд наземной энергетики), для производства 10 12 Вт электроэнергии потребовалось бы покрыть фотопреобразователями площадь 4 * 10 10 м 2 , равную квадрату со стороной 200 км. При этом интенсивность солнечной радиации принята равной 250 Вт/м 2 , что соответствует типичному среднему значению в течение года для южных широт. То есть «низкая плотность» солнечной радиации не является препятствием для развития крупномасштабной солнечной энергетики.

Приведенные выше соображения являются достаточно веским аргументом: проблему преобразования солнечной энергии необходимо решать сегодня, чтобы использовать эту энергию завтра. Можно хотя бы в шутку рассматривать эту проблему в рамках решения энергетических задач по управляемому термоядерному синтезу, когда эффективный реактор (Солнце) создан самой природой и обеспечивает ресурс надежной и безопасной работы на многие миллионы лет, а наша задача заключается лишь в разработке наземной преобразовательной подстанции. В последнее время в мире проведены широкие исследования в области солнечной энергетики, которые показали, что уже в ближайшее время этот метод получения энергии может стать экономически оправданным и найти широкое применение.

Россия богата природными ресурсами. Мы имеем значительные запасы ископаемого топлива – угля, нефти, газа. Однако использование солнечной энергии имеет и для нашей страны большое значение. Несмотря на то, что значительная часть территории России лежит в высоких широтах, некоторые весьма большие южные районы нашей страны по своему климату очень благоприятны для широкого использования солнечной энергии.

Еще бóльшие перспективы имеет использование солнечной энергии в странах экваториального пояса Земли и близких к этому поясу районах, характеризуемых высоким уровнем поступления солнечной энергии. Так, в ряде районов Центральной Азии продолжительность прямого солнечного облучения достигает 3000 часов в год, а годовой приход солнечной энергии на горизонтальную поверхность составляет 1500 — 1850 кВт o час/м 2 .

Главными направлениями работ в области преобразования солнечной энергии в настоящее время являются:

— прямой тепловой нагрев (получение тепловой энергии) и термодинамическое преобразование (получение электрической энергии с промежуточным преобразованием солнечной энергии в тепловую);

— фотоэлектрическое преобразование солнечной энергии.

Прямой тепловой нагрев является наиболее простым методом преобразования солнечной энергии и широко используется в южных районах России и в странах экваториального пояса в установках солнечного отопления, снабжения горячей водой, охлаждения зданий, опреснения воды и т.п. Основой солнечных теплоиспользующих установок являются плоские солнечные коллекторы — поглотители солнечного излучения. Вода или другая жидкость, находясь в контакте с поглотителем, нагревается и при помощи насоса или естественной циркуляции отводится от него. Затем нагретая жидкость поступает в хранилище, откуда ее потребляют по мере необходимости. Подобное устройство напоминает системы бытового горячего водоснабжения.

Электроэнергия является наиболее удобным для использования и передачи видом энергии. Поэтому понятен интерес исследователей к разработке и созданию солнечных электростанций, использующих промежуточное преобразование солнечной энергии в тепло с последующим его преобразованием в электроэнергию.

В мире сейчас наиболее распространены солнечные тепловые электростанции двух типов: 1) башенного типа с концентрацией солнечной энергии на одном гелиоприемнике, осуществляемой с помощью большого количества плоских зеркал; 2) рассредоточенные системы из параболоидов и параболоцилиндров, в фокусе которых размещены тепловые приемники и преобразователи малой мощности.

2. РАЗВИТИЕ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ

В конце 70-х – начала 80-х лет в разных странах мира было построено семь пилотных солнечных электростанций (СЭС) так называемого башенного типа с уровнем мощности от 0,5 до 10 Мвт. Самая большая СЭС мощностью 10 Мвт (Solar Оnе) была построена в Калифорни. Все эти СЭС построенные по одному принципу: поле размещенном на уровне земли зеркал-гелиостатов, которые следят за солнцем, отражает солнечные лучи на приемник-ресивер, установленный на верху довольно высокой башни. Ресивер представляет собой, в сущности говоря, солнечный котел, в котором вырабатывается водный пар средних параметров, который направляется потом в стандартную паровую турбину.

На данное время ни одна из этих СЭС большее не эксплуатируется, поскольку намеченные для них исследовательские программы выполнены, а эксплуатация их как коммерческих электростанций оказалась невыгодной. В 1992 г. Эдисоновская компания в Южной Калифорнии, основала консорциум из энергетических и промышленных компаний, которые совместно с Министерством энергетики США финансируют проект по созданию башенной СЭС Solar Two путем реконструкции Solar One. Мощность Solar Two по проекту должна составить 10 Мвт, то есть остаться той же, что и раньше. Основная идея намеченной реконструкции состоит в том, чтобы заменить существующий ресивер с прямым получением водного пара на ресивер промежуточным теплоносителем (нитратные соли). В схему СЭС будет включен нитратный бак-аккумулятор вместо применяемого в Solar One гравийного аккумулятора с высокотемпературным маслом в качестве теплоносителя. Пуск реконструированной СЭС намечался на 1996г. Разработчики рассматривают ее как прототип, который позволит на следующем этапе создать СЭС мощностью 100 Мвт. Предполагается, что при таком масштабе СЭС этого типа окажется конкурентоспособной с ТЭС на органическом топливе.

Второй проект — башенная СЭС PHOEBUS реализуется немецким консорциумом. Проект предполагает создание демонстрационной гибридной (солнечно-топливной) СЭС мощностью 30 МВт с объемным ресивером, в котором будет подогреваться атмосферный воздух, который направляется потом в паровой котел, где вырабатывается водный пар, который работает в цикле Ренкина. На тракте воздуха от ресивера к котлу предполагается горелка для сжигания природного газа, количество которого регулируется так, чтобы на протяжении всего светового дня поддерживать заданную мощность. Расчеты показывают, что, например, для годового получения солнечного излучения 6,5 ГДж/м 2 (подобное тому, которое характерно для южных районов Украины) эта СЭС, которая имеет суммарную поверхность гелиостатов 160 тыс. м 2 , будет получать 290,2 ГВт*ч/год солнечной энергии, а количество энергии, внесенной с топливом, составит 176,0 ГВт*ч/год. При этом СЭС выработает в год 87.9 ГВт*ч электроэнергии со среднегодовым КПД 18,8 %. При таких показателях стоимость электроэнергии, выработанной на СЭС, можно ожидать на уровне ТЭС на органическом топливе.

Начиная с середины 80-х годов, в Южной Калифорнии компанией LUZ, были созданы и пущены в коммерческую эксплуатацию девять СЭС с параболоцилиндрическими концентраторами (ПЦК) с единичными мощностями, которые нарощивались от первой СЭС к следующим от 13,8 до 80 Мвт. Суммарная мощность этих СЭС достигла 350 Мвт. В этих СЭС использованные ПЦК с апертурой, которая увеличивалась при переходе от первой СЭС к следующих. Следя за солнцем на единой оси, концентраторы фокусируют солнечную радиацию на трубчатых приемниках, заключенных в вакуумированные трубы. Внутри приемника протекает высокотемпературный жидкий теплоноситель, который нагревается до 380°С и потом отдает тепло водного пара в парогенератор. В схеме этих СЭС предусмотрено также сжигание в парогенераторе некоторого количества природного газа для производства дополнительной пиковой электроэнергии, а также для компенсации уменьшенной инсоляции.

Указанные СЭС были созданы и эксплуатировались в то время, когда в США существовали законы, которые разрешали СЭС безубыточно функционировать. Окончание срока действия этих законов в конце 80-х лет привело к тому, что компания LUZ обанкротилась, а строительство новых СЭС этого типа было прекращено.

Компания KJC (Kramеr Junction Company), которая эксплуатировала пять из девяти построенных СЭС (с 3 по 7), поставила перед собою задачу повысить эффективность этих СЭС, сократить затраты на их эксплуатацию и сделать их экономически привлекательными в новых условиях. В данное время эта программа успешно реализуется.

Одним из лидеров по использованию энергии Солнца стала Швейцария. По данным на 1997 г. здесь построено примерно 2600 гелиоустановок на основе фотоэлектрических преобразователей мощностью от 1 до 1000 кВт. Программа, получившая название «Solar-91» и осуществляемая под лозунгом «За энергонезависимую Щвейцарию», вносит заметный вклад в решение экологических проблем и энергетическую независимость страны импортирующей сегодня более 70% энергии. Гелиоустановку мощностью 2-3 кВт чаще всего монтируют на крышах и фасадах зданий. Такая установка вырабатывает в год в среднем 2000 кВтч электроэнергии, что достаточно для бытовых нужд среднего швейцарского дома. Крупные фирмы монтируют на крышах производственных корпусов солнечные установки мощностью до 300 кВт. Такая станция покрывает потребности предприятия в электроэнергии на 50-60%.

В условиях альпийского высокогорья, где нерентабельно прокладывать линии электропередач, также строятся гелиоустановки большой мощности. Опыт эксплуатации показывает, что Солнце уже в состоянии обеспечить потребности всех жилых зданий в стране. Гелиоустановки, располагаясь на крышах и стенах домов, на шумозащитных ограждениях автодорог, на транспортных и промышленных сооружениях, не требуют для собственного размещения дорогостоящей сельскохозяйственной территории. Автономная солнечная установка у поселка Гримзель дает электроэнергию для круглосуточного освещения автодорожного тоннеля. Вблизи города Шур солнечные панели, смонтированные на 700-метровом участке шумозащитного ограждения, ежегодно дают 100 кВт электроэнергии.

Современная концепция использования солнечной энергии наиболее полно выражена при строительстве корпусов завода оконного стекла в Арисдорфе, где солнечным панелям общей мощностью 50 кВт еще при проектировании была отведена дополнительная роль элементов перекрытия и оформления фасада. КПД солнечных преобразователей при сильном нагреве заметно снижается, поэтому под панелями проложены вентиляционные трубопроводы для прокачки наружного воздуха. Темно-синие, искрящиеся на солнце фотопреобразователи на южном и западном фасадах административного корпуса, отдавая в сеть электроэнергию, выполняют роль декоративной облицовки.

В развивающихся странах применяют сравнительно мелкие установки для электроснабжения индивидуальных домов, в отдаленных селах для — оснащения культурных центров, где благодаря ФЭУ можно пользоваться телевизорами и др. При этом на первый план выступает не стоимость электроэнергии, а социальный эффект. Программы внедрения ФЭУ в этих странах активно поддерживаются международными организациями, в их финансировании принимает участие Мировой банк на основе выдвинутой им «Солнечной Инициативы». Так, например, в Кении за последние 5 лет с помощью ФЭУ было электрифицировано 20 000 сельских домов. Большая программа по внедрению ФЭУ реализуется в Индии, где в 1986 — 1992 гг. на установку ФЭУ в сельской местности было израсходовано 690 млн. рупий.

В промышленно развитых странах активное внедрение ФЭУ поясняется несколькими факторами. Во-первых, ФЭУ рассматриваются как экологически чистые источники, способные уменьшить вредное влияние на окружающую среду. Во-вторых, применение ФЭУ в частных домах повышает энергетическую автономию и защищает собственника при возможных перебоях в централизованном электроснабжении.

3. ФОТОЭЛЕКТРИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

Важный вклад в понимание механизма действия фотоэффекта в полупроводниках внес основатель Физико-технического института (ФТИ) Российской Академии наук академик А.Ф. Иоффе. Он мечтал о применении полупроводниковых фотоэлементов в солнечной энергетике уже в тридцатые годы, когда Б.Т. Коломиец и Ю.П. Маслаковец создали в ФТИ сернисто-таллиевые фотоэлементы с рекордным для того времени КПД = 1%.

Широкое практическое использование для энергетических целей солнечных батарей началось с запуском в 1958 году искусственных спутников Земли — советского «Спутник»-3 и американского «Авангард»-1. С этого времени вот уже более 35 лет полупроводниковые солнечные батареи являются основным и почти единственным источником энергоснабжения космических аппаратов и больших орбитальных станций типа «Салют» и «Мир». Большой задел, наработанный учеными в области солнечных батарей космического назначения, позволил развернуть также работы по наземной фотоэлектрической энергетике.

Основу фотоэлементов составляет полупроводниковая структура с p- n переходом, возникающим на границе двух полупроводников с различными механизмами проводимости. Заметим, что эта терминология берет начало от английских слов positive (положительный) и negative (отрицательный). Получают различные типы проводимости путем изменения типа введенных в полупроводник примесей. Так, например, атомы III группы Периодической системы Д.И. Менделеева, введенные в кристаллическую решетку кремния, придают последнему дырочную (положительную) проводимость, а примеси V группы – электронную (отрицательную). Контактp или n-полупроводников приводит к образованию между ними контактного электрического поля, играющего чрезвычайно важную роль в работе солнечного фотоэлемента. Поясним причину возникновения контактной разности потенциалов. При соединении в одном монокристалле полупроводников p- и n-типа возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- в n-полупроводник. В результате такого процесса прилегающая кp-n переходу часть полупроводника p-типа будет заряжаться отрицательно, а прилегающая к p-n переходу часть полупроводника n-типа, наоборот, приобретет положительный заряд. Таким образом, вблизи p- n перехода образуется двойной заряженный слой, который противодействует процессу диффузии электронов и дырок. Действительно, диффузия стремится создать поток электронов из n-области в p-область, а поле заряженного слоя, наоборот, – вернуть электроны в n-область. Аналогичным образом поле в p-n переходе противодействует диффузии дырок из p- в n-область. В результате двух процессов, действующих в противоположные стороны (диффузии и движения носителей тока в электрическом поле), устанавливается стационарное, равновесное состояние: на границе возникает заряженный слой, препятствующий проникновению электронов из n-полупро-водника, а дырок из p-полупроводника. Другими словами, в области p-n перехода возникает энергетический (потенциальный) барьер, для преодоления которого электроны из n-полупроводника и дырки из p-полупроводника должны затратить определенную энергию. Не останавливаясь на описании электрических характеристик p-n перехода, который широко используется в выпрямителях, транзисторах и других полупроводниковых приборах, рассмотрим работу p-n перехода в фотоэлементах.

При поглощении света в полупроводнике возбуждаются электронно-дырочные пары. В однородном полупроводнике фотовозбуждение увеличивает только энергию электронов и дырок, не разделяя их в пространстве, то есть электроны и дырки разделяются в «пространстве энергий», но остаются рядом в геометрическом пространстве. Для разделения носителей тока и появления фотоэлектродвижущей силы (фотоЭДС) должна существовать дополнительная сила. Наиболее эффективное разделение неравновесных носителей имеет место именно в области p-n перехода. Генерированные вблизи p- n перехода «неосновные» носители (дырки в n-полупроводнике и электроны в p-полупро-воднике) диффундируют кp-n переходу, подхватываются полем p-n перехода и выбрасываются в полупроводник, в котором они становятся основными носителями: электроны будут локализоваться в полупроводнике n-типа, а дырки – в полупроводнике p-типа. В результате полупроводникp-типа получает избыточный положительный заряд, а полупроводник n-типа – отрицательный. Между n- и p-областями фотоэлемента возникает разность потенциалов – фотоЭДС. Полярность фотоЭДС соответствует «прямому» смещению p-n перехода, которое понижает высоту барьера и способствует инжекции дырок из pобласти в n-область и электронов из n-области в p-область. В результате действия этих двух противоположных механизмов – накопления носителей тока под действием света и их оттока из-за понижения высоты потенциального барьера –при разной интенсивности света устанавливается разная величина фотоЭДС. При этом величина фотоЭДС в широком диапазоне освещенностей растет пропорционально логарифму интенсивности света. При очень большой интенсивности света, когда потенциальный барьер оказывается практически нулевым, величина фотоЭДС выходит на «насыщение» и становится равной высоте барьера на неосвещенном p-n переходе. При засветке же прямым, а также сконцентрированным до 100 — 1000 крат солнечным излучением, величина фотоЭДС составляет 50 — 85% от величины контактной разности потенциала p- n перехода.

Таким образом, рассмотрен процесс возникновения фотоЭДС, возникающей на контактах кp- и n-областям p-n перехода. При коротком замыкании освещенного p-n перехода в электрической цепи потечет ток, пропорциональный по величине интенсивности освещения и количеству генерированных светом электронно-дырочных пар. При включении в электрическую цепь полезной нагрузки, например питаемого солнечной батареей калькулятора, величина тока в цепи несколько уменьшится. Обычно электрическое сопротивление полезной нагрузки в цепи солнечного элемента выбирают таким, чтобы получить максимальную отдаваемую этой нагрузке электрическую мощность.

Солнечный фотоэлемент изготавливается на основе пластины, выполненной из полупроводникового материала, например кремния. В пластине создаются области с p- и n- типами проводимости. В качестве методов создания этих областей используется, например, метод диффузии примесей или метод наращивания одного полупроводника на другой. Затем изготавливаются нижний и верхний электроконтакты, причем нижний контакт – сплошной, а верхний выполняется в виде гребенчатой структуры (тонкие полосы, соединенные относительно широкой токосборной шиной).

Основным материалом для получения солнечных элементов является кремний. Технология получения полупроводникового кремния и фотоэлементов на его основе базируется на методах, разработанных в микроэлектронике – наиболее развитой промышленной технологии. Кремний, по-видимому, вообще один из самых изученных материалов в природе, к тому же второй по распространенности после кислорода. Если учесть, что первые солнечные элементы были изготовлены из кремния около сорока лет назад, то естественно, что этот материал играет первую скрипку в программах фотоэлектрической солнечной энергетики. Фотоэлементы из монокристаллического кремния сочетают достоинства использования относительно дешевого полупроводникового материала с высокими параметрами получаемых на его основе приборов.

До недавнего времени солнечные батареи наземного применения, так же как и космического, изготавливали на основе относительно дорогого монокристаллического кремния. Снижение стоимости исходного кремния, разработка высокопроизводительных методов изготовления пластин из слитков и прогрессивных технологий изготовления солнечных элементов позволили в несколько раз снизить стоимость наземных солнечных батарей на их основе. Основными направлениями работ по дальнейшему снижению стоимости «солнечной» электроэнергии являются: получение элементов на основе дешевого, в том числе ленточного, поликристаллического кремния; разработка дешевых тонкопленочных элементов на основе аморфного кремния и других полупроводниковых материалов; осуществление преобразования концентрированного солнечного излучения с помощью высокоэффективных элементов на основе кремния и относительно нового полупроводникового материала алюминий-галлий-мышьяк.

Линза Френеля представляет собой выполненную из оргстекла пластину толщиной 1– 3 мм, одна сторона которой является плоской, а на другой образован профиль в виде концентрических колец, повторяющий профиль выпуклой линзы. Линзы Френеля существенно дешевле обычных выпуклых линз и обеспечивают при этом степень концентрирования в 2 – 3 тысячи «солнц».

В последние годы в мире достигнут значительный прогресс в области разработки кремниевых солнечных элементов, работающих при концентрированном солнечном облучении. Созданы кремниевые элементы с КПД > 25% в условиях облучения на поверхности Земли при степени концентрирования 20 — 50 «солнц». Значительно бóльшие степени концентрирования допускают фотоэлементы на основе полупроводникового материала алюминий-галлий-мышьяк, впервые созданные в Физико-техническом институте им. А.Ф. Иоффе в 1969 году. В таких солнечных элементах достигаются значения КПД > 25% при степени концентрирования до 1000 крат. Несмотря на большую стоимость таких элементов, их вклад в стоимость получаемой электроэнергии не оказывается определяющим при высоких степенях концентрирования солнечного излучения вследствие существенного (до 1000 раз) снижения их площади. Ситуация, при которой стоимость фотоэлементов не дает существенного вклада в общую стоимость солнечной энергоустановки, делает оправданным усложнение и удорожание фотоэлемента, если это обеспечивает увеличение КПД. Этим объясняется внимание, уделяемое в настоящее время разработкам каскадных солнечных элементов, которые позволяют достичь существенного увеличения КПД. В каскадном солнечном элементе солнечный спектр расщепляется на две (или более) части, например, видимую и инфракрасную, каждая из которых преобразуется с помощью фотоэлементов, выполненных на основе различных материалов. В этом случае снижаются потери энергии квантов солнечного излучения. Например, в двухэлементных каскадах теоретическое значение КПД превышает 40%.

Фотоэлектрический метод преобразования солнечной энергии в электрическую основан на явлении фотоэлектрического эффекта – освобождения электронов проводимости в приемнике излучения под действием квантов солнечного излучения.

Этот эффект используется в полупроводниковых материалах, в которых энергия квантов излучения hn создает, например, на p n -переходе фототок

I ф =eN e ,

где N e – число электронов, создающих на переходе разность потенциалов, вследствие чего на переходе в обратном направлении потечет ток утечки I , равный фототоку, который является постоянным.

Потери энергии при фотоэлектрическом преобразовании обусловлены неполным использованием фотонов, а также рассеянием, сопротивлением и рекомбинацией уже возникших электронов проводимости .

Наиболее распространенным из выпускаемых промышленностью солнечных элементов (фотоэлементов) является пластинчатые кремниевые элементы. Существуют также и другие типы и конструкции, которые разрабатываются для повышения эффективности и снижения стоимости солнечных элементов.

Толщина солнечного элемента зависит от его способности поглощать солнечное излучение. Такие полупроводниковые материалы, как кремний, арсенид галлия и др. используются потому, что они начинают поглощать солнечное излучение с достаточно большой длиной волны, и могут преобразовывать в электричество его значительную долю. Поглощение солнечного излучения различными полупроводниковыми материалами достигает наибольшей величины при толщине пластин от 100 до 1 мкм и менее.

Уменьшение толщины солнечных элемента позволяет значительно снизить расход материалов и стоимость их изготовления.

Различия в поглощательный способности полупроводниковых материалов объясняется различиями в их атомном строении.

Эффективность преобразования солнечной энергии в электрическую не высока. Для кремневых элементов не более 12…14 %.

Чтобы повысить КПД солнечных элементов применяются просветляющие покрытия лицевой стороны солнечного элемента. В результате увеличивается доля проходящего солнечного излучения. У элементов без покрытия потери на отражение достигают 30 %.

В последнее время для изготовления солнечных элементов стали использовать ряд новых материалов. Одним из них является аморфный кремний, который в отличии от кристаллического не имеет регулярной структуры. Для аморфной структуры вероятность поглощения фотона и перехода в зону проводимости больше. Следовательно, он имеет большую поглощательную способность. Также находит применение арсенид галлия (GaAs). Теоретическая эффективность элементов на основе GaAs может достигнуть 25 %, реальные элементы имеют КПД около16 %.

Развивается технология тонкопленочных солнечных элементов. Несмотря на то, что КПД этих элементов в лабораторных условиях не превышает 16 %, они имеют более низкую стоимость. Это особенно ценно для снижения себестоимости и расхода материала в массовом производстве. В США и Японии изготавливают тонкопленочные элементы на аморфном кремнии площадью 0,1 …0,4 м 2 с КПД 8…9 %. Наиболее распространенным тонкопленочным фотоэлементом является элементы на основе сульфида кадмия (CdS) с КПД 10 %.

Другим достижением в технологии тонкопленочных солнечных элементов стало получение многослойных элементов. Они позволяют охватить большую часть спектра солнечного излучения.

Активный материал солнечного элемента стоит довольно дорого. Для более эффективного использования солнечное излучение собирают на поверхности солнечного элемента с помощью концентрирующих систем (рис. 2.7).

При увеличении радиационного потока характеристики элемента не ухудшаются, если его температура поддерживается на уровне температуры окружающего воздуха с помощью активного или пассивного охлаждения.

Существует большое количество концентрирующих систем, основанных на линзах (обычно плоских линзах Френеля), зеркалах, призмах полного внутреннего отражения и т.д. Если происходит сильно неравномерная облученность фотоэлементов или модулей, это может привести к разрушению солнечного элемента.

Использование концентрирующих систем позволяет снизить стоимость солнечных электростанций, так как концентрирующие элементы дешевле солнечных элементов .

По мере снижения цены на солнечные элементы, появилась возможность сооружения крупных фотоэлектрических установок. К 1984 г. было построено 14 относительно крупных солнечных электростанций мощностью от 200 кВт до 7 МВт в США, Италии, Японии, Саудовской Аравии и Германии.

Солнечная фотоэлектрическая установка имеет ряд достоинств. Она использует чистый и неиссякаемый источник энергии, не имеет движущихся частей и поэтому не требует постоянного контроля со стороны обслуживающего персонала. Солнечные элементы можно производить массовыми сериями, что приведет к снижению их стоимости.

Солнечные батареи собираются из солнечных модулей. При этом существует большой выбор типов и размеров этих устройств с одинаковой эффективностью преобразования энергии и одинаковой технологией производства.

Так как поступление солнечной энергии периодично, фотоэлектрические системы наиболее рационально включать в гибридные электростанции, использующие и солнечную энергию, и природный газ. На этих станциях может найти применение новое поколение газовых турбин. Гибридные маломощные электростанции, состоящие из фотоэлектрических панелей и дизельных генераторов, уже является надежными поставщиками энергии.

Конец работы -

Эта тема принадлежит разделу:

Кафедра промышленная теплоэнергетика.. конспект лекций по курсу нивиэ грибанов а и.. текст напечатали..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Энергоресурсы планеты
Энергоресурсы – материальные объекты, в которых сосредоточена энергия. Энергию условно можно разделить на виды: химическую, механическую, тепловую, электрическую и т.д. К основным энергоресурсам от

Возможности использования энергоресурсов
Термоядерная энергия Термоядерная энергия – это энергия синтеза гелия из дейтерия. Дейтерий – атом водорода, ядро которого состоит из одного протона и одного нейтро

Энергоресурсы России
Россия имеет огромные запасы энергоресурсов и, особенно, угля. Теоретический потенциал – это запасы топлива, которые конкретно не подверждены. Технический потенциа

Получение энергии на ТЭС
Как и в большинстве стран мира большая часть электроэнергии в России вырабатывается на ТЭС, сжигающих органическое топливо. В качестве топлива на ТЭС используют твердое, жидкое и газообразное топли

Переменный график электропотребления
В течении суток потребление электроэнергии не одинаково. В часы пик оно резко возрастает, а ночью значительно уменьшается. Следовательно, энергосистема должна иметь базовые мощности, работающие в п

Проблемы передачи электроэнергии
Передача электрической энергии на большие расстояния связана с потерями в ЛЭП. Теряется электрическая энергия равная произведению силы тока на эл. сопротивление провода. Передаваемая по проводам мо

Газотурбинные и парогазовые установки (ГТУ и ПГУ)
В настоящее время газотурбинные и парогазовые установки являютсяся самыми перспективными из всех установок для пр-ва тепловой и электрической энергии. Применение этих установок во многих странах ми

Магнитно-гидродинамические установки (МГДУ)
Перспективным также является использование электростанций на базе магнитогидродинамического генератора. Цикл МГДУ такой же как ГТУ, т.е адиабатное сжатие и расширение рабочего тела, изобарный подво

Топливные элементы
В настоящее время для выработки электрической энергии для выработки электроэнергии используют топливные элементы. Эти элементы преобразуют энергию химических реакций в электрическую энергию. Химиче

Тепловые насосы
ТН называют устройства, работающие по обратному термодинамическому циклу и предназначены для передачи тепла от низкопотенциального источника энергии к высокопотенциальному. Второй закон

Место малой энергетики в энергетике России
К нетрадиционным источникам энергии можно отнести малые гидроэлектростанции, дизельные электростанции, газо-поршневые электростанции, малые АЭС. Гарантом надежного электроснабжения, теплос

Газотурбинные и парогазовые малые электростанции
Газотурбинные электростанции малой мощности – компактные установки, изготовленные по блочно-контейнерному принципу. Составные части ГТЭС дают возможность вырабатывать не только электроэнергию, но и

Мини ТЭЦ
В настоящее время повысился интерес к комбинированной выработке тепла и электроэнергии с помощью небольших установок с помощью небольших установок с мощностью от нескольких десятков кВт до нескольк

Дизельные электростанции
В отдельных труднодоступных районах России куда невыгодно проводить ЛЭП для энергоснабжения населения этих районов используют бензиновые и дизельные электростанции. В районах крайнего севера число

Газопоршневые электростанции
Т.к. цены на дизельное топливо постоянно растут, то использование дизельных электростанций на дизельном топливе становятся дорогостоящим, поэтому в настоящее время в мире большой интерес проявляют

Малые гибридные электростанции
Для повышения надежности и эффективности систем электроснабжения требуется создание многофункциональной энергетических комплексов (МЭК). Также комплексы могут быть созданы на базе малых гибридных э

Малые АЭС
В последнее время значительный интерес проявляют к АЭС малой мощности. Это станции блочного испонения, они позволяют унифицировать оборудование и работу автономно. Такие станции могут быть надежные

Малая гидроэнергетика
Лидером в развитии малой гидроэнергетики является Китай. Мощность малых ГЭС (МГЭС) в Китае превышает 20 тыс. МВт. В индии установленная мощность МГЭС превышает 200 МВт. Широкое распространение МГЭС


Основные невозобновляемые энергоресурсы рано или поздно будут исчерпаны. Сейчас около 80% энергопотребления на планете обеспечивается за счет органического топлива. При таком использовании органиче

Гидроэнергетика
ГЭС в качестве источника энергии использует энергию водного потока. ГЭС строят на реках, сооружая плотины и водохранилища. Для эффективного производства энергии на ГЭС необходимы 2 основных фактора

Солнечная энергия
Солнечная энергия является результатом реакции синтеза ядер легких элементов дейтерия, трития и гелия, которые сопровождаются огромным количеством энергии. Источником всей энергии, за исключением т

Преобразование солнечной энергии в тепловую энергию
Солнечную энергию можно превратить в тепловую с помощью коллектора. Все солнечные коллекторы имеют поверхностный или объемный поглотитель тепла. Тепло может отводится из коллектора или аккумулирова

Термодинамическое преобразование солнечной энергии в электрическую энергию
Методы термодинамического преобразования солнечной энергии в электрическую основаны на циклах тепловых двигателей. Солнечная энергия преобразовывается в электрическую на солнечных электростанциях (

Перспективы развития солнечной энергетики в России
В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция башенного типа СЭС-5 электрической мощностью 5 МВт. 1600 гелиостатов (плоских зер

Особенности использования энергии ветра
Основной причиной возникновения ветра является неравномерное нагревание солнцем земной поверхности. Энергия ветра очень велика. По оценкам Всемирной метеорологической организации запасы энергии вет

Производство электроэнергии с помощью ВЭУ
Использование ветроустановок для производства электроэнергии является наиболее эффективным способом преобразования энергии ветра. При проектировании ВЭУ необходимо учитывать их следующие особенност

Ветроэнергетика России
Энергетический ветропотенциал России оценивается в 40 млрд. кВт. ч электроэнергии в год, то есть около 20000 МВт . ВЭС мощностью 1 МВт при среднегодовой скорости ветра 6 м/с экономит 1

Происхождение геотермальной энергии
В ядре Земли температура достигает 4000 °C. Выход тепла через твердые породы суши и океанского дна происходит в основном за счет теплопроводности и реже – в виде конвективных потоков расплавленной

Техника извлечения геотермального тепла
Источники геотермальной энергии можно разделить на пять типов. 1. Источники геотермального сухого пара. Они довольно редки, но наиболее удобны для строительства ГеоТЭС. 2. Источни

Электроэнергии
Превращение геотермальной энергии в электрическую осуществляется на основе использования машинного способа с помощью термодинамического цикла на ГеоТЭС. Для строительства ГеоТЭС наиболее б


Более значительны масштабы использования геотермальной теплоты для отопления и горячего водоснабжения. В зависимости от качества и температуры термальной воды существуют различные схемы геотермальн

Влияние геотермальной энергетики на окружающую среду
Основное воздействие на окружающую среду ГеоТЭС связано с разработкой месторождения, строительством зданий и паропроводов. Для обеспечения ГеоТЭС необходимым количеством пара или горячей воды требу

Геотермальная энергетика России
В России разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240×103 м3/сут. термальных вод, и парогидротерм производите

Причины возникновения приливов
Приливы – это результат гравитационного взаимодействия Земли с Луной и Солнцем. Приливообразующая сила Луны в данной точке земной поверхности определяется как разность местного значения силы притяж

Приливные электростанции (ПЭС)
Поднятую во время прилива на максимальную высоту воду можно отделить от моря плотиной. В результате образуется приливный бассейн. Максимальная мощность, которую можно получить, пропуская в

Влияние пэс на окружающую среду
Возможное воздействие приливных электростанций на окружающую среду может быть связано с увеличением амплитуды приливов на океанской стороне плотины. Это может приводить к затоплению суши и сооружен

Приливная энергетика России
В России использование приливной энергии в прибрежных зонах морей Северного Ледовитого и Тихого океанов связано с большими капиталовложениями. Первая в нашей стране Кислогубская ПЭС мощнос

Энергия волн
От морских волн можно получить огромное количество энергии. Мощность, переносимая волнами по глубокой воде, пропорциональна квадрату их амплитуды и периоду. Наибольший интерес представляют длиннопе

Энергия океанических течений
Всю акваторию Мирового океана пересекают поверхностные и глубинные течения. Запас кинетической энергии этих течений составляет порядка 7,2∙1012 кВт∙ч/год. Эту энергию с помощ

Ресурсы тепловой энергии океана
Мировой океан является естественным аккумулятором солнечной энергии. В тропических морях верхний слой воды толщиной несколько метров имеет температуру 25…30 °С. На глубине 1000 м температура воды н

Океанические тепловые электростанции
Для преобразования энергии перепада температур в океане предлагается несколько типов устройств. Наибольший интерес представляет преобразование тепловой энергии в электрическую с помощью термодинами

Ресурсы биомассы
Под термином «биомасса» понимается органическое вещество растительного или животного происхождения, которое может быть использовано для получения энергии или технически удобных видов топлива путем

Термохимическая конверсия биомассы (сжигание, пиролиз, газификация)
Одним из основных направлений утилизации древесных отходов является их использование для получения тепловой и электрической энергии. Основными технологиями получения энергии из древесных отходов яв

Биотехнологическая конверсия биомассы
При биотехнологической конверсии используются различные органические отходы с влажностью не менее 75 %. Биологическая конверсия биомассы развивается по двум основным направлениям: 1) ферме

Экологические проблемы биоэнергетики
Биоэнергетические установки способствуют снижению загрязнения окружающей среды всевозможными отходами. Анаэробная ферментация является не только эффективным средством использования отходов животнов

Характеристика твердых бытовых отходов (ТБО)
На городских свалках ежегодно скапливаются сотни тысяч тонн бытовых отходов. Удельный годовой выход ТБО на одного жителя современного города составляет 250…700 кг. В развитых странах эта величина е

Переработка тбо на полигонах
В настоящее время ТБО городов как правило вывозятся на полигоны для захоронения с расчетом на их последующую минерализацию. Желательно, чтобы перед захоронением ТБО прессовали. Это не только снижае

Компостирование ТБО
Вторым направлением утилизации ТБО является переработка в органическое удобрение (компост). Можно компостировать до 60 % общей массы бытовых отходов. Процесс компостирования осуществляется во враща

Сжигание ТБО в специальных мусоросжигательных установках
В экономически развитых странах все больше количество ТБО перерабатывается промышленными способами. Наиболее эффективным из них является термический. Он позволяет почти в 10 раз снизить объем отход

Виды фотоэлектрических преобразователей

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямой, одноступенчатый переход энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП). При характерной для ФЭП равновесной температуре порядка 300-350 Кельвинов и Т солнца ~ 6000 К их предельный теоретический КПД >90%. Это означает, что, в результате оптимизации структуры и параметров преобразователя, направленной на снижение необратимых потерь энергии, вполне реально удастся поднять практический КПД до 50% и более (в лабораториях уже достигнут КПД 40%).

Теоретические исследования и практические разработки, в области фотоэлектрического преобразования солнечной энергии подтвердили возможность реализации столь высоких значений КПД с ФЭП и определили основные пути достижения этой цели.

Преобразование энергии в ФЭП основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения. Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p - n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом. Принцип работы ФЭП можно пояснить на примере преобразователей с p-n- переходом, которые широко применяются в современной солнечной и космической энергетике. Электронно-дырочный переход создаётся путём легирования пластинки монокристаллического полупроводникового материала с определённым типом проводимости (т.е. или p- или n- типа) примесью, обеспечивающей создание поверхностного слоя с проводимостью противоположного типа.

Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Созданные светом в обоих слоях ФЭП неравновесные носители заряда (электронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (т.е.электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП. Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать (объединяться) с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными.

Основные необратимые потери энергии в ФЭП связаны с:

  • отражением солнечного излучения от поверхности преобразователя,
  • прохождением части излучения через ФЭП без поглощения в нём,
  • рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
  • рекомбинацией образовавшихся фотопар на поверхностях и в объёме ФЭП,
  • внутренним сопротивлением преобразователя,
  • и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

  • использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;
  • направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;
  • переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;
  • оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);
  • применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;
  • разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
  • создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.

В системах преобразования энергии СЭС (солнечных электростанций) в принципе могут быть использованы любые созданные и разрабатываемые в настоящее время типы ФЭП различной структуры на базе разнообразных полупроводниковых материалов, однако не все они удовлетворяют комплексу требований к этим системам:

  • высокая надёжность при длительном (десятки лет!) ресурсе работы;
  • доступность исходных материалов в достаточном для изготовления элементов системы преобразования количестве и возможность организации их массового производства;
  • приемлемые с точки зрения сроков окупаемости энергозатраты на создание системы преобразования;
  • минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос),включая ориентацию и стабилизацию станции в целом;
  • удобство техобслуживания.

Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, т.е. фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза.

В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием (GaAs), как известно, имеют более высокий, чем кремниевые ФЭП, теоретический КПД, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

Вследствие более высокого уровня поглощения солнечного излучения, определяемого прямыми оптическими переходами в GaAs, высокие КПД ФЭП на их основе могут быть получены при значительно меньшей по сравнению с кремнием толщине ФЭП. Принципиально достаточно иметь толщину ГФП 5-6 мкм для получения КПД порядка не менее 20%, тогда как толщина кремниевых элементов не может быть менее 50-100мкм без заметного снижения их КПД. Это обстоятельство позволяет рассчитывать на создание лёгких плёночных ГФП, для производства которых потребуется сравнительно мало исходного материала, особенно если в качестве подложки удастся использовать не GaAs ,а другой материал, например синтетический сапфир (Al2 O3).

ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и, кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры говорят о том, что повышение равновесной температуры последних до 150-180°С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше 60-70°С является почти критическим - КПД падает вдвое.

Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180 °С, что уже является вполне рабочими температурами и для тепловых двигателей, паротурбин. Таким образом, к 30-процентному собственному КПД арсенид-галлиевых ГФП (при 150°C) можно прибавить КПД теплового двигателя, использующего сбросовое тепло охлаждающей фотоэлементы жидкости. Поэтому общий КПД установки, которая к тому же использует и третий цикл отбора низкотемпературного тепла у охлаждающей жидкости после турбины на обогрев помещений - может быть даже выше 50-60 %.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки (отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150°С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций (особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В целом можно заключить, что энергетические, массовые и эксплутационные характеристики ГФП на основе GaAs в большей степени соответствуют требованиям СЭС и СКЭС (космич.), чем характеристики кремниевых ФЭП. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты, солнечные элементы большой площади и т.п.

Цены на кремниевые фотоэлектрические батареи снизились за 25 лет в 20-30 раз с 70-100 долл/ватт в семидесятых годах вплоть до 3,5 долл/ватт в 2000 г. и продолжают снижаться далее. На Западе ожидается переворот в энергетике в момент перехода цены 3-долларового рубежа. По некоторым расчётам, это может произойти уже в 2002 г., а для России с нынешними энерготарифами этот момент наступит при цене 1 ватта СБ 0,3-0,5 доллара, то есть, при на порядок более низкой цене. Тут играют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. В реально действующих структурах с гетеропереходами КПД достигает на сегодняшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии сегодня около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

Галлий добывается в основном из бокситов, однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика, выход при извлечении оценивается величиной всего в 1% и, следовательно, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (ориентированного роста одного монокристалла на поверхности другого {на подложке}), не развита ещё до такой степени, как технология производства кремниевых ФЭП и в результате этого стоимость ГФП сейчас существенно выше (на порядки) стоимости ФЭП из кремния.

В космических аппаратах, где основным источником тока являются солнечные батареи и где очень важны понятные соотношения массы, размера и КПД, главным материалом для солн. батарей, конечно, является арсенид галлия. Очень важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно, снижает потребности в дефицитном галлии. Дополнительный резерв экономии галлия связан с использованием в качестве подложки ГФП не GaAs, а синтетического сапфира (Al2O3).

Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразования системы преобразования энергии СЭС на основе ГФП из GaAs может оказаться вполне соизмеримой со стоимостью системы на основе кремния. Таким образом, в настоящее время трудно до конца отдать явное предпочтение одному из двух рассмотренных полупроводниковых материалов- кремнию или арсениду галлия, и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рационален для наземной и космической солнечных энергетик. Постольку-поскольку СБ выдают постоянный ток, то встаёт задача трансформации его в промышленный переменный 50 Гц,220 В. С этой задачей отлично справляется специальный класс приборов- инверторы.

Расчет фотоэлектрической системы.

Использовать энергию солнечных элементов можно также как и энергию других источников питания, с той разницей, что солнечные элементы не боятся короткого замыкания. Каждый из них предназначен для поддержания определенной силы тока при заданном напряжении. Но в отличии от других источников тока характеристики солнечного элемента зависят от количества падающего на его поверхность света. Например, набежавшее облако может снизить выходную мощность более чем на 50%. Кроме того отклонения в технологических режимах влекут за собой разброс выходных параметров элементов одной партии. Следовательно, желание обеспечить максимальную отдачу от фотоэлектрических преобразователей приводит к необходимости сортировки элементов по выходному току. В качестве наглядного примера “вшивой овцы портящей все стадо” можно привести следующий: в разрыв водопроводной трубы большого диаметра врезать участок трубы с гораздо меньшим диаметром, в результате водоток резко сократится. Нечто аналогичное происходит и в цепочке из неоднородных по выходным параметрам солнечных элементов.

Кремниевые солнечные элементы являются нелинейными устройствами и их поведение нельзя описать простой формулой типа закона Ома. Вместо нее для объяснения характеристик элемента можно пользоваться семейством простых для понимания кривых - вольтамперных характеристик (ВАХ)

Напряжение холостого хода, генерируемое одним элементом, слегка изменяется при переходе от одного элемента к другому в одной партии и от одной фирмы изготовителя к другой и составляет около 0.6 В. Эта величина не зависит от размеров элемента. По иному обстоит дело с током. Он зависит от интенсивности света и размера элемента, под которым подразумевается площадь его поверхности.

Элемент размером 100 100 мм в 100 раз превосходит элемент размером 10 10 мм и, следовательно, он при той же освещенности выдаст ток в 100 раз больший.

Нагружая элемент, можно построить график зависимости выходной мощности от напряжения, получив нечто подобное изображенному на рис.2

Пиковая мощность соответствует напряжению около 0,47 В. Таким образом, чтобы правильно оценить качество солнечного элемента, а также ради сравнения элементов между собой в одинаковых условиях, необходимо нагрузить его так, чтобы выходное напряжение равнялось 0,47 В. После того, как солнечные элементы подобраны для работы, необходимо их спаять. Серийные элементы снабжены токосъемными сетками, которые предназначены для припайки к ним проводников.

Батареи можно составлять в любой желаемой комбинации. Простейшей батареей является цепочка из последовательно включенных элементов. Можно также соединить параллельно цепочки, получив так называемое последовательно-параллельное соединение.

Важным моментом работы солнечных элементов является их температурный режим. При нагреве элемента на один градус свыше 25°С он теряет в напряжении 0,002 В, т.е. 0,4 %/градус. На рис.3 приведено семейство кривых ВАХ для температур 25°С и 60°С.

В яркий солнечный день элементы нагреваются до 60-70оС теряя 0,07-0,09 В каждый. Это и является основной причиной снижения КПД солнечных элементов, приводя к падению напряжения, генерируемого элементом. КПД обычного солнечного элемента в настоящее время колеблется в пределах 10-16 %. Это значит, что элемент размером 100 100 мм при стандартных условиях может генерировать 1-1,6 Вт.

Все фотоэлектрические системы можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.

Автономная система в общем случае состоит из набора солнечных модулей, размещенных на опорной конструкции или на крыше, аккумуляторной батареи (АКБ), контроллера разряда - заряда аккумулятора, соединительных кабелей. Солнечные модули являются основным компонентом для построения фотоэлектрических систем. Они могут быть изготовлены с любым выходным напряжением.

После того как солнечные элементы подобраны - их необходимо спаять. Серийные элементы снабжены токосъемными сетками для припайки к ним проводников. Батареи можно составлять в любой комбинации.

Простейшей батареей является цепочка из последовательно соединенных элементов.

Можно соединить эти цепочки параллельно, получив так называемое последовательно-параллельное соединение. Параллельно можно соединять лишь цепочки (линейки) с идентичным напряжением, при этом их токи согласно закону Кирхгофа суммируются.

При наземном использовании они обычно используются для зарядки аккумуляторных батарей (АКБ) с номинальным напряжением 12 В. В этом случае, как правило, 36 солнечных элементов соединяются последовательно и герметизируются посредством ламинации на стекле, текстолите, алюминии. Элементы при этом находятся между двумя слоями герметизирующей пленки, без воздушного зазора. Технология вакуумной ламинации позволяет выполнить это требование. В случае воздушной прослойки между защитным стеклом и элементом, потери на отражение и поглощение достигли бы 20-30 % по сравнению с 12 % - без воздушной прослойки.

Электрические параметры солнечного элемента представляются как и отдельного солнечного элемента в виде вольтамперной кривой при стандартных условиях (Standart Test Conditions), т.е., при солнечной радиации 1000 Вт/м2, температуре - 25оС и солнечном спектре на широте 45о(АМ1,5).

Точка пересечения кривой с осью напряжений называется напряжением холостого хода - Uxx, точка пересечения с осью токов – током короткого замыкания Iкз.

Максимальная мощность модуля определяется как наибольшая мощность при STC (Standart Test Conditions). Напряжение, соответствующее максимальной мощности, называется напряжением максимальной мощности (рабочим напряжением - Up), а соответствующий ток - током максимальной мощности (рабочим током - Ip).

Значение рабочего напряжения для модуля, состоящего из 36 элементов, таким образом, будет около 16…17 В (0,45….0,47 В на элемент) при 25о С.

Такой запас по напряжению по сравнению с напряжением полного заряда АКБ (14,4 В) необходим для того, чтобы компенсировать потери в контроллере заряда-разряда АКБ (о нем речь пойдет позже), а в основном - снижение рабочего напряжения модуля при нагреве модуля излучением: температурный коэффициент для кремния составляет около минус 0,4 %/градус (0,002 В/градус для одного элемента).

Следует заметить, что напряжение холостого хода модуля мало зависит от освещенности, в то время как ток короткого замыкания, а соответственно и рабочий ток, прямо пропорциональны освещенности.

Таким образом, при нагреве в реальных условиях работы, модули разогреваются до температуры 60-70оС, что соответствует смещению точки рабочего напряжения, к примеру, для модуля с рабочим напряжением 17 В - со значения 17 В до 13,7-14,4 В (0,38-0,4 В на элемент).

Исходя из всего выше сказанного надо подходить к расчету числа последовательно соединенных элементов модуля.Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.

Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.

Прежде всего, надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной.

Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.

Следующий этап - это определение емкости АКБ. Емкость АКБ выбирается из стандартного ряда емкостей с округлением в сторону, большую расчетной. А расчетная емкость получается простым делением суммарной мощности потребителей на произведение напряжения АКБ на значение глубины разряда аккумулятора в долях.

Например, если суммарная мощность потребителей 1000 Вт ч в сутки, а допустимая глубина разряда АКБ 12 В - 50 %, то расчетная емкость составит:

1000 / (12 x 0,5) = 167 А*ч

При расчете емкости АКБ в полностью автономном режиме необходимо принимать во внимание и наличие в природе пасмурных дней в течении которых аккумулятор должен обеспечивать работу потребителей.

Последний этап - это определение суммарной мощности и количества солнечных модулей. Для расчета потребуется значение солнечной радиации, которое берется в период работы станции, когда солнечная радиация минимальна. В случае круглогодичного использования - это декабрь.

В разделе “метеорология” даны месячные и суммарные годовые значения солнечной радиации для основных регионов России, а также с градацией по различным ориентациям световоспринимающей плоскости.

Взяв оттуда значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называемое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м2.

Например, для широты Москвы и месяца-июля значение солнечной радиации составляет 167 кВтч/м2 при ориентации площадки на юг под углом 40о к горизонту. Это значит, что среднестатистически солнце светит в июле 167 часов (5,5 часов в день) с интенсивностью 1000 Вт/м2, хотя максимальная освещенность в полдень на площадке, ориентированной перпендикулярно световому потоку, не превышает 700-750 Вт/м2.

Модуль мощностью Рw в течении выбранного периода выработает следующее количество энергии: W = k Pw E / 1000, где Е - значение инсоляции за выбранный период, k- коэффициент равный 0,5 летом и 0,7 в зимний период.

Этот коэффициента делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня.

Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.

Исходя из суммарной мощности потребляемой энергии и приведенной выше формулы - легко рассчитать суммарную мощность модулей. А зная ее, простым делением ее на мощность одного модуля, получим количество модулей.

При создании ФЭС настоятельно рекомендуется максимально снизить мощность потребителей. Например, в качестве осветителей использовать (по возможности) только люминесцентные лампы. Такие светильники, при потреблении в 5 раз меньшем, обеспечивают световой поток, эквивалентный световому потоку лампы накаливания.

Для небольших ФЭС целесообразно устанавливать ее модули на поворотном кронштейне для оптимального разворота относительно падающий лучей. Это позволит увеличить мощность станции на 20-30 %.

Немного об инверторах.

Инверторы или преобразователи постоянного тока в переменный ток, предназначены для обеспечения качественного электропитания различной аппаратуры и приборов в условиях отсутствия или низкого качества электросети переменного тока частотой 50 Гц напряжением 220 В, различных аварийных ситуациях и т. п.

Инвертор представляет собой импульсный преобразователь постоянного тока напряжением 12 (24, 48, 60) В в переменный ток со стабилизированным напряжением 220 В частотой 50 Гц. Большинство инверторов имеет на выходе СТАБИЛИЗИРОВАННОЕ напряжение СИНУСОИДАЛЬНОЙ формы, что позволяет использовать их для электропитания практически любого оборудования и приборов.

Конструктивно инвертор выполнен в виде настольного блока. На передней панели инвертора расположены выключатель работы изделия и индикатор работы преобразователя. На задней панели изделия находятся выводы (клеммы) для подключения источника постоянного тока, например, АКБ, вывод заземления корпуса инвертора, отверстие с креплением вентилятора (охлаждение), трёхполюсная евро розетка для подключения нагрузки.

Стабилизированное напряжение на выходе инвертора позволяет обеспечить качественное электропитание нагрузки при изменениях/колебаниях напряжения на входе, например при разряде АКБ, или колебаниях тока, потребляемого нагрузкой. Гарантированная гальваническая развязка источника постоянного тока на входе и цепи переменного тока с нагрузкой на выходе инвертора позволяют не предпринимать дополнительных мер для обеспечения безопасности работы при использовании различных источников постоянного тока или какого-либо электрооборудования. Принудительное охлаждение силовой части и низкий уровень шума при работе инвертора позволяют, с одной стороны, обеспечить хорошие массогабаритные показатели изделия, с другой стороны, при данном типе охлаждения не создают неудобств при эксплуатации в виде шума.

  • Встроенная панель управления с электронным табло
  • Потенциометр емкости, который позволяет делать возможным точные регулировки
  • Нормализованная планка с подключением по выводам: WE WY STEROW
  • Встроенный оборот торможения
  • Радиатор с вентилятором
  • Эстетичное крепление
  • Питание 230 V - 400 V
  • Перегрузка 150% - 60s
  • Время разбега 0,01...1000 секунд
  • Встроенный электрический фильтр, класса А
  • Рабочая температура: от -5°C - до +45°C
  • Порт RS 485
  • Регулирование шага частоты: 0,01 Hz - 1 кHz
  • Класс защиты IP 20

Функционально обеспечивает: повышение, снижение частоты, контроль перегрузки, перегрева.



Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямой, одноступенчатый переход энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП). При характерной для ФЭП равновесной температуре порядка 300-350 Кельвинов и Т солнца ~ 6000 К их предельный теоретический КПД >90 % . Это означает, что, в результате оптимизации структуры и параметров преобразователя, направленной на снижение необратимых потерь энергии, вполне реально удастся поднять практический КПД до 50% и более (в лабораториях уже достигнут КПД 40%).

Теоретические исследования и практические разработки, в области фотоэлектрического преобразования солнечной энергии подтвердили возможность реализации столь высоких значений КПД с ФЭП и определили основные пути достижения этой цели.

Преобразование энергии в ФЭП основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p - n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом. Принцип работы ФЭП можно пояснить на примере преобразователей с p-n- переходом, которые широко применяются в современной солнечной и космической энергетике. Электронно-дырочный переход создаётся путём легирования пластинки монокристаллического полупроводникового материала с определённым типом проводимости (т.е. или p- или n- типа) примесью, обеспечивающей создание поверхностного слоя с проводимостью противоположного типа. Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Созданные светом в обоих слоях ФЭП неравновесные носители заряда (электронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (т.е.электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП. Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать (объединяться) с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными. Основные необратимые потери энергии в ФЭП связаны с:

  • Ш отражением солнечного излучения от поверхности преобразователя,
  • Ш прохождением части излучения через ФЭП без поглощения в нём,
  • Ш рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
  • Ш рекомбинацией образовавшихся фотопар на поверхностях и в объёме ФЭП,
  • Ш внутренним сопротивлением преобразователя,
  • Ш и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

ь использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;

ь направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;

ь переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;

ь оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);

ь применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;

ь разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

ь создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.5

В системах преобразования энергии СЭС (солнечных электростанций) в принципе могут быть использованы любые созданные и разрабатываемые в настоящее время типы ФЭП различной структуры на базе разнообразных полупроводниковых материалов, однако не все они удовлетворяют комплексу требований к этим системам:

  • · высокая надёжность при длительном (десятки лет!) ресурсе работы;
  • · доступность исходных материалов в достаточном для изготовления элементов системы преобразования количестве и возможность организации их массового производства;
  • · приемлемые с точки зрения сроков окупаемости энергозатраты на создание системы преобразования;
  • · минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос),включая ориентацию и стабилизацию станции в целом;
  • · удобство техобслуживания.

Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, т.е. фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза.В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием (GaAs), как известно, имеют более высокий, чем кремниевые ФЭП, теоретический КПД, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

Вследствие более высокого уровня поглощения солнечного излучения, определяемого прямыми оптическими переходами в GaAs, высокие КПД ФЭП на их основе могут быть получены при значительно меньшей по сравнению с кремнием толщине ФЭП. Принципиально достаточно иметь толщину ГФП 5-6 мкм для получения КПД порядка не менее 20 %, тогда как толщина кремниевых элементов не может быть менее 50-100мкм без заметного снижения их КПД. Это обстоятельство позволяет рассчитывать на создание лёгких плёночных ГФП, для производства которых потребуется сравнительно мало исходного материала, особенно если в качестве подложки удастся использовать не GaAs ,а другой материал, например синтетический сапфир (Al 2 O 3).

ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и, кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры говорят о том, что повышение равновесной температуры последних до 150-180 °С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше 60-70 °С является почти критическим - КПД падает вдвое.

Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180 °С, что уже является вполне рабочими температурами и для тепловых двигателей, паротурбин. Таким образом, к 30-процентному собственному КПД арсенид-галлиевых ГФП (при 150°C) можно прибавить КПД теплового двигателя, использующего сбросовое тепло охлаждающей фотоэлементы жидкости. Поэтому общий КПД установки, которая к тому же использует и третий цикл отбора низкотемпературного тепла у охлаждающей жидкости после турбины на обогрев помещений - может быть даже выше 50-60 %.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки (отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150 °С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций (особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В целом можно заключить, что энергетические, массовые и эксплутационные характеристики ГФП на основе GaAs в большей степени соответствуют требованиям СЭС и СКЭС (космич.), чем характеристики кремниевых ФЭП. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты, солнечные элементы большой площади и т.п.

Цены на кремниевые фотоэлектрические батареи снизились за 25 лет в 20-30 раз с 70-100 долл/ватт в семидесятых годах вплоть до 3,5 долл/ватт в 2000 г. и продолжают снижаться далее. На Западе ожидается переворот в энергетике в момент перехода цены 3-долларового рубежа. По некоторым расчётам, это может произойти уже в 2002 г., а для России с нынешними энерготарифами этот момент наступит при цене 1 ватта СБ 0,3-0,5 доллара, то есть, при на порядок более низкой цене. Тут играют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. В реально действующих структурах с гетеропереходами КПД достигает на сегодняшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии сегодня около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

Галлий добывается в основном из бокситов, однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика, выход при извлечении оценивается величиной всего в 1% и, следовательно, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (ориентированного роста одного монокристалла на поверхности другого {на подложке}), не развита ещё до такой степени, как технология производства кремниевых ФЭП и в результате этого стоимость ГФП сейчас существенно выше (на порядки) стоимости ФЭП из кремния.

В космических аппаратах, где основным источником тока являются солнечные батареи и где очень важны понятные соотношения массы, размера и КПД, главным материалом для солн. батарей, конечно, является арсенид галлия. Очень важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно, снижает потребности в дефицитном галлии. Дополнительный резерв экономии галлия связан с использованием в качестве подложки ГФП не GaAs, а синтетического сапфира (Al 2 O 3).Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразования системы преобразования энергии СЭС на основе ГФП из GaAs может оказаться вполне соизмеримой со стоимостью системы на основе кремния. Таким образом, в настоящее время трудно до конца отдать явное предпочтение одному из двух рассмотренных полупроводниковых материалов- кремнию или арсениду галлия, и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рационален для наземной и космической солнечных энергетик. Постольку-поскольку СБ выдают постоянный ток, то встаёт задача трансформации его в промышленный переменный 50 Гц,220 В. С этой задачей отлично справляется специальный класс приборов- инверторы.

Загатин Сергей

Тема моей работы «Фотоэлектрические преобразования солнечной энергии» наиболее актуальна в настоящее время.

В реферате я описал методы преобразования солнечной энергии, которые могут обеспечить бурно растущие потребности в энергии в течение многих тысяч лет. Электроэнергия является наиболее удобным для использования и передачи видом энергии, так как Солнечное излучение является практически неисчерпаемым источником энергии.

По моему мнению, крупномасштабное развитие фотоэнергии даст огромный толчок развитию районов Земли с высоким среднегодовым поступлением солнечного излучения.

Скачать:

Предварительный просмотр:

Выполнил: Загатин С.В.

учащийся 10 А класса

Руководитель: Лучина Т.В.

учитель физики

2008

ВВЕДЕНИЕ…………………………………………………………

ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ - ПЕРСПЕКТИВНЫЙ ПУТЬ РАЗВИТИЯ ЭНЕРГЕТИКИ…...

ФОТОЭЛЕКТРИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ…………………………………………………………..

ЗАКЛЮЧЕНИЕ……………………………………………………

ЛИТЕРАТУРА………………………………………………………

ВВЕДЕНИЕ

Быстрый рост энергопотребления является одной из наиболее характерных особенностей технической деятельности человечества во второй половине XX века. Развитие энергетики до недавнего времени не встречало принципиальных трудностей. Увеличение производства энергии происходило в основном за счет увеличения добычи нефти и газа, наиболее удобных в потреблении. Однако энергетика оказалась первой крупной отраслью мировой экономики, которая столкнулась с ситуацией истощения своей традиционной сырьевой базы. В начале 70-х годов энергетический кризис разразился во многих странах. Одной из причин этого кризиса явилась ограниченность ископаемых энергетических ресурсов. Кроме того, нефть, газ и уголь являются также ценнейшим сырьем для интенсивно развивающейся химической промышленности. Поэтому сейчас все труднее сохранить высокий темп развития энергетики путем использования лишь традиционных ископаемых источников энергии.

Атомная энергетика в последнее время также столкнулась со значительными трудностями, связанными, в первую очередь, с необходимостью резкого увеличения затрат на обеспечение безопасности работы атомных электростанций.

Загрязнение окружающей среды продуктами сгорания ископаемых источников, в первую очередь угля и ядерного топлива, является причиной ухудшения экологической обстановки на Земле. Существенным является также и "тепловое загрязнение" планеты, происходящее при сжигании любого вида топлива. Допустимый верхний предел выработки энергии на Земле, по оценкам ряда ученых, всего на два порядка выше нынешнего среднего мирового уровня. Такой рост энергопотребления может привести к увеличению температуры на поверхности Земли примерно на один градус. Нарушение энергобаланса планеты в таких масштабах может дать необратимые опасные изменения климата. Эти обстоятельства определяют возрастающую роль возобновляемых источников энергии, широкое использование которых не приведет к нарушению экологического баланса Земли.

  1. ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ - ПЕРСПЕКТИВНЫЙ ПУТЬ

Большинство возобновляемых видов энергии - гидроэнергия, механическая и тепловая энергия мирового океана, ветровая и геотермальная энергия - характеризуется либо ограниченным потенциалом, либо значительными трудностями широкого использования. Суммарный потенциал большинства возобновляемых источников энергии позволит увеличить потребление энергии с нынешнего уровня всего лишь на порядок. Но существует еще один источник энергии - Солнце. Солнце, звезда спектрального класса 2, желтый карлик, очень средняя звезда по всем своим основным параметрам: массе, радиусу, температуре и абсолютной величине. Но эта звезда имеет одну уникальную особенность - это "наша звезда", и человечество обязано всем своим существованием этой средней звезде. Наше светило поставляет Земле мощность около 10 17 Вт - такова сила "солнечного зайчика" диаметром 12,7 тыс. км, который постоянно освещает обращенную к Солнцу сторону нашей планеты. Интенсивность солнечного света на уровне моря в южных широтах, когда Солнце в зените, составляет 1 кВт/м 2 . При разработке высокоэффективных методов преобразования солнечной энергии Солнце может обеспечить бурно растущие потребности в энергии в течение многих сотен лет.

Доводы противников крупномасштабного использования солнечной энергии сводятся в основном к следующим аргументам:

  1. Удельная мощность солнечной радиации мала, и крупномасштабное преобразование солнечной энергии потребует очень больших площадей.
  2. Преобразование солнечной энергии очень дорого и требует практически нереальных материальных и трудовых затрат.

Действительно, как велика будет площадь Земли, покрытой преобразовательными системами, для производства заметной в мировом энергетическом бюджете доли электроэнергии? Очевидно, что эта площадь зависит от эффективности используемых преобразовательных систем. Для оценки эффективности фотоэлектрических преобразователей, осуществляющих прямое преобразование солнечной энергии в электрическую с помощью полупроводниковых фотоэлементов, введем понятие коэффициента полезного действия (КПД) фотоэлемента, определяемого как отношение мощности электроэнергии, вырабатываемой данным элементом, к мощности падающего на поверхность фотоэлемента солнечного зайчика. Так, при КПД солнечных преобразователей, равном 10% (типичные значения КПД для кремниевых фотоэлементов, широко освоенных в серийном промышленном производстве для нужд наземной энергетики), для производства 10 12 Вт электроэнергии потребовалось бы покрыть фотопреобразователями площадь 4 10 10 м 2 , равную квадрату со стороной 200 км. При этом интенсивность солнечной радиации принята равной 250 Вт/м 2 , что соответствует типичному среднему значению в течение года для южных широт. То есть "низкая плотность" солнечной радиации не является препятствием для развития крупномасштабной солнечной энергетики. Возможные пути создания экономичных преобразователей солнечной энергии будут рассмотрены в следующих разделах настоящей статьи.

Приведенные выше соображения являются достаточно веским аргументом: проблему преобразования солнечной энергии необходимо решать сегодня, чтобы использовать эту энергию завтра. Можно хотя бы в шутку рассматривать эту проблему в рамках решения энергетических задач по управляемому термоядерному синтезу, когда эффективный реактор (Солнце) создан самой природой и обеспечивает ресурс надежной и безопасной работы на многие миллионы лет, а наша задача заключается лишь в разработке наземной преобразовательной подстанции. В последнее время в мире проведены широкие исследования в области солнечной энергетики, которые показали, что уже в ближайшее время этот метод получения энергии может стать экономически оправданным и найти широкое применение.

Россия богата природными ресурсами. Мы имеем значительные запасы ископаемого топлива - угля, нефти, газа. Однако использование солнечной энергии имеет и для нашей страны большое значение. Несмотря на то, что значительная часть территории России лежит в высоких широтах, некоторые весьма большие южные районы нашей страны по своему климату очень благоприятны для широкого использования солнечной энергии.

Еще большие перспективы имеет использование солнечной энергии в странах экваториального пояса Земли и близких к этому поясу районах, характеризуемых высоким уровнем поступления солнечной энергии. Так, в ряде районов Центральной Азии продолжительность прямого солнечного облучения достигает 3000 часов в год, а годовой приход солнечной энергии на горизонтальную поверхность составляет 1500 - 1850 кВт час/м 2 .

Главными направлениями работ в области преобразования солнечной энергии в настоящее время являются:

  • прямой тепловой нагрев (получение тепловой энергии) и термодинамическое преобразование (получение электрической энергии с промежуточным преобразованием солнечной энергии в тепловую);
  • фотоэлектрическое преобразование солнечной энергии.

Прямой тепловой нагрев является наиболее простым методом преобразования солнечной энергии и широко используется в южных районах России и в странах экваториального пояса в установках солнечного отопления, снабжения горячей водой, охлаждения зданий, опреснения воды и т.п. Основой солнечных теплоиспользующих установок являются плоские солнечные коллекторы - поглотители солнечного излучения. Вода или другая жидкость, находясь в контакте с поглотителем, нагревается и при помощи насоса или естественной циркуляции отводится от него. Затем нагретая жидкость поступает в хранилище, откуда ее потребляют по мере необходимости. Подобное устройство напоминает системы бытового горячего водоснабжения.

Электроэнергия является наиболее удобным для использования и передачи видом энергии. Поэтому понятен интерес исследователей к разработке и созданию солнечных электростанций, использующих промежуточное преобразование солнечной энергии в тепло с последующим его преобразованием в электроэнергию.

В мире сейчас наиболее распространены солнечные тепловые электростанции двух типов: 1) башенного типа (рис. 1) с концентрацией солнечной энергии на одном гелиоприемнике, осуществляемой с помощью большого количества плоских зеркал; 2) рассредоточенные системы из параболоидов и параболоцилиндров, в фокусе которых размещены тепловые приемники и преобразователи малой мощности.

  1. ФОТОЭЛЕКТРИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

Важный вклад в понимание механизма действия фотоэффекта в полупроводниках внес основатель Физико-технического института (ФТИ) Российской Академии наук академик А.Ф. Иоффе. Он мечтал о применении полупроводниковых фотоэлементов в солнечной энергетике уже в тридцатые годы, когда Б.Т. Коломиец и Ю.П. Маслаковец создали в ФТИ сернисто-таллиевые фотоэлементы с рекордным для того времени КПД = 1%.

Широкое практическое использование для энергетических целей солнечных батарей началось с запуском в 1958 году искусственных спутников Земли - советского " Спутник" -3 и американского "Авангард"-1. С этого времени вот уже более 35 лет полупроводниковые солнечные батареи являются основным и почти единственным источником энергоснабжения космических аппаратов и больших орбитальных станций типа "Салют" и "Мир". Большой задел, наработанный учеными в области солнечных батарей космического назначения, позволил развернуть также работы по наземной фотоэлектрической энергетике.

Основу фотоэлементов составляет полупроводниковая структура с р-п переходом (рис. 2), возникающим на границе двух полупроводников с различными механизмами проводимости. Заметим, что эта терминология берет начало от английских слов positive (положительный) и negative (отрицательный). Получают различные типы проводимости путем изменения типа введенных в полупроводник примесей. Так, например, атомы III группы Периодической системы Д.И. Менделеева, введенные в кристаллическую решетку кремния, придают последнему дырочную (положительную) проводимость, а примеси V группы - электронную (отрицательную). Контакт p- или n- полупроводников приводит к образованию между ними контактного электрического поля, играющего чрезвычайно важную роль в работе солнечного фотоэлемента. Поясним причину возникновения контактной разности потенциалов. При соединении в одном монокристалле полупроводников p- и n-типа возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- в n- полупроводник. В результате такого процесса прилегающая к p-n переходу часть полупроводника p-типа будет заряжаться отрицательно, а прилегающая к p-n переходу часть полупроводника n-типа, наоборот, приобретет положительный заряд. Таким образом, вблизи p-n перехода образуется двойной заряженный слой, который противодействует процессу диффузии электронов и дырок. Действительно, диффузия стремится создать поток электронов из n-области в p-область, а поле заряженного слоя, наоборот, - вернуть электроны в n-область. Аналогичным образом поле p-n переходе противодействует диффузии дырок из p- в n-область. В результате двух процессов, действующих в противоположные стороны (диффузии и движения носителей тока в электрическом поле), устанавливается стационарное, равновесное состояние: на границе возникает заряженный слой, препятствующий проникновению электронов из n-полупроводника, а дырок из p-полупроводника. Другими словами, в области p-n перехода возникает энергетический (потенциальный) барьер, для преодоления которого электроны из n-полупроводника и дырки из p-полупроводника должны затратить определенную энергию. Не останавливаясь на описании электрических характеристик p-n перехода, который широко используется в выпрямителях, транзисторах и других полупроводниковых приборах, рассмотрим работу p-n перехода в фотоэлементах.

При поглощении света в полупроводнике возбуждаются электронно-дырочные пары. В однородном полупроводнике фотовозбуждение увеличивает только энергию электронов и дырок, не разделяя их в пространстве, то есть электроны и дырки разделяются в "пространстве энергий", но остаются рядом в геометрическом пространстве. Для разделения носителей тока и появления фотоэлектродвижущей силы (фотоЭДС) должна существовать дополнительная сила. Наиболее эффективное разделение неравновесных носителей имеет место именно в области p-n перехода (рис. 2). Генерированные вблизи p-n перехода "неосновные" носители (дырки в n-полупроводнике и электроны в p-полупроводнике) диффундируют p-n переходу, подхватываются полем p-n перехода и выбрасываются в полупроводник, в котором они становятся основными носителями: электроны будут локализоваться в полупроводнике n-типа, а дырки - в полупроводнике p-типа. В результате полупроводник p-типа получает избыточный положительный заряд, а полупроводник n-типа - отрицательный. Между n- и p-областями фотоэлемента возникает разность потенциалов - фотоЭДС. Полярность фотоЭДС соответствует "прямому" смещению p-n перехода, которое понижает высоту барьера и способствует инжекции дырок из p-области в n-область и электронов из n-области в p-область. В результате действия этих двух противоположных механизмов - накопления носителей тока под действием света и их оттока из-за понижения высоты потенциального барьера - при разной интенсивности света устанавливается разная величина фотоЭДС. При этом величина фотоЭДС в широком диапазоне освещенностей растет пропорционально логарифму интенсивности света. При очень большой интенсивности света, когда потенциальный барьер оказывается практически нулевым, величина фотоЭДС выходит на "насыщение" и становится равной высоте барьера на неосвещенном p-n переходе. При засветке же прямым, а также сконцентрированным до 100 - 1000 крат солнечным излучением, величина фотоЭДС составляет 50 - 85% от величины контактной разности потенциала p-n перехода.

Мы рассмотрели процесс возникновения фотоЭДС, возникающей на контактах p- и n-областям p-n перехода. При коротком замыкании освещенного p-n перехода в электрической цепи потечет ток, пропорциональный по величине интенсивности освещения и количеству генерированных светом электронно-дырочных пар. При включении в электрическую цепь полезной нагрузки, например питаемого солнечной батареей калькулятора, величина тока в цепи несколько уменьшится. Обычно электрическое сопротивление полезной нагрузки в цепи солнечного элемента выбирают таким, чтобы получить максимальную отдаваемую этой нагрузке электрическую мощность.

Солнечный фотоэлемент изготавливается на основе пластины, выполненной из полупроводникового материала, например кремния. В пластине создаются области с p- и n- типами проводимости (рис. 2). В качестве методов создания этих областей используется, например, метод диффузии примесей или метод наращивания одного полупроводника на другой. Затем изготавливаются нижний и верхний электроконтакты (на рисунке электроды заштрихованы), причем нижний контакт - сплошной, а верхний выполняется в виде гребенчатой структуры (тонкие полосы, соединенные относительно широкой токосборной шиной).

Основным материалом для получения солнечных элементов является кремний. Технология получения полупроводникового кремния и фотоэлементов на его основе базируется на методах, разработанных в микроэлектронике - наиболее развитой промышленной технологии. Кремний, по-видимому, вообще один из самых изученных материалов в природе, к тому же второй по распространенности после кислорода. Если учесть, что первые солнечные элементы были изготовлены из кремния около сорока лет назад, то естественно, что этот материал играет первую скрипку в программах фотоэлектрической солнечной энергетики. Фотоэлементы из монокристаллического кремния сочетают достоинства использования относительно дешевого полупроводникового материала с высокими параметрами получаемых на его основе приборов.

До недавнего времени солнечные батареи наземного применения, так же как и космического, изготавливали на основе относительно дорогого монокристаллического кремния. Снижение стоимости исходного кремния, разработка высокопроизводительных методов изготовления пластин из слитков и прогрессивных технологий изготовления солнечных элементов позволили в несколько раз снизить стоимость наземных солнечных батарей на их основе. Основными направлениями работ по дальнейшему снижению стоимости "солнечной" электроэнергии являются: получение элементов на основе дешевого, в том числе ленточного, поликристаллического кремния; разработка дешевых тонкопленочных элементов на основе аморфного кремния и других полупроводниковых материалов; осуществление преобразования концентрированного солнечного излучения с помощью высокоэффективных элементов на основе кремния и относительно нового полупроводникового материала алюминий-галлий-мышьяк.

На рисунке 3 показаны две принципиальные схемы фотоэлектрических установок с концентраторами солнечного излучения в виде зеркал (вверху) и линз Френеля (внизу). Линза Френеля представляет собой выполненную из оргстекла пластину толщиной 1 - 3 мм, одна сторона которой является плоской, а на другой образован профиль в виде концентрических колец, повторяющий профиль выпуклой линзы. Линзы Френеля существенно дешевле обычных выпуклых линз и обеспечивают при этом степень концентрирования в 2 - 3 тысячи "солнц".

В последние годы в мире достигнут значительный прогресс в области разработки кремниевых солнечных элементов, работающих при концентрированном солнечном облучении. Созданы кремниевые элементы с КПД > 25% в условиях облучения на поверхности Земли при степени концентрирования 20 - 50 "солнц". Значительно большие степени концентрирования допускают фотоэлементы на основе полупроводникового материала алюминий-галлий-мышьяк, впервые созданные в Физико-техническом институте им. А.Ф. Иоффе в 1969 году. В таких солнечных элементах достигаются значения КПД > 25% при степени концентрирования до 1000 крат. Несмотря на большую стоимость таких элементов, их вклад в стоимость получаемой электроэнергии не оказывается определяющим при высоких степенях концентрирования солнечного излучения вследствие существенного (до 1000 раз) снижения их площади. Ситуация, при которой стоимость фотоэлементов не дает существенного вклада в общую стоимость солнечной энергоустановки, делает оправданным усложнение и удорожание фотоэлемента, если это обеспечивает увеличение КПД. Этим объясняется внимание, уделяемое в настоящее время разработкам каскадных солнечных элементов, которые позволяют достичь существенного увеличения КПД. В каскадном солнечном элементе солнечный спектр расщепляется на две (или более) части, например, видимую и инфракрасную, каждая из которых преобразуется с помощью фотоэлементов, выполненных на основе различных материалов. В этом случае снижаются потери энергии квантов солнечного излучения. Например, в двухэлементных каскадах теоретическое значение КПД превышает 40%.

ЗАКЛЮЧЕНИЕ

Из сказанного выше следует вывод о перспективности фотоэлектрической солнечной энергетики. Солнечное излучение является практически неисчерпаемым источником энергии, оно поступает во все уголки Земли, находится "под рукой" у любого потребителя и является экологически чистым доступным источником энергии.

Недостатком солнечного излучения как источника энергии является неравномерность его поступления на земную поверхность, определяемая суточной и сезонной цикличностью, а также погодными условиями. Поэтому весьма важной является проблема аккумулирования электроэнергии, вырабатываемой с помощью солнечных энергоустановок. В настоящее время эта проблема решается в основном путем использования обычных химических накопителей - аккумуляторов. Одним из перспективных способов аккумулирования является использование электроэнергии для электролиза воды на водород и кислород с последующим хранением и использованием водорода в качестве экологически чистого топлива, так как при сгорании водорода образуются только пары воды.

Крупномасштабное развитие фотоэнергетики даст огромный толчок развитию районов Земли с высоким среднегодовым поступлением солнечного излучения. Это касается в первую очередь пустынных и засушливых районов, которые с "приходом" солнечной электроэнергии станут районами, пригодными для активного земледелия - житницами Земли. Значит ли это, что усилия специалистов надо сосредоточить только на разработке фотоэлектрических преобразователей и решении непосредственно связанных с ними проблем? Конечно, нет. Нельзя развивать какое-то одно направление за счет подавления других направлений. Это же касается и электроэнергетики: ее нельзя строить, базируясь только на одном виде ресурсов. Она должна основываться на многих источниках: солнечных, ветровых, атомных и, конечно, на традиционных, ископаемых источниках. Это позволит найти оптимальные пути их взаимодействия, постепенно переходя к совершенной, экологически чистой и надежной энергетике будущего.

ЛИТЕРАТУРА

  1. Васильев A.M., Ландсман А.П. Полупроводниковые фотопреобразователи. М.: Сов. радио, 1971.
  2. Алферов Ж.И. Фотоэлектрическая солнечная энергетика/В сб.: Будущее науки. М.: Знание, 1978. С. 92-101.
  3. Колтун М.М. Оптика и метрология солнечных элементов. М.: Наука, 1985.
  4. Андреев В.М., Грилихес В.А., Румянцев В.Д. Фотоэлектрическое преобразование концентрированного солнечного излучения. Л.: Наука, 1989.
  5. Колтун М.М. Солнечные элементы. М.: Наука, 1987.
  6. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. М.: Наука, 1984.

Быстрый рост энергопотребления приводит к ограниченности ископаемых энергетических ресурсов. Все труднее сохранить высокий темп развития энергетики путем использования традиционных источников энергии. Тема моей работы «Фотоэлектрические преобразования солнечной энергии» наиболее актуальна в настоящее время.

В реферате я описал методы преобразования солнечной энергии, которые могут обеспечить бурно растущие потребности в энергии в течение многих тысяч лет. Электроэнергия является наиболее удобным для использования и передачи видом энергии, так как Солнечное излучение является практически неисчерпаемым источником энергии.

По моему мнению, крупномасштабное развитие фотоэнергии даст огромный толчок развитию районов Земли с высоким среднегодовым поступлением солнечного излучения.

Рецензия

В реферате «Фотоэлектрические преобразования солнечной энергии» Сергей раскрыл выбранную тему полно. В данной работе рассмотрены актуальные вопросы преобразования солнечной энергии: прямой тепловой нагрев и фотоэлектрический преобразования.

Раскрывая тему Загатин С. опирается на работы А.Ф. Иоффе. В своей работе он рассматривает применение полупроводниковых фотоэлементов в солнечной энергетике, историю использования солнечных батареек, а так же процесс возникновения фотоЭДС.

Работа Сергея имеет логическую целостность, объем частей реферата выдержан. Изложение материала научно и интересно, поясняется рисунками. Имеется личностная оценка исследуемого вопроса.

При подготовке к работе над рефератом использовано достаточное количество литературы.

Считаю возможным оценить проделанную Загатиным С. работу

на «5».

Руководитель