Ключевые слова

КОНФЛИКТ / ФОРМАЛЬНАЯ ЛОГИКА / ЭЛЕМЕНТЫ / ЛОГИЧЕСКИЕ ОПЕРАЦИИ / ЗАКОНЫ ЛОГИКИ / ВЫСКАЗЫВАНИЕ / ДВУЗНАЧНАЯ ЛОГИКА / МНОГОЗНАЧНАЯ ЛОГИКА / CONFLICT / FORMAL LOGIC ELEMENTS / LOGIC OPERATIONS / LAWS OF LOGIC / STATEMENT / TWO-VALUED LOGIC / MANY-VALUED LOGIC

Аннотация научной статьи по математике, автор научной работы - Левин Виталий Ильич, Немкова Елена Анатольевна

Актуальность. В статье рассмотрена актуальная проблема адекватного математического моделирования поведения конфликтующих систем, применительно к системам, конфликты в которых не обязательно связаны с антагонистическим противоречием между участниками системы. Дана формальная постановка задачи логико-математического моделирования процесса взаимодействия конфликтующих участников системы. Эта задача заключается в построении алгебр двузначной и многозначной логики , моделирующих различные типы мышления, различие которых и является источником конфликта . Цель статьи. Целью статьи является изложение и детальный анализ двузначной и многозначной логик , с упором на выяснение фундаментальных различий законов этих логик, влекущих за собой существенные различия в мышлении индивидов, базирующихся на указанных логиках, и вытекающие из этого различия конфликты между носителями различных логик мышления. Метод. Для решения поставленной задачи используется традиционный метод построения логических систем, основанный на введении базовых постоянных элементов , основных операций над ними и выявлении законов, которым подчиняются эти операции. При этом основное внимание уделяется различиям элементов операций над ними и законов операций между двузначной и многозначной логиками . Новизна. Сформулировано положение, согласно которому существуют системы, конфликты между участниками которых вызываются не антагонистическими противоречиями их интересов, а различием их логик мышления, следствием которого является непонимание, провоцирующее подозрительность, а потом и агрессию. Это так называемое воображаемые конфликты , борьба с которыми требует специальных подходов. Результат. Разработана процедура построения алгебры логики различной значности, адекватно моделирующей процессы мышления. Описаны двузначная и многозначная логики мышления и их законы. Установлены фундаментальные различия двузначной и многозначной логик . Приведен пример анализа конфликта , вызванного различием логик мышления.

Похожие темы научных работ по математике, автор научной работы - Левин Виталий Ильич, Немкова Елена Анатольевна

  • Логико-математические методы и их применения

    2018 / Левин Виталий Ильич
  • Логика Н. А. Васильева и многозначные логики

    2016 / Максимов Д.Ю.
  • Логические методы расчета надежности систем. Часть i. математический аппарат

    2017 / Левин Виталий Ильич
  • Логико-алгебраический подход к моделированию конфликтов

    2015 / Левин Виталий Ильич
  • Неклассические модификации многозначных матриц классической логики. Часть i

    2016 / Девяткин Л.Ю.
  • Предмет и перспективы развития логики

    2018 / Ивлев Ю.В.
  • Условия применимости классической логики к философским рассуждениям

    2018 / Павлов Сергей Афанасьевич
  • Математический аппарат синтеза k-значных цифровых логических схем на основе линейной алгебры

    2016 / Будяков П.С., Чернов Н.И., Югай В.Я., Прокопенко Н.Н.
  • Система натурального вывода для трехзначной логики Гейтинга

    2017 / Петрухин Ярослав Игоревич
  • Оптимизация выбора базиса для линейного логического синтеза цифровых структур

    2014 / Прокопенко Николай Николаевич, Чернов Николай Иванович, Югай Владислав Яковлевич

Relevance. In the article the actual problem of adequate mathematical modeling of the behavior of the conflicting systems in relation to systems, conflicts are not necessarily related to the contradiction between the participants in the system. An exact statement of the problem of logical and mathematical modeling of the interaction between the conflicting parties of the system. The task is to build a two-valued algebra and multi-valued logic, simulating different types of thinking, and that difference is a source of conflict . The purpose of the article. The aim of the article is a summary and a detailed analysis of the two-valued and multi-valued logic, with a focus on finding the fundamental differences of the laws of logic , entailing significant differences in the thinking of individuals, based on these logics and the resulting differences in conflicts between carriers of different logics of thinking. Method. To solve this problem, we use the traditional method of construction of logical systems based on the introduction of basic elements of permanent, major operations on them and identify the laws that govern these operations. The main attention is paid to the differences of elements of operations on them and transactions between the laws of two-valued and multi-valued logic. Novelty. Formulated provision according to which there are systems, conflicts between the parties which are not caused by the contradictions of their interests and the difference of their logic thinking, the result of which is a misunderstanding, provoking suspicion, and then aggression. This so-called imaginary conflicts, the fight against which requires special approaches. Result. The procedure of constructing the algebra of logic different valence, adequately modeling the processes of thinking. We describe the two-valued and multi-valued logic thinking and their laws. Established the fundamental differences of two-valued and multi-valued logic. An example of the analysis of the conflict caused by the difference logic thinking.

Текст научной работы на тему «Логико-математическое моделирование конфликтов»

Логико-математическое моделирование конфликтов

Левин В. И., Немкова Е. А.

Актуальность. В статье рассмотрена актуальная проблема адекватного математического моделирования поведения конфликтующих систем, применительно к системам, конфликты в которых не обязательно связаны с антагонистическим противоречием между участниками системы. Дана формальная постановка задачи логико-математического моделирования процесса взаимодействия конфликтующих участников системы. Эта задача заключается в построении алгебр двузначной и многозначной логики, моделирующих различные типы мышления, различие которых и является источником конфликта. Цель статьи. Целью статьи является изложение и детальный анализ двузначной и многозначной логик, с упором на выяснение фундаментальных различий законов этих логик, влекущих за собой существенные различия в мышлении индивидов, базирующихся на указанных логиках, и вытекающие из этого различия конфликты между носителями различных логик мышления. Метод. Для решения поставленной задачи используется традиционный метод построения логических систем, основанный на введении базовых постоянных элементов, основных операций над ними и выявлении законов, которым подчиняются эти операции. При этом основное внимание уделяется различиям элементов операций над ними и законов операций между двузначной и многозначной логиками. Новизна. Сформулировано положение, согласно которому существуют системы, конфликты между участниками которых вызываются не антагонистическими противоречиями их интересов, а различием их логик мышления, следствием которого является непонимание, провоцирующее подозрительность, а потом и агрессию. Это так называемое воображаемые конфликты, борьба с которыми требует специальных подходов. Результат. Разработана процедура построения алгебры логики различной значности, адекватно моделирующей процессы мышления. Описаны двузначная и многозначная логики мышления и их законы. Установлены фундаментальные различия двузначной и многозначной логик. Приведен пример анализа конфликта, вызванного различием логик мышления.

Ключевые слова: конфликт, формальная логика, элементы, логические операции, законы логики, высказывание, двузначная логика, многозначная логика.

Введение

Несомненна важность общей теории конфликта - науки, занимающейся расчетом, анализом, синтезом и разрешением общих моделей конфликтных ситуаций. В то же время ясно, что построение продуктивных моделей конфликта должно быть основано на привязке к наиболее важным конкретным классам конфликтующих систем. И самый большой интерес среди этих систем вызывает, конечно, человеческое общество.

Конфликтами в человеческом обществе с целью их практического разрешения в настоящее время занимается гуманитарная наука -конфликтология, являющаяся частью социологии. Однако эта наука не стремится вскрыть внутреннюю природу конфликтных ситуаций, а без этого невозможно построить соответствующие хорошие математические модели, позволяющие детально изучать такие ситуации.

Обычно считается, что источником человеческих конфликтов является противоречие между целями, которые различные люди ставят между собой . Однако не секрет, что большая (а возможно, и подавляющая) часть человечества - это люди, которые не ставят перед собой никаких особых целей.

№3. 2016

Sccs.intelgr.com

Но при этом они часто конфликтуют с другими людьми - как бесцельно существующими, подобными им, так и с вполне целеустремленными людьми. Этот факт побуждает предполагать, что в основе конфликтов между людьми лежит еще и какая-то другая особенность человеческой личности, не связанная напрямую с деятельностью человека и его целями, а присущая ему на генетическом уровне. В настоящей статье выдвигается и обосновывается гипотеза, согласно которой особенность человека, которая сильно, а иногда решающим образом влияет на возникновение (или отсутствие) его конфликтов с окружающими, это тип, а точнее - логика его мышления. С этой целью рассматриваются два существенно различных типа логики - двузначная и многозначная, а затем показывается, что основанные на них варианты человеческого мышления в значительной мере несовместимы. Эта несовместимость и приводит к взаимонепониманию между приверженцами двух указанных типов мышления и, в конечном счете, к конфликтам между ними.

1. Двузначная формальная логика

Двузначная формальная (иначе - математическая, символическая) логика высказываний, называемая еще классической, лежит в основе обычного человеческого мышления. Эта логика строится с помощью двух постоянных элементов: ИСТИНА (обозначение И) и ложь (обозначение Л); переменных, значениями которых служат значения истинности различных высказываний, и логических операций, которые можно выполнять над постоянными элементами. Высказывание - это утверждение, которое может быть либо истинным (И), либо ложным (Л). Поэтому логические операции можно выполнять и над высказываниями. Логические операции над постоянными элементами или высказываниями Р,Q следующие: отрицание Р (иначе «НЕ Р»), дизъюнкция Р V Q (иначе «Р ИЛИ Q»), конъюнкция Р л Q (иначе «Р И Q»), разделительная дизъюнкция Р 0 Q (иначе «ЛИБО Р, ЛИБО Q»), эквивалентность Р « Q (иначе « Р РАВНОСИЛЬНО Q»), импликация Р ® Q (иначе «ЕСЛИ Р, ТО Q»). Эти операции определены в таблицах истинности 1 и 2. Кроме высказываний, имеющих переменные значения истинности (И или Л), имеются два высказывания с постоянными значениями истинности: тождественно истинное высказывание или тавтология (обозначение Т) и тождественно ложное высказывание или противоречие (обозначение П).

Таблица 1 - Операция отрицания

Системы управления, связи и безопасности

Systems of Control, Communication and Security

sccs.intelgr.com

Таблица 2 - Операции дизъюнкции, конъюнкции, разделительной дизъюнкции, эквивалентности и импликации

P Q P V Q P Ù Q P ® Q P « Q P ® Q

Л Л Л Л Л И И

И Л И Л И Л Л

Л И И Л И Л И

И И И И Л И И

Во введенной логике справедливы следующие законы:

Переместительный закон для дизъюнкции и конъюнкции

Р V Q = Q V Р, Р л Q = Q л Р; (1)

Сочетательный закон для дизъюнкции и конъюнкции

(Р V Q) V Я = Р V (£ V Я), (Р л Q) л Я = Р л (£ л Я). (2)

Распределительный закон для конъюнкции относительно дизъюнкции

(Р V Q) л Я = (Р л Я) V (д л Я); (3)

Распределительный закон для дизъюнкции относительно конъюнкции

(Р л Q) V Я = (Р V Я) л (д V Я); (4)

Закон де Моргана

Р V Q = Р л Q, Р л Q = Р V Q; (5)

закон тавтологии

Р V Р = Р, Р л Р = Р, (6)

Закон поглощения

Р л (Р V Q) = Р, Р V (Р л Q) = Р; (7)

Закон действия над высказываниями с постоянными значениями истинности

Р V П = Р, Р V T = ^ Р л T = Р, Р л П = П, (8)

Закон двойного отрицания

Закон исключенного третьего

Р V Р = Т; (10)

Закон противоречия

Р л Р = П; (11)

Закон преобразования импликации

(Р ® Q) = PV Q (12)

Для доказательства законов двузначной логики строятся таблицы истинности их обеих частей, подобные табл. 1, 2. Если оказывается, что таблицы для обеих частей совпадают, то закон справедлив. Логические законы позволяют заменять выражения логики высказываний эквивалентными, но более простыми (либо более удобными в каком-то смысле) выражениями.

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

Построенная логика высказываний позволяет формально описывать процесс человеческого мышления, используя формальную конструкцию

А1 л А2 л... л Ап ® В. (13)

Здесь А1,...,Ап - исходные высказывания (посылки), В - новое

высказывание (заключение). Сложное высказывание (13) называется логическим выводом. Логический вывод может быть истинным или ложным. Если он истинен при любых значениях истинности посылок и заключения (т.е. тождественно истинен), он считается верным. В остальных случаях логический вывод считается неверным. Для проверки верности логического вывода можно построить его таблицу истинности и убедиться, что он тождественно истинен либо преобразовать выражение (13) логического вывода с помощью подходящих логических законов и привести его к тождественно истинному высказыванию.

Приведем еще один логический закон - транзитивности импликации, важный для логического вывода

(Р ® 0л(0 ® Я) ® (Р ® Я). (14)

Закон (14) показывает, что операция импликации ® транзитивна, что позволяет осуществлять логический вывод как многоступенчатый (цепочечный) процесс.

Двузначная формальная логика и реализующие ее автоматы широко используются для математического моделирования многих классов систем. В частности, конфликтующих систем .

2. Многозначная формальная логика

Все основные черты многозначной логики проявляются, начиная со значности к = 3. Поэтому ограничимся трехзначной формальной логикой высказываний. Эта логика лежит в основе человеческого мышления, более сложного, чем обычное. Она строится с помощью тех же постоянных элементов, что и двузначная логика: И и Л, с добавлением постоянного элемента НЕОПРЕДЕЛЕННОСТЬ (обозначение Н). Новый элемент является неопределенностью в том смысле, что он не истинен и не ложен. Как и в двузначной логике, в качестве переменных значений используется истинность различных высказываний. Эти значения теперь могут быть И, Л или Н. Логические операции можно выполнять над постоянными элементами И, Л и Н и над переменными (высказываниями), принимающими эти же значения И, Л и Н. В трехзначной логике имеются те же операции, что и в двузначной. Однако число возможных вариантов каждой операции значительно больше. В табл. 3-5 определены три наиболее употребительных варианта операции отрицания. В табл. 6 определены операции дизъюнкции Р V 0, конъюнкции Р л 0, разделительной дизъюнкции Р Ф 0, эквивалентности Р « 0, импликации Р ® 0 (по одному варианту для каждой операции). Кроме высказываний с переменными значениями истинности (И, Л или Н), имеются три высказывания с постоянными значениями истинности: И (называемое тавтологией Т), Л (называемое противоречием П) и Н (называемое неопределенностью Н).

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

Первые две совпадают с соответствующими в двузначной логике, третье является новым высказыванием с постоянным значением истинности.

Таблица 3 - Зеркальное отрицание

Таблица 4 - Левое циклическое отрицание

Таблица 5 - Правое циклическое отрицание

Таблица 6 - Операции дизъюнкции, конъюнкции, разделительной дизъюнкции, эквивалентности и импликации

P Q P v Q P A Q P ® Q P « Q P ® Q

Л Л Л Л Л И И

Л Н Н Л Н Н И

Л И И Л И Л И

Н Л Н Л Н Н Н

Н Н Н Н Н Н Н

Н И И Н Н Н И

И Л И Л И Л Л

И Н И Н Н Н Н

И И И И Л И И

Во введенной трехзначной логике остаются справедливы законы двузначной логики, не содержащие операции отрицания. Это законы переместительный, сочетательный и распределительный (1)-(4), тавтологии, поглощения и действий с постоянными (6)-(8), транзитивности (14). Однако появляются новые законы действий над высказываниями с постоянным значением истинности Н

Н V Л = Н, Н V И = И, Н л Л = Л, Н л И = Н. (15)

Главное же отличие трехзначной логики от двузначной состоит в существенном изменении законов, содержащих операцию отрицания. Конкретный вид этих законов зависит от выбранного варианта операции отрицания. Если это операция зеркального отрицания (табл. 3), то остаются

Системы управления, связи и безопасности

Systems of Control, Communication and Security

sccs.intelgr.com

справедливыми законы де Моргана, двойного отрицания и преобразования импликации (5), (9), и (12) двузначной логики, однако закон исключенного третьего (10) переходит в следующий закон «частично исключенного третьего»

Р V Р = Т"(Р), где Т"(Р) = {И, при Р = И или Л; (16)

[И, при Р = Н; у 7

а закон противоречия (11) - в следующий закон «частичного противоречия»

Р л Р = П"(Р), где П"(Р) = {Л, при Р = И или Л; (17)

[И, при Р = И. у 7

Для операций левого и правого циклического отрицания (табл. 4 и 5) все законы двузначной логики, содержащие отрицание, трансформируется в соответствующие новые, более сложные законы трехзначной логики. Так, законы двойного отрицания (9), исключенного третьего (10) и противоречия (11) трансформируется в соответствующие законы - закон тройного отрицания

закон исключенного четвертого

Р V Р V Р = Т (19)

и закон полного противоречия

Р л Р л Р = П, (20)

а законы де Моргана (5) и преобразования импликации (12) - в соответствующие более сложные законы, форма которых уже зависит от того, какое циклическое отрицание использовано - левое или правое. В связи с обсуждаемой проблемой логики мышления особое значение имеет конкретизация закона (18) в виде

Р ф Р, "Р; (21)

закона (19) в виде закона «частично исключенного третьего»

ГИ, при Р = И или Л, Р V Р = Тл(Р), где Тл(Р) = { " р

[И, при Р = И,

П п ГИ, при Р = И или И, Р V Р = Тп(Р), где Тп (Р) = { " р

[И, при Р = Л,

для правого циклического отрицания; и закона (20) в виде закона «частичного противоречия»

- „ Г Л, при Р = Л или И, Р л Р = Пл (Р), где Пл (Р) = { " р _ тя

[И, при Р = И,

для левого циклического отрицания;

П п Г Л, при Р = Л или И, Р л Р = Пп (Р), где Пп (Р) = { " р

[И, при Р = И,

для правого циклического отрицания.

Как видно из (21), в трехзначной логике с операцией циклического отрицания не действует закон двойного отрицания. Далее, из (22) следует, что в этой логике не действует закон исключенного третьего - он трансформируется

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

в закон «частично исключенного третьего», конкретная форма которого зависит от варианта операции циклического отрицания (правое или левое). Аналогично, из (23) следует, что в этой логике не действует закон противоречия - он трансформируется в закон «частичного противоречия», конкретная форма которого также зависит от варианта операции циклического отрицания.

3. Логика и конфликты

Каждый мыслящий индивидуум в своей мыслительной деятельности всегда использует сознательно или интуитивно тот или иной вариант логики. Выше мы видели, что между двузначной и многозначной логиками есть существенные различия. Поэтому всех индивидуумов, по используемому в их мышлении преимущественного варианту логики, можно разделить на двузначных и многозначных мыслителей. Их основные различия заключаются в том, что для двузначного мыслителя любое высказывание может иметь только два значения истинности: истинно и ложно, причем отрицание одного дает другое, в то время как для многозначного мыслителя любое высказывание имеет, как минимум, три значения истинности: истинно, ложно и неопределенно. При этом операция отрицания может быть определена по-разному, так что отрицание любого значения истинности в общем случае может дать любое другое значение истинности.

Ввиду указанных глубоких различий между двузначными и многозначными мыслителями возникает сложная проблема их взаимоотношений. Сущность этой проблемы в том, что в рамках двузначного мышления трудно понять явно многозначную природу мира (с точки зрения современной науки). Такое постоянное недопонимание ведет к подозрительности и страху. В итоге двузначный мыслитель начинает конфликтовать с многозначным, склоняясь к силовому решению.

Рассмотрим простейший характерный пример. На банкете, во время застолья, художник, уже изрядно навеселе обращается к ученому: «Ты что не пьешь?» - Тот отвечает: «Не могу!». Художник продолжает настаивать: «Пей!». Ученый возражает: «Не буду!». Тогда художник заявляет громогласно: «Значит, ты собираешься написать на нас донос!». Наш художник, конечно типичный двузначный мыслитель, для которого существует лишь два варианта: пить и потому быть не способным донести и не пить и потому быть способным написать донос. Ему не приходит в голову, что есть и другие варианты, очевидные для ученого - многозначного мыслителя. Например, напиться до беспамятства, а потом донести о том чего не было, или вообще не пить и при этом не доносить из нравственных соображений.

Реальная версия этой полу фантастической истории произошла в 1938 году на правительственной даче в Кунцево, под Москвой, когда во время очередного банкета, устроенного И.В. Сталиным, ему не удалось заставить пить наркома кинематографии СССР Бориса Шумяцкого. После чего по приказу двузначного мыслителя Сталина подозрительный многозначный мыслитель Шумяцкий был расстрелян.

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

Изложенные в данном разделе соображения могут быть положены в основу нового многозначно-логического подхода к моделированию конфликтов, отличного от двузначно-логического подхода, основанного на математическом аппарате, рассмотренном в работе . Такой новый подход открывает новые перспективы моделирования конфликтов. В частности, он позволит увеличить число градаций взаимодействия конфликтующих систем и тем самым сделает анализ этого взаимодействия более тонким. Подробное изложение данного подхода предполагается в отдельной статье.

Заключение

В статье показано, что двузначная и многозначная логики подчиняются существенно различным законам, благодаря чему могут быть использованы для моделирования различных типов мышления. Выявлено, что источником человеческих конфликтов может быть не только противоречие между целями, которые различные люди ставят перед собой, но и человеческое взаимонепонимание, вызванное различием типов мышления. Достоинство описываемого подхода к изучению конфликтов заключается в возможности более тонкого проникновения в суть развития конфликтных ситуаций.

Литература

1. Дмитриев А. В. Конфликтология. - М.: ИИФРА-М, 2009. - 336 с.

2. Сысоев В. В. Конфликт. Сотрудничество. Иезависимость: системное взаимодействие в структурно-параметрическом представлении. - Москва: МАЭиП, 1999. - 151 с.

3. Светлов В. А. Аналитика конфликта. - СПб: Росток, 2001. - 512 с.

4. Левин В. И. Математическое моделирование систем с помощью динамических автоматов // Информационные технологии. 1997. № 9. С. 15-24.

5. Левин В. И. Математическое моделирование с помощью автоматов // Вестник Тамбовского университета. Серия: Естественные и технические науки. 1997. Т. 2. № 2. С. 67-72.

6. Левин В. И. Автоматная модель определения возможного времени проведения коллективных мероприятий // Известия РАИ. Теория и системы управления. 1997. № 3. С. 85-96.

7. Левин В. И. Математическое моделирование библии. Характеристический автоматный подход // Вестник Тамбовского университета. Серия: Естественные и технические науки. 1999. Т. 4. № 3. С. 353-363.

8. Левин В. И. Автоматное моделирование коллективных мероприятий // Автоматика и телемеханика. 1999. № 12. С. 78-89.

9. Левин В. И. Математическое моделирование библейской легенды о Вавилонском столпотворении // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2001. Т. 6. № 2. С. 123-138.

10. Левин В. И. Автоматное моделирование исторических процессов на примере войн // Радиоэлектроника. Информатика. Управление. 2002. № 12. С. 93-101.

11. Левин В. И. Автоматное моделирование процессов возникновения и распада коллектива // Кибернетика и системный анализ. 2003. № 3. С. 92-101.

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

12. Левин В. И. Логико-алгебраический подход к моделированию конфликтов // Системы управления, связи и безопасности. 2015. № 4. С. 69-87. URL: http://sccs.intelgr.com/archive/2015-04/03-Levin.pdf (дата обращения 01.08.2016).

1. Dmitriev A .V. Konfliktologiia . Moscow, INFRA-M Publ., 2009. 336 p. (in Russian).

2. Sysoev V. V. Konflikt. Sotrudnichestvo. Nezavisimost": sistemnoe vzaimodeistvie v strukturno-parametricheskom predstavlenii . Moscow, MAEP Publ., 1999. - 151 p. (in Russian).

3. Svetlov V. A. Analitika konflikta . Saint-Petersburg, Burgeon Publ., 2001. 512 p. (in Russian).

4. Levin V. I. Mathematical modeling of systems with dynamic machines. Information technologies, 1997, no. 9, pp. 15-24 (in Russian).

5. Levin V. I. Mathematical modeling using automata. Bulletin of the University of Tambov. Series: Natural and Technical Sciences, 1997, vol. 2, no. 2, pp. 67-72. (in Russian).

6. Levin V. I. Automaton model determine the possible time of the collective actions. Izvestiya RAS. Theory and control systems, 1997, no. 3, pp. 85-96. (in Russian).

7. Levin V. I. Mathematical modeling of the Bible. Characteristic automata approach. Bulletin of the University of Tambov. Series: Natural and Technical Sciences, 1999, vol. 4, no. 3, pp. 353-363 (in Russian).

8. Levin V. I. Automatic modeling of collective actions. Automation and Remote Control, 1999, no. 12, pp. 78-89 (in Russian).

9. Levin V. I. Mathematical modeling of the biblical legend of the Tower of Babel. Bulletin of the University of Tambov. Series: Natural and Technical Sciences, 2001, vol. 6, no 2, pp. 123-138 (in Russian).

10. Levin V. I. Automatic modeling of historical processes on the example of the wars. Electronics. Computer science. Control, 2002, no. 12, pp. 93-101 (in Russian).

11. Levin V. I. Automatic modeling of processes of emergence and collapse of collective // Cybernetics and Systems Analysis, 2003, no. 3, pp. 92-101 (in Russian).

12. Levin V. I. Logical-Algebraic Approach to Conflicts Modeling. Systems of Control, Communication and Security, 2015, no. 4, pp. 69-87. Available at: http://sccs.intelgr.com/archive/2015-04/03-Levin.pdf (accessed 01 Aug 2016) (in Russian).

Левин Виталий Ильич - доктор технических наук, профессор, PhD, Full Professor. Заслуженный деятель науки РФ. Пензенский государственный технологический университет. Область научных интересов: логика;

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

математическое моделирование в технике, экономике, социологии, истории; принятие решений; оптимизация; теория автоматов; теория надежности; распознавание; история науки; проблемы образования. E-mail: [email protected]

Немкова Елена Анатольевна - кандидат технических наук, доцент кафедры «Математика». Пензенский государственный технологический университет. Область научных интересов: логика; математическое моделирование в технике и экономике. E-mail: [email protected]

Адрес: 440039, Россия, г. Пенза, пр. Байдукова/ул. Гагарина, д. 1 а/11.

Logical-Mathematical Modelling of Conflicts

V. I. Levin, E. A. Nemkova

Relevance. In the article the actual problem of adequate mathematical modeling of the behavior of the conflicting systems in relation to systems, conflicts are not necessarily related to the contradiction between the participants in the system. An exact statement of the problem of logical and mathematical modeling of the interaction between the conflicting parties of the system. The task is to build a two-valued algebra and multi-valued logic, simulating different types of thinking, and that difference is a source of conflict. The purpose of the article. The aim of the article is a summary and a detailed analysis of the two-valued and multi-valued logic, with a focus on finding the fundamental differences of the laws of logic, entailing significant differences in the thinking of individuals, based on these logics and the resulting differences in conflicts between carriers of different logics of thinking. Method. To solve this problem, we use the traditional method of construction of logical systems based on the introduction of basic elements of permanent, major operations on them and identify the laws that govern these operations. The main attention is paid to the differences of elements of operations on them and transactions between the laws of two-valued and multi-valued logic. Novelty. Formulated provision according to which there are systems, conflicts between the parties which are not caused by the contradictions of their interests and the difference of their logic thinking, the result of which is a misunderstanding, provoking suspicion, and then aggression. This so-called imaginary conflicts, the fight against which requires special approaches. Result. The procedure of constructing the algebra of logic different valence, adequately modeling the processes of thinking. We describe the two-valued and multi-valued logic thinking and their laws. Established the fundamental differences of two-valued and multi-valued logic. An example of the analysis of the conflict caused by the difference logic thinking.

Keywords: conflict, formal logic elements, logic operations, the laws of logic, statement, the two-valued logic, many-valued logic.

Information about Authors

Vitaly Ilyich Levin - the Doctor of Engineering Sciences, Professor, PhD, Full Professor. Honored worker of science of the Russian Federation. Penza State Technological University. Field of Research: logic; mathematical modeling in technics, economy, sociology, history; decision-making; optimization; automata theory; theory of reliability; history of science; problems of education. E-mail: [email protected]

Elena Anatolyevna Nemkova - Ph.D. of Engineering Sciences, Associate Professor at the Department of "Mathematics". Penza State Technological University. Field of Research: logic; mathematical modeling in technics, economy. E-mail:: elenem5 8 @mail. ru

Address: 440039, Russia, Penza, pr. Baydukova / Gagarin st., 1a/11.

Раздел Теория игр представлен тремя онлайн-калькуляторами :

  1. Решение матричной игры . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения.
  2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц – стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице – выигрыши второго.
  3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

Ситуация, в которой эффективность принимаемого одной стороной решения зависит от действий другой стороны, называется конфликтной . Конфликт всегда связан с определенного рода разногласиями (это не обязательно антагонистическое противоречие).

Конфликтная ситуация называется антагонистической , если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину, и наоборот.

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. Например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Каждый из них имеет свои интересы и стремится принимать оптимальные решения, помогающие достигнуть поставленных целей в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать решения, которые эти партнеры будут принимать (они заранее могут быть неизвестны). Чтобы в конфликтных ситуациях принимать оптимальные решения, создана математическая теория конфликтных ситуаций, которая называется теорией игр . Возникновение этой теории относится к 1944 г., когда была издана монография Дж. фон Неймана «Теория игр и экономическое поведение»

Игра – это математическая модель реальной конфликтной ситуации . Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры – это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рассматривать только парные игры. Игроки обозначаются A и B .

Игра называется антагонистической (с нулевой суммой ), если выигрыш одного из игроков равен проигрышу другого.

Выбор и осуществление одного из вариантов действий, предусмотренных правилами, называется ходом игрока. Ходы могут быть личными и случайными.
Личный ход – это сознательный выбор игроком одного из вариантов действий (например, в шахматах).
Случайный ход – это случайно выбранное действие (например, бросание игральной кости). Мы будем рассматривать только личные ходы.

Стратегия игрока – это совокупность правил, определяющих поведение игрока при каждом личном ходе. Обычно в процессе игры на каждом этапе игрок выбирает ход в зависимости от конкретной ситуации. Возможно также, что все решения приняты игроком заранее (т.е. игрок выбрал определенную стратегию).

Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной – в противном случае.

Цель теории игр – разработать методы для определения оптимальной стратегии каждого игрока.

Стратегия игрока называется оптимальной , если она обеспечивает этому игроку при многократном повторении игры максимально возможный средний выигрыш (или минимально возможный средний проигрыш независимо от поведения противника).

Пример 1. Каждый из игроков, A или B , может записать, независимо от другого, цифры 1, 2 и 3. Если разность между цифрами, записанными игроками, положительна, то A выигрывает количество очков, равное разности между цифрами. Если разность меньше 0, выигрывает B . Если разность равна 0 – ничья.
У игрока A три стратегии (варианта действия): A 1 = 1 (записать 1), A 2 = 2, A 3 = 3, у игрока тоже три стратегии: B 1 , B 2 , B 3 .

B
A
B 1 =1 B 2 = 2 B 3 =3
A 1 = 1 0 -1 -2
A 2 = 2 1 0 -1
A 3 = 3 2 1 0

Задача игрока A – максимизировать свой выигрыш. Задача игрока B – минимизировать свой проигрыш, т.е. минимизировать выигрыш A . Это парная игра с нулевой суммой .

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

Ситуация, в которой эффективность принимаемого одной стороной решения зависит от действий другой стороны, называется конфликтной . Конфликт всегда связан с определенного рода разногласиями (это не обязательно антагонистическое противоречие).

Конфликтная ситуация называется антагонистической , если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину, и наоборот.

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. Например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Каждый из них имеет свои интересы и стремится принимать оптимальные решения, помогающие достигнуть поставленных целей в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать решения, которые эти партнеры будут принимать (они заранее могут быть неизвестны). Чтобы в конфликтных ситуациях принимать оптимальные решения, создана математическая теория конфликтных ситуаций, которая называется теорией игр . Возникновение этой теории относится к 1944 г., когда была издана монография Дж. фон Неймана «Теория игр и экономическое поведение»

Игра - это математическая модель реальной конфликтной ситуации . Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры - это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рассматривать только парные игры. Игроки обозначаются A и B .

Игра называется антагонистической (с нулевой суммой ), если выигрыш одного из игроков равен проигрышу другого.

Выбор и осуществление одного из вариантов действий, предусмотренных правилами, называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход - это сознательный выбор игроком одного из вариантов действий (например, в шахматах).

Случайный ход - это случайно выбранное действие (например, бросание игральной кости). Мы будем рассматривать только личные ходы.

Стратегия игрока - это совокупность правил, определяющих поведение игрока при каждом личном ходе. Обычно в процессе игры на каждом этапе игрок выбирает ход в зависимости от конкретной ситуации. Возможно также, что все решения приняты игроком заранее (т.е. игрок выбрал определенную стратегию).

Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае.

Цель теории игр - разработать методы для определения оптимальной стратегии каждого игрока.

Стратегия игрока называется оптимальной , если она обеспечивает этому игроку при многократном повторении игры максимально возможный средний выигрыш (или минимально возможный средний проигрыш независимо от поведения противника).

Раздел Теория игр представлен тремя онлайн-калькуляторами :

  • 1. Решение матричной игры . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения.
  • 2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц - стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице - выигрыши второго.
  • 3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .

Пример 1. Каждый из игроков, A или B , может записать, независимо от другого, цифры 1, 2 и 3. Если разность между цифрами, записанными игроками, положительна, то A выигрывает количество очков, равное разности между цифрами. Если разность меньше 0, выигрывает B . Если разность равна 0 - ничья.

У игрока A три стратегии (варианта действия): A1= 1 (записать 1), A2= 2, A3= 3, у игрока тоже три стратегии: B1, B2, B3.

B A

Задача игрока A - максимизировать свой выигрыш. Задача игрока B - минимизировать свой проигрыш, т.е. минимизировать выигрыш A . Это парная Основные понятия теории игр

В экономической практике часто имеют место конфликтные ситуации. Игровые модели - это, в основном, упрощенные математические модели конфликтов. В отличие от реального конфликта игра ведётся по четким правилам. Для моделирования конфликтных ситуаций разработан специальный аппарат - математическая теория игр. Стороны, участвующие в конфликте, называются игроками.

Каждая формализованная игра (модель) характеризуется:

  • 1. количеством субъектов - игроков, участвующих в конфликте;
  • 2. вариантом действий для каждого из игроков, называемых стратегиями;
  • 3. функциями выигрыша или проигрыша (платежа) исхода конфликта;

Игра, в которой участвуют два игрока A и B называется парной. Если же количество игроков больше двух, то это игра множественная. Мы будем рассматривать модели только парных игр.

Игра, в которой выигрыш одного из игроков точно равен проигрышу другого, называется антагонистической игрой или игрой с нулевой суммой. С рассмотрения моделей антагонистических игр мы и начнём.

Смоделировать (решить) антагонистическую игру - значит, для каждого игрока указать стратегии, удовлетворяющие условию оптимальности , т.е. игрок A должен получить максимальный гарантированный выигрыш, какой бы своей стратегии не придерживался игрок B, а игрок B должен получить минимальный проигрыш, какой бы своей стратегии не придерживался игрок A. Оптимальные стратегии характеризуются устойчивостью, то есть ни одному из игроков не выгодно отклоняться от своей оптимальной стратегии.

Примечание. Различают игры кооперативные и некооперативные, с полной информацией и не полной. В игре с полной информацией перед каждым ходом каждый игрок знает все возможные ходы (стратегии поведения) и выигрыши. В кооперативных играх допускается возможность предварительных переговоров между игроками. Мы будем рассматривать некооперативные игры с полной информацией.

Математическая теория игр является разделом математики, изучающей принятие решений в конфликтных ситуациях.

Определим основные понятия теории игр.

Игра - упрощенная формализованная модель конфликтной ситуации. Игрок - одна из сторон в игровой ситуации. В зависимости от постановки задачи, стороной может выступать коллектив или даже целое государство. Каждый игрок может иметь свои стратегии. Стратегией i-го игрока x2 называется одно из возможных решений из множества допустимых решений этого игрока.

По количеству стратегий игры делятся на конечные , в которых число стратегий ограничено, и бесконечные , которые имеют бесконечно много различных стратегий.

Каждый из n участников игры может выбирать свою стратегию. Совокупность стратегий x=x1,x2,…,xn, которые выбрали участники игры, называется игровой ситуацией .

Оценить ситуацию x с точки зрения преследуемых ЛПР целей можно, построив целевые функции (или критерии качества), ставящие в соответствие каждой ситуации x числовые оценки f1(x),f2(x),…,fn(x) (например, доходы фирм в ситуации x или их затраты и т. д.).

Тогда цель i- го ЛПР формализуется следующим образом: выбрать такое свое решение xi, чтобы в ситуации x=x1,x2,…,xn число fi(x) было как можно большим (или меньшим). Однако достижение этой цели от него зависит лишь частично, поскольку другие участники игры влияют на общую ситуацию x с целью достижения своих собственных целей (оптимизируют свои целевые функции). Значение целевой функции в той или иной игровой ситуации можно назвать выигрышем игрока в этой ситуации.
По характеру выигрышей игры можно разделить на игры с нулевой и ненулевой суммой. В играх с нулевой суммой сумма выигрышей в каждой игровой ситуации равна нулю. Игры двух игроков с нулевой суммой называются антагонистическими. В этих играх выигрыш одного игрока равен проигрышу другого.

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры.

По виду функции выигрышей игры можно разделить на матричные, биматричные, непрерывные, сепарабельные и т. д.

Матричными играми называются конечные игры двух игроков с нулевой суммой. В этом случае номер строки матрицы соответствует номеру стратегии Ai игрока 1, а номер столбца - номеру стратегии Bj игрока 2.

Элементами матрицы aij является выигрыш игрока 1 для ситуации (реализации стратегий) AiBj. В силу того, что рассматривается матричная игра с нулевой суммой, выигрыш игрока 1 равен проигрышу игрока 2.

Можно показать, что всякая матричная игра с известной матрицей платежей сводится к решению задачи линейного программирования.

Поскольку в прикладных задачах экономики и управления ситуации, сводящиеся к матричным играм, встречаются не очень часто, мы не будем останавливаться на решении этих задач.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации AiBj каждый из игроков имеет свой выигрыш aij для первого игрока и bij- для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. Анализу этой проблемы посвящена тема 6 настоящего учебного пособия.

По степени неполноты информации, которой обладают ЛПР, игры делятся на стратегические и статистические.

Стратегические игры - это игры в условиях полной неопределенности.

Статистические игры - это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента.

Поскольку с теорией статистических игр тесно связана теория принятия экономических решений, то в дальнейшем мы ограничимся рассмотрением только этого класса игр.

В последнее время для исследования межгрупповых и межгосударственных конфликтов все чаще применяется метод математического моделирования. Его значимость связана с тем, что экспериментальные исследования таких конфликтов достаточно трудоемки и сложны. Наличие модельных описаний позволяет изучить возможное развитие ситуации с целью выбора оптимального варианта их регулирования.

Математическое моделирование с привлечением современных средств вычислительной техники позволяет перейти от простого накопления и анализа фактов к прогнозированию и оценке событий в реальном масштабе времени их развития. Если методы наблюдения и анализа межгруппового конфликта позволяют получать единичное решение конфликтного события, то математическое моделирование конфликтных явлений с использованием ЭВМ позволяет просчитывать различные варианты их развития с прогнозированием вероятного исхода и влияния на результат.

Математическое моделирование межгрупповых конфликтов позволяет заменить непосредственный анализ конфликтов анализом свойств и характеристик их математических моделей. Математическая модель конфликта представляет собой систему формализованных соотношений между характеристиками конфликта, разделяемых на параметры и переменные. Параметры модели отражают внешние условия и слабо меняющиеся характеристики конфликта, переменные составляющие - основные Для данного исследования характеристики. Изменение этих значений конфликта представляет главную цель моделирования. Содержательная и операциональная объясняемость используемых переменных и параметров - необходимое условие эффективности моделирования.

Использование математического моделирования конфликтов началось в середине XX в., чему способствовало появление электронно-вычислительной техники и большое количество прикладных исследований конфликта. Пока трудно дать четкую классификацию математических моделей, используемых в конфликтологии. В основание классификации моделей можно положить используемый математический аппарат (дифференциальные уравнения, вероятностные распределения, математическое программирование и т.п.) и объекты моделирования (межличностные конфликты, межгосударственные конфликты, конфликты в животном мире и т.д.). Можно выделить типичные математические модели, используемые в конфликтологии.
Вероятностные распределения представляют собой простейший способ описания переменных через указание доли элементов совокупности с данным значением переменной.
Статистические исследования зависимостей - класс моделей, широко применяемый для изучения социальных явлений. Это прежде всего регрессионные модели, представляющие связь зависимых и независимых переменных в виде функциональных отношений.
Марковские цепи описывают такие механизмы динамики распределений, где будущее состояние определяется не всей предысторией конфликта, а только «настоящим». Основным параметром конечной цепи Маркова является вероятность перехода статистического индивида (в нашем случае - oппонента) из одного состояния в другое за фиксированный промежуток времени. Каждое действие приносит частный выигрыш (проигрыш); из них складывается результирующий выигрыш (проигрыш).

Модели целенаправленного поведения представляют собой использование целевых функций для анализа, прогнозирования и планирования социальных процессов. Эти модели обычно имеют вид задачи математического программирования с заданными целевой функцией и ограничениями. В настоящее время это направление ориентировано на моделирование процессов взаимодействия целенаправленных социальных объектов, в том числе и определение вероятности возникновения конфликта между ними.

Теоретические модели предназначены для логического анализа тех или иных содержательных концепций, когда затрудцена возможность измерения основных параметров и переменных (возможные межгосударственные конфликты и др.). Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ и отражающих сложные зависимости, не поддающиеся аналитическому анализу. Имитационные модели - это средство машинного эксперимента. Он может использоваться как для теоретических, так и для практических целей. Этот способ моделирования применяется для исследования развития уже идущих конфликтов.

5.7. Краткие замечания к вопросу о выборочном контроле над вооружением
Мы уже говорили, что главная цель контроля состоит в том, чтобы проверять, соблюдает ли другая сторона соглашение о контроле над вооружением. Контроль может осуществляться путем наблюдения за производством и хранением военных материалов, движением транспорта с военными материалами, количеством оружия в определенных стратегических районах или наличием или отсутствием скрытых военных установок. При ядерных или каких-либо других испытаниях, запрещенных договором, наблюдатель должен искать определенные доказательства, которые могут ему помочь при интерпретации подозрительных сигналов .
Абсурдно и невозможно изучать все подозрительные события, чтобы выяснить, соблюдается ли соглашение. В промышленности давно установлено, что для контроля качества продукции вовсе не обязательно контролировать все изделия, достаточно проверять наудачу выбранные образцы. Стоимость выборочного, контроля может быть достаточно высока, даже если используются достоверные методы контроля качества.
Выборочные методы, применяемые к проблемам контроля над вооружением, могут различаться по сложности. В целом идеи и методы, столь полезные при изучении характеристик совокупности, применимы и полезны для исследования.
Нам нет необходимости вникать в детали различных типов выборочных методов, таких, как случайные, послойные, групповые, последовательные и др. Нам не надо также говорить о различных методах получения статистических выводов, которые используют корреляцию и регрессию, оценки и гипотезы о проведении испытаний. Об основных понятиях и применении упомянутых методов можно прочитать в широко распространенных книгах по статистике и ее приложениям. Здесь мы попытаемся обрисовать типичную ситуацию, в которой можно эффективно использовать выборочные методы для проверки соблюдения противником договора о контроле за вооружением.
Проблема выборочного контроля состоит из двух больших вопросов. Первый - определение размера выборки и типа выборочной процедуры, наиболее подходящей в конкретной оитуации. Второй- получение статистических выводов о всей совокупности на основании данных выборочного контроля, Оба эти вопроса должны быть решены так, чтобы выполнялись условия, накладываемые
Договором о разоружений, a также, чтобы они были согласованы с другими условиями, не зависящими от группы наблюдателей. Результаты выборочного контроля затем должны быть изложены в форме, удобной для лиц, принимающих решения. Областью, в которой выборочные методы могут быть полезны для контроля над вооружением, например, является анализ системы записей, в которых содержится информация о перевозках и производстве стратегических материалов. Однако использование таких записей для контроля требует больших затрат. Кроме того, может оказаться, что получить доступ к этим записям путем переговоров невозможно. Тем не менее, если такие записи поступят в распоряжение сторон в результате соглашения, надо предусмотреть возможность их использования. Контроль по отчетности имеет своей целью создание и функционирование системы отчетов и докладов, регистрации поступления и убытия, чтобы предотвратить рассеяние и потерю материалов из-за небрежности или, если утеря имела место, обеспечить отыскание утерянного и предотвращение подобных случаев в будущем.
При выборочном контроле таких нематериальных вещей, как записи, возникает множество необычных задач. Одна из них - это соответствие записей действительному положению вещей. Другая - состоятельность записей.
Если существующий уровень активности в сферах деятельности, охваченных договором, указан в документах заинтересованных сторон, то группа наблюдателей имеет основу для отыскания видов деятельности, уровень активности в которых не указан, С другой стороны, гораздо труднее выяснить, не превышает ли уровень активности в некоторой сфере деятельности установленный догово-
ром, так как поток материалов нельзя разДелйтЬ на черное и белое, он включает в себя и все оттенки серого. Поэтому от группы наблюдателей требуется внимательность и умение распутывать сложные вопросы. Естественно, небольшие нарушения не могут дать больших преимуществ нарушителю, я пооизводство вооружений для подготовки крупных военных операций предполагает широкий план нарушений.
Мы верим, что примерно такими должны быть методы, применимые на последних стадиях разоружения. Они будут служить инструментом, используемым в повседневной деятельности по проведению в жизнь договора о контроле над вооружением. Но задолго до этой стадии идеи, изложенные в первых пяти главах настоящей книги, будут играть важную роль в создании мер по действительному сокращению вооружений.
Краткое описание проблем, возникающих при выборочном контроле над вооружением, будет дано ниже. Выборочные процедуры мало используются при оценках свойств, сравнительно редко встречающихся у элементов совокупности. Если лишь немногие элементы обладают этим свойством, например, 1 из 10 тыс., то оценка будет очень приближенной при условии, что выборка не будет чрезвычайно велика (большие расходы). Например, если в маленькой выборке обнаружено искомое свойство, то оценка для всей совокупности будет сильно завышена. Никакое изменение выборочной процедуры не помогает избежать этого недостатка, и следует проявлять осторожность при отборе элементов выборки. То же самое можно сказать и о поисках нарушений при производстве изделий для небольшого количества оружия. Это все равно, что искать иголку в стоге сена.
Предположим, что мы должны проверить завбД, производящий детали к сельскохозяйственным машинам, но на котором можно изготовлять и некоторое количество деталей для военного оборудования. Допустим также, что количество машин, используемых в мирных целях, неизвестно и, следовательно, нельзя сказать, какое количество деталей данного типа предназначено для этой цели, Как можно установить, что производится избыточное количество деталей?
Мы можем установить нормы срока службы этих деталей и срока службы машин, в которых используются эти детали. Необходимо также определить количество выпускаемых машин на основе осмотра заводов, на которых они производятся. Используя случайные выборки из совокупности машин, мы можем оценить объем совокупности и потребность в данных деталях. Теперь мы имеем оценку числа деталей, необходимых для создания новой машины и для замены изношенных деталей в старых машинах. Наблюдая скорость изготовления данных деталей и оценивая максимальный объем продукции, мы можем подтвердить или опровергнуть подозрения, что эти детали тайно используются в военной продукции.
Статистика служит инструментом для измерения эффективности действий, предпринимаемых в процессе проведения политики. Эти меры или индексы служат критериями для оценки того, насколько точно выполняются соглашения. Например, средние уровни часто используются для того, чтобы показать, сколько операций закончено. Иногда мы можем использовать визуальный контроль для оценки степени выполнения требований. Однако, если надо проводить большое число проверок для обследования многих областей, необходимы статиСТические методы для получения единого критерия выполнения требований. Об эффективности действия можно судить по тому, насколько оно соответствует целям, которые преследует данная политика. Поэтому, кроме разработки состоятельных целей и стабильных линий поведения, должны быть предприняты действия (как выражение политики), которые обеспечивают эффективное выполнение этих требований.
Иногда бывает так, что не существует эффективных действий, которые можно было бы использовать для проведения некоторой политики. Таков, например, случай, когда две страны блокируют действия друг друга. Если государство не может действовать в соответствии со своими целями, то в стране возникают беспорядки. В гл. 6 будут рассмотрены общие понятия беспорядка, агрессии и факторы, влияющие на разрешение конфликтов.

Часть IV
ПРОМЕЖУТОЧНЫЕ И ДОЛГОСРОЧНЫЕ ПРОБЛЕМЫ КОНТРОЛЯ НАД ВООРУЖЕНИЕМ -АНАЛИЗ РАЗРАСТАНИЯ КОНФЛИКТОВ, ИДЕИ И ПЕРСПЕКТИВЫ

ГЛАВА 6
ИССЛЕДОВАНИЕ КОНФЛИКТОВ

6.1. Введение
В этой, главе будут изложены некоторые вопросы, касающиеся причин возникновения конфликтов. Сначала мы опишем некоторые исследования эска-
лации на примерах конфликтов лабораторного типа и выясним, какие факторы определяют разрастание конфликтов. Затем будут приведены некоторые качественные рассуждения относительно войны и мира в истории человечества.
«Конфликт возникает в результате недовольства, а недовольство - в результате недостаточного удовлетворения потребностей» утверждают сторонники одной из идеологических школ . Война и мир кратко описываются как цепь расстройств и выздоровлений.
Другие школы (некоторые из них кратко упоминаются) считают, что войны порождаются агрессивными инстинктами, ненавистью, скукой, взаимным непониманием, различиями в уровне культуры, желанием объединить разделенную страну на основе ненависти к общему врагу, новыми научными открытиями, стремлением стимулировать рост экономики путем создания «искусственного» спроса, желанием захватить новые рынки, борьбой за выживание, расширением динамической цивилизации, стремлением к господству элиты военно-промышленного комплекса и т. п. Однако, как бы то ни было, теория, изложенная в разд. 2.4, дает возможность рационально решить вопрос о втягивании в конфликт.
Существующее положение выглядит не очень надежным. Поэтому делается попытка нарисовать картину будущего и показать реальные возможности установления прочного мира при условии, что нам удастся пережить настоящий момент. В последнем разделе описаны некоторые области исследования и действия, рекомендуемые в данный период (и в ближайшем будущем), которые могут помочь мирному разрешению конфликтов.

6.2. Опыты с эскалацией конфликтов
Мы иногда ошибочно полагаем, что если народы понимают всю опасность ядерного оружия, то они стремятся разумно решать возникающие конфликты, в худшем случае используя обычное оружие. Однако, что вполне естественно, проигрывающая сторона может прибегнуть к угрозе использовать ядерное оружие, чтобы избежать поражения и даже восстановить утраченные позиции. Это может окончиться катастрофой. Кроме того, у некоторых народов понятие разумности отличается от нашего, особенно, если им нечего терять материально. До тех пор, пока процессы эскалации и методы управления ими не изучены полностью, маловероятно, что удастся удержать под контролем войну, ведущуюся обычными средствами. Осознание процессов эскалации и методов управления ими значительно увеличит надежды на ограничение ущерба в случае возникновения конфликта. Эта теория должна найти свое применение и к войне, которая ведется обычными средствами, если существуют указания, в каком направлении будет развиваться конфликт в случае тех или иных действий. Такие действия иногда направлены на деэскалацию путем подавления врага, но в действительности они только усиливают конфликт.
В течение последних нескольких лет Агенство по разоружению и контролю над вооружением совместно с Центром по исследованию операций в Пенсильванском университете проводило исследование условий, при которых происходит эскалация или деэскалация конфликтов, чтобы выяснить возможность воздействия на скорость эскалации или деэскалации путем управления условиями, определяющими взаимодействие сторон - участниц конфликта. Исследование включало в себя: а) анализ некоторых исторических конфликтов и изучение соответствующей литературы, б) проведение экспериментов с целью определения эффекта взаимодействия между различными переменными и в) разработку теории на базе экспериментальных данных и обобщение ее на реальные проблемы.
В результате анализа литературы было предложено несколько гипотез об эскалации и деэскалации, а затем в экспериментальных ситуациях были проверены: а) их общность и б) идентификация критических переменных. Примеры гипотез: а) при отсутствии коммуникаций вероятность эскалации возрастает, б) чем большую роль играют идеологические вопросы, тем вероятнее эскалация, в) эскалация зависит от экономического развития, г) эскалация более возможна, если конфликт развивается постепенно, д) эскалация более вероятна в присутствии многостороннего командования .
Была построена относительно сложная экспериментальная ситуация, так называемая «искусственная реальность» (или «богатая игра»), которая тем не менее была самой простой игрой, отвечающей следующим условиям:
1. Она достаточно «богата», чтобы можно было проверить многие гипотезы, высказанные об изучаемых явлениях, в данном случае речь идет о динамике крупных социальных конфликтов. (Очевидно, что такие эксперименты не могут подтвердить гипотезу о том или ином реальном явлении, но они могут определить пределы действия гипотезы или показать, в каком направлении ее можно или нужно обобщать.) Цель условий - создать экспериментальную ситуацию, достаточно реалистическую для того, чтобы большинство свойств реального конфликта было применимо к ней.
2. Должны существовать точные описания переменных и единицы для их измерения, кроме того, должны быть указаны упрощения (например, некоторая переменная полагается равной постоянной). Это дает нам возможность последовательно конструировать все более богатые экспериментальные ситуации путем введения усложнений.
3. Соответствующее поведение в экспериментальной ситуации должно быть выражено количественно.
4. Ситуация должна разлагаться на ряд более простых экспериментальных ситуаций и, если возможно, эти простые ситуации должны быть уже изучены или близки к уже изученным.
Экспериментальная ситуация, удовлетворяющая этим условиям, не является моделью реальности, а, скорее, может считаться первым шагом на пути создания количественных моделей реальной ситуации; поэтому мы называем ее «искусственной реальностью». Она используется для того, чтобы накопить опытные данные, для истолкования которых строится первая теория. Опыт накапливается при помощи богатой игры в процессе эксперимента, который поставлен с целью систематической проверки гипотезы о реальных конфликтах, которые описаны в оперативных и количественных терминах так, чтобы их можно было использовать в теоретических построениях.

Замечания о построении искусственной реальности
Искусственная реальность состоит из двух симметричных игр, в которых ходы делаются одновременно. Одна из них - это игра с положительной суммой - «дилемма заключенного», которая в какой-то степени изображает международную (две страны) экономику. Другая - игра с отрицательной суммой под названием «петухи», которая напоминает противостояние двух стран, когда они держат курс на столкновение в надежде, что противник пойдет на уступки.
KOHEЦ ФPAГMEHTA КНИГИ