Регуляция температуры заключается в согласовании процессов теплопродукции (химическая терморегуляция) и теплоотдачи (физическая терморегуляция).
Процессы теплопродукции. Во всех органах вследствие процессов обмена веществ происходит теплопродукция. Поэтому кровь, которая оттекает от органов, как правило, имеет более высокую температуру, чем та, притекающей. Но роль различных органов в теплопродукции разная. В состоянии покоя на печень приходится около 20% общей теплопродукции, на другие внутренние органы - 56%, на - 20%, при физической нагрузке на скелетные мышцы - до 90%, на внутренние органы - только 8%.
Таким образом, мощным резервным источником теплопродукции является мышцы при их сокращении. Изменение активности их метаболизма при локомоциях - основной механизм теплопродукции. Среди различных локомоций можно выделить несколько этапов участия мышц в теплопродукции.
1. Терморегуляционные тонус. При этом мышцы не сокращаются. Повышаются только их тонус и метаболизм. Этот тонус возникает вообще в мышцах шеи, туловища и конечностей. Вследствие этого теплопродукция повышается на 50-100%.
2. Дрожь возникает неосознанно и заключается в периодической активности высокопороговых двигательных единиц на фоне терморегуляционные тонуса. При дрожании вся энергия направлена лишь на увеличение теплообразования, в то время как при обычных локомоциях часть энергии расходуется на перемещение соответствующей конечности, а часть - на термогенез. При дрожании теплопродукция повышается в 2-3 раза. Дрожь начинается часто с мышц шеи, лица. Это объясняется тем, что прежде всего должен повыситься температура крови, которая течет к головному мозгу.
3. Произвольные сокращения заключаются в сознательном повышении сокращения мышц. Это наблюдается в условиях низкой внешней температуры, когда первых двух этапов не достаточно. При произвольных сокращениях теплопродукция может увеличиться в 10-20 раз.
Регуляция теплопродукции в мышцах довьязана с влиянием а-мотонейронов на функцию и метаболизм / мышц, в других тканях - симпатической нервной системы и катехоламинов (повышают интенсивность метаболизма на 50%) и действием гормонов, особенно тироксина, который повышает теплопродукции почти вдвое.
Значительная роль в термогенез липидов, которые выделяют при гидролизе значительно больше энергии (9,3 ккал / г), чем углеводы (4,1 ккал / г). Особое значение, в частности у детей, имеет бурый жир.
Процессы теплоотдачи происходит следующими путями - радиация, конвекция, испарения и теплопроводность.
Радиация происходит с помощью инфракрасного длинноволнового излучения. Для этого нужен градиент температур между теплой кожей и холодными стенами и другими предметами окружающей среды. Таким образом, величина радиации зависит от температуры и поверхности кожи.
Теплопроводность осуществляется при непосредственном контакте тела с предметами (стул, кровать и т.д.). При этом скорость передачи тепла от более нагретого тела к менее нагретому предмету определяется температурным градиентом и их термопровиднистю. Отдача тепла этим путем значительно (в 14 раз) увеличивается при нахождении человека в воде. Частично путем проведения тепло передается от внутренних органов к поверхности тела. Но этот процесс тормозится вследствие низкой теплопроводности жира.
Конвекционный путь. Воздух, контактирующего с поверхностью тела, при наличии градиента температур нагревается. При этом оно становится более легким и, поднимаясь от тела, освобождает место для новых порций воздуха. Таким образом оно забирает часть тепла. Интенсивность естественной конвекции может быть увеличена за счет дополнительного движения воздуха, уменьшение препятствий при поступлении его к телу (соответствующим одеждой).
Испарение пота. При комнатной температуре в раздетой человека около 20% тепла отдается за счет испарения.
Теплопроводность , конвекция и излучение являются пассивными путями теплоотдачи, основанные на законах физики. Они эффективны только при сохранении положительного температурного градиента. Чем меньше разница температуры между телом и окружающей средой, тем меньше тепла отдается. При одинаковых показателях или при высокой температуре окружающей среды упомянутые пути не только не эффективны, но при этом происходит нагрев тела. В этих условиях в организме срабатывает только один механизм отдачи тепла, связанный с процессами потоотделение и потовипаровування. Здесь используются как физические закономерности (затраты энергии на процесс испарения), так и биологические (потоотделения). Охлаждению кожи способствует то, что для испарения 1 мл пота расходуется 0,58 ккал. Если не происходит
испарение пота, то эффективность теплоотдачи резко снижается. М
Скорость испарения щоту зависит от градиента температуры и насыщения водяным паром окружающего воздуха. Чем выше влажность, тем менее эффективным становится этот путь теплоотдачи. Резко уменьшается результативность теплоотдачи при нахождении в воде или в плотном одежде. При этом организм вынужден компенсировать отсутствие потовипаровування за счет увеличения потоотделения.
Испарение имеет два механизма: а) перспирация - без участия потовых желез б) испарение - при активном участии потовых желез.
Перспирация - испарение воды с поверхности легких, слизистых оболочек, кожи, которая всегда влажная. Это испарение не регулируется, оно зависит от градиента температур и влажности окружающего воздуха, его величина составляет около 600 мл / сут. Чем выше влажность, тем менее эффективен этот вид теплоотдачи.
Механизм секреции пота. Потовая железа состоит из двух частей: собственно железы, которая расположена в субдермальному слое, и выводных протоков, открывающихся на поверхности кожи. В железе образуется первичный секрет, а в протоках благодаря реабсорбции формируется вторичный секрет - пот.
Первичный секрет подобный плазмы крови. Разница заключается в том, что в этом секрете нет белков и глюкозы, меньше Na +. Так, в первоначальном поте концентрация натрия составляет около 144 нмоль / л, хлора - 104 нмоль / л. Эти ионы активно абсорбируются при прохождении пота по выводных протоках, обеспечивающий абсорбцию воды. Процесс абсорбции во многом зависит от скорости образования и продвижения пота что эти процессы активны, тем больше Na + и Сl-остается. При сильном потоотделении в поту может оставаться до половины концентрации этих ионов. Сильное потоутворення сопровождается увеличением концентрации мочевины (до 4 раз выше, чем в плазме) и калия (до 1,2 раза больше, чем в плазме). Суммарная высокая концентрация ионов, образуя высокий уровень осмотического давления, обеспечивает снижение реабсорбции и выделение с потом большого количества воды.
При сильном потоотделении может тратиться много NaCl (до 15-30 г / сут). Однако в организме действуют механизмы, обеспечивающие сохранение этих важных ионов при большом потоотделении. Они участвуют в процессах адаптации, в частности, альдостерон усиливает реабсорбцию Na +.
Функции потовых желез регулируются особыми механизмами. На их активность влияет симпатическая нервная система, но медиатором здесь ацетилхолин. Секреторные клетки, кроме М-холинорецепторов, имеют также адренорецепторы, которые реагируют на катехоламины кровГ. Активизация функции потовых желез сопровождается увеличением ее кровоснабжения.
Количество выделяемого пота может достигать 1,5 л / ч, а в адаптированных людей - до 3 л / час.
При комнатной температуре в раздетой человека около 60% тепла отдается за счет радиации, около 12-15% - конвекции воздуха, около 20% - испарение, 2-5% - теплопроводности. Но это соотношение зависит от ряда условий, в частности от температуры внешней среды.
Главную роль в регуляции процессов теплоотдачи играют изменения кровоснабжение кожи. Сужение сосудов кожи, открытию артериовенозных анастомозов способствует меньшему притоку тепла от ядра к оболочке и сохранению его в организме. Напротив, при расширении сосудов кожи ее температура может повышаться на 7-8 ° С. При этом увеличивается и теплоотдача.
Условно кожу можно назвать радиаторной системой организма. Кровоток в коже может меняться от 0 до 30% МОК. Тонус сосудов кожи контролируется симпатической нервной системой.
Таким образом, температура тела - баланс между процессами теплопродукции и теплоотдачи. Когда теплопродукция преобладает над теплоотдачей, температура тела повышается и, наоборот, если теплоотдача выше, чем теплопродукция, температура организма снижается.

ТЕРМОРЕГУЛЯЦИЯ И ЗДОРОВЬЕ

Ареал проживания человека распространяется от полюсовых зон, где температура воздуха порой достигает -86°С, до экваториальных саванн и пустынь, в наиболее жарких участках которых она приближается к +50°С в тени! Тем не менее в таком широком диапазоне температур человек сохраняет активную жизнеспособность и достаточную работоспособность благодаря своей термостабильности, когда температура тела колеблется в относительно узких границах – от 36 до 37°С.

Гомойотермия – постоянство температуры тела – делает человека независимым от температурных условий проживания, так как обеспечивающие его жизнедеятельность биохимические реакции продолжают осуществляться на оптимальном уровне благодаря сохранению адекватной активности обеспечивающих их тканевых ферментов и витаминов, катализирующих и активирующих отдельные стороны обмена веществ, тканевых гормонов, нейромедиаторов и других веществ, от которых зависит нормальная деятельность организма. Смещение же температуры в ту или иную сторону резко меняет активность этих веществ, причем в разной степени для каждого из них – в результате наступает разобщение в активности протекания отдельных сторон обмена веществ. У животных пойкилотермных, холоднокровных, температура тела которых определяется окружающей температурой (повышается или понижается вместе с последней), активность их тканевых ферментов как биологических катализаторов меняется вместе с изменением внешних тепловых условий. Вот почему при снижении температуры степень проявления их жизнедеятельности снижается вплоть до полной остановки – так называемый анабиоз, а при очень высокой – либо наступает смерть, либо высушивание, которое у некоторых из пойкилотермов является также разновидностью анабиоза. Так, с изменением внешней температуры жизнедеятельность некоторых насекомых (саранча) может восстанавливаться как после замерзания до температуры жидкого азота (–189°С), так и после высушивания. Описан случай оживления, хотя и кратковременного, гигантского тритона, замерзшего в леднике, по мнению специалистов, по крайней мере около 5000 лет назад.

Таким образом, способность сохранять неизменной температуру тела при различных условиях существования делает теплокровных независимыми от обстоятельств природы и способными сохранять высокий уровень жизнеспособности. Такая способность обусловлена сложной системой терморегуляции, обеспечивающей уменьшение выработки тепла и активную его отдачу при опасности перегревания и активизацию термогенеза при ограничении отдачи тепла – при опасности переохлаждения.

Статистика показывает, что в России из всех случаев временной утраты трудоспособности более 40% приходится на простудные заболевания, что дает основание обывателю считать систему терморегуляции несовершенной. Однако есть много фактов, указывающих на высокую природную устойчивость человека к действию низких температур. Так, йоги-респы соревнуются при температуре ниже –20°С в скорости высушивания мокрых простыней теплом своего тела, сидя нагишом на льду замерзшего озера. Стали традиционными проплывы специально подготовленных пловцов через Берингов пролив из Аляски на Чукотку (более 40 км) при температуре воды +4°С – +6°С. Якуты натирают новорожденных снегом, а остяки и тунгусы погружают их в снег, обливают холодной водой и затем закутывают в оленьи шкуры... В таком случае, по-видимому, скорее следует говорить об извращении совершенных механизмов терморегуляции человека далекими от сформировавших их в эволюции условиями жизни современного человека, чем о несовершенстве самих механизмов.


В то время как большинство функций жизнедеятельности – кровообращение, дыхание, пищеварение и др. – имеют какой-либо специфический структурно-функциональный аппарат, терморегуляция такого органа не имеет и является функцией всего организма в целом.

Согласно предложенной И. П. Павловым схеме, организм теплокровного можно представить в виде относительно термостабильного «ядра» и имеющей большой разброс температур «оболочки». Ядро, температура которого колеблется в пределах 36,8–37,5°С, включает преимущественно жизненно важные внутренние органы: сердце, печень, желудок, кишечник и т.д. Особенно следует отметить роль печени, имеющей относительно высокую температуру – выше 37,5°С, и толстого кишечника, микрофлора которого в процессе своей жизнедеятельности вырабатывает много тепла, обеспечивающего поддержание температуры прилежащих тканей. Термолабильную оболочку составляют конечности, кожные и подкожные ткани, мышцы и т.д. Температура различных участков оболочки колеблется в широких пределах. Так, температура пальцев ног составляет около 24°С, голеностопного сустава – 30–31°С, кончика носа – 25°С, подмышечной впадины, прямой кишки – 36,5–36,9°С и т.д. Однако температура оболочки очень подвижна, что определяется условиями жизнедеятельности и состоянием организма, поэтому и толщина ее может меняться от очень тонкой при жаре до очень мощной, сжимающей ядро – при холоде. Такие взаимоотношения ядра и оболочки обусловлены тем, что первая преимущественно производит тепло (в покое), а вторая – должна обеспечивать сохранение этого тепла. Именно этим объясняетсятообстоятельство, что у закаленных людей оболочка на холоде быстро и надежно обволакивает ядро, сохраняя оптимальные условия для поддержания деятельности жизненно важных органов и систем, а у незакаленных оболочка и в этих условиях остается тонкой, создавая угрозу переохлаждения ядра (так, при снижении температуры легких всего лишь на 0,5°С возникает угроза пневмонии).

Термостабильность организма обеспечивается в основном двумя взаимодополняющими механизмами регуляции – физическим и химическим.Физическая терморегуляция преимущественно активизируется при опасности перегревания и заключается в отдаче тепла в окружающую среду. При этом включаются все возможные механизмы теплоотдачи: теплоизлучение, теплообмен, конвекция и испарение. Теплоизлучение осуществляется за счет инфракрасных лучей, исходящих от имеющей высокую температуру кожи. Теплопроведение реализуется за счет разницы температур между кожей и окружающим воздухом. Увеличение этой разницы осуществляется за счет гиперемии – расширения кожных сосудов и притока сюда большего количества теплой крови от внутренних органов, из-за чего и окраска кожи при жаре становится розовой. При этом эффективность теплоотдачи определяется теплопроводностью и теплоемкостью внешней среды: так, эти показатели в соответствующих температурах для воды в 20–27 раз выше, чем воздуха. Отсюда становится понятным почему термокомфортная температура воздуха для человека составляет около 18°С, а воды – 34°С. Теплоотдача за счет испарения пота является весьма эффективной, так как при испарении 1 мл пота с поверхности тела организм теряет 0,56 ккал тепла. Если учесть, что взрослый человек вырабатывает даже в условиях низкой двигательной активности около 800 мл пота, то становится понятной эффективность этого способа.

В различных условиях жизнедеятельности соотношение потерь тепла тем или иным способом заметно меняется. Так, в покое и при оптимальной температуре воздуха организм 31% образующегося тепла теряет проведением, 44% – излучением, 22% – испарением (в том числе и за счет влаги с дыхательных путей) и 3% – конвекцией. При сильном ветре возрастает роль конвекции, при повышении влажности воздуха – проведения, а при усиленной работе – испарения (например, при напряженной двигательной активности испарение пота порой достигает 3–4-х литров в час!).

Эффективность теплоотдачи организма исключительно высока. Биофизические расчеты показывают, что нарушение этих механизмов даже у находящегося в покое человека привело бы к повышению температуры его тела в течении часа до 37,5°С, а через 6 часов – до 46–48°С, когда начинается необратимое разрушение белковых структур.

Химическая терморегуляция приобретает особое значение при опасности переохлаждения организма. Потеря человеком относительно животных шерстяного покрова сделала его особенно чувствительным к действию низких температур, о чем свидетельствует тот фактор, что у человека холодовых рецепторов почти в 30 раз больше, чем тепловых. Вместе с тем совершенствование механизмов адаптации к холоду привело к тому, что снижение температуры тела человек переносит гораздо легче, чем ее повышение. Так, грудные дети легко переносят снижение температуры тела на 3–5°С, но тяжело – повышение на 1–2°С. Взрослый человек без каких-либо последствий переносит переохлаждение до 33–34°С, но теряет сознание при перегревании от внешних источников до 38,6°С, хотя при лихорадке от инфекции может сохранить сознание и при 42°С. Вместе с тем отмечены случаи оживления замерзших людей, температура кожи которых опускалась ниже точки замерзания.

Суть химической терморегуляции заключается в изменении активности обменных процессов в организме: при высокой внешней температуре она снижается, а при низкой – возрастает. Исследования показывают, что при снижении окружающей температуры на 1°С у обнаженного человека в покое активность метаболизма возрастает на 10%. (Однако выключение наркозом и так называемыми нейролептиками высших регуляторных механизмов термостабильности у теплокровных делает их зависимыми от окружающей температуры, и при охлаждении температуры их тела до 32°С потребление ими кислорода снижается до 50%, при 20°С –до 20%, а при +1°С –до 1% от исходного уровня.)

Особое значение для поддержания температуры тела играет тонус скелетных мышц, который возрастает при снижении окружающей температуры и снижается – при потеплении. Показательно, что эти процессы протекают тем активнее, чем опаснее грозящее нарушение термостабильности. Так, при температуре воздуха 25–28°С (и особенно в сочетании с высокой влажностью) мышцы в значительной степени расслаблены, и воспроизводимая ими тепловая энергия ничтожна. Наоборот, при опасности переохлаждения все большее значение приобретает дрожь – нескоординированные сокращения мышечных волокон, когда внешняя механическая работа практически полностью отсутствует, и почти вся энергия сокращающихся волокон переходит в тепловую энергию (это явление получило название несократительного термогенеза). Нет ничего удивительного поэтому в том, что при дрожи теплопродукция организма может возрасти более чем в три раза, а при напряженной физической работе – в 10 и более раз.

Несомненное значение в химической терморегуляции играют и легкие, которые за счет изменения активности обмена входящих в их структуру высококалорийных жиров поддерживают относительно постоянную свою температуру, – именно поэтому при высокой внешней температуре оттекающая от легких кровь прохладнее, а при низкой – теплее вдыхаемого воздуха.

Физический и химический механизмы терморегуляции работают с высокой степенью согласования благодаря наличию в ЦНС соответствующего центра в области промежуточного мозга (гипоталамус).Вот почему при высокой температуре окружающей среды, с одной стороны, усиливается теплоотдача (за счет повышения температуры кожи, активизации дыхания, усиления процессов испарения пота и т.д.), а с другой – снижается теплопродукция (за счет снижения тонуса мышц, перехода к усвоению организмом менее энергосодержащих продуктов); при низких же температурах – наоборот: возрастает теплопродукция и снижается теплоотдача.

Таким образом, совершенные механизмы терморегуляции человека позволяют поддерживать оптимальную жизнеспособность в широком диапазоне внешних температур.

Терморегуляция человека – набор чрезвычайно важных механизмов, поддерживающих стабильность температурного режима организма в разных условиях внешней среды. Но почему человек так нуждается в неизменной температуре тела, и что будет, если она начнет колебаться? Как протекают терморегуляционные процессы и что делать, если природный механизм дает сбой? Обо всем этом - ниже.

Человек, как и большинство млекопитающих - гомойотермное создание. Гомойотермия – это способность организма обеспечивать себе постоянство уровня температуры, в основном с помощью физиолого-биохимических реакций.

Терморегуляция организма человека – это эволюционно сформировавшийся набор механизмов, которые срабатывают за счет гуморальной (посредством жидкой среды) и нервной регуляции, метаболизма (обмена веществ) и энергетического обмена. Различные механизмы имеют различные способы и условия срабатывания, поэтому их активация зависит от времени дня, пола человека, числа прожитых лет и даже положения Земли на орбите.

Тепловая карта человека

Терморегуляция в организме человека выполняется рефлекторно. Специальные системы, действие которых направлено на контроль температуры, регулируют интенсивность отдачи или поглощения тепла.

Система терморегуляции человека

Поддержание температурного режима тела на постоянном заданном уровне осуществляется при помощи двух противоположных механизмов терморегуляции организма человека - отдачи и продукции тепла.

Механизм теплопродукции

Механизм теплопродукции, или химическая терморегуляция человека – процесс, способствующий повышению температуры организма. Он имеет место при всех обменах веществ, но, по большей мере, в мышечных волокнах, клетках печени и клетках бурых жировых отложений. Так или иначе, в продуцировании тепла участвуют все тканевые структуры. В каждой клетке человеческого тела происходят окислительные процессы, расщепляющие органические вещества, в ходе которых какая-то доля выделяемой энергии уходит на нагревание организма, а основное количество – на синтезирование аденозинтрифосфатной кислоты (АТФ). Это соединение является удобной формой для накопления, транспортировки и эксплуатации энергии.

Так выглядит молекула АТФ

Во время понижения температуры рефлекторным образом понижается и скорость обменных процессов в человеческом теле, и наоборот. Химическая регуляция активизируется в тех случаях, когда физической составляющей теплообмена не хватает для поддержания нормального температурного значения.

Механизм теплопродукции активизируется при поступлении сигналов от холодовых рецепторов. Это происходит, когда температура окружающей среды становится ниже так называемой «зоны комфорта», которая для легко одетого человека лежит в температурных рамках от 17 до 21 градуса, а для голого человека составляет приблизительно 27-28 градусов. Стоит отметить, что для каждого индивидуума «зона комфорта» определяется индивидуально, она может меняться в зависимости от состояния здоровья, массы тела, места проживания, времени года и т.п.

Чтобы повысить выработку тепла в организме включаются механизмы термогенеза. Среди них выделяют следующие.

1. Сократительный.

Этот механизм активизируется за счет работы мышц, в ходе которой ускоряется разложение аденозитрифосфата. При его расщеплении выделяется вторичная теплота, эффективно согревающая тело.

Сокращения мышц в таком случае происходят непроизвольно - при поступлении импульсов, исходящих из коры головного мозга. Как результат, в теле человека можно наблюдать значительное (до пяти раз) повышение выработки тепла.

Так кожа реагирует на холод

При незначительном понижении температуры увеличивается терморегуляционный тонус, что наглядно проявляется в появлении на коже «мурашек» и поднятии волосков.

Неконтролируемые мышечные сокращения при сократительном термогенезе называют холодовой дрожью. Повысить температуру организма при помощи сокращений мышц можно и осознанно – проявляя двигательную активность. Физическая нагрузка способствует повышению теплопродукции до 15 раз.

2. Несократительный.

Данный вид термогенеза может повысить теплопродукцию почти втрое. В его основе лежит катаболизм (расщепление) жирных кислот. Этот механизм регулируется при помощи симпатической нервной системы и гормонов, выделяемых щитовидной железой и мозговым веществом надпочечников.

Механизм теплоотдачи

Механизм теплоотдачи, или физическая составляющая терморегуляции – это процесс избавления организма от лишнего тепла. Постоянное значение температуры поддерживается за счет выведения тепла через кожу (путем кондукции и конвекции), радиации и выведения влаги.

Часть теплоотдачи происходит за счет теплопроводности кожи и слоя жировой клетчатки. Процесс регулируется по большей части кровообращением. При этом тепло от кожи человека отдается твердым предметам при прикасании к ним (кондукция) или окружающему воздуху (конвекция). Конвекция составляет значимую часть теплоотдачи - в воздух передается 25-30% человеческого тепла.

Радиация или излучение - это перенос энергии человека в пространство или на окружающие предметы, имеющие более низкую температуру. С излучением уходит до половины человеческого тепла.

И, наконец, испарение влаги с поверхности кожи или из дыхательных органов, на которое приходится 23-29% потери тепла. Чем больше показатель температуры тела превышает норму, тем активнее организм охлаждается при помощи испарения - поверхность тела покрывается потом.

В случае, когда температура окружающей среды значительно превышает внутренний показатель организма, испарение остается единственным действенным механизмом охлаждения, все прочие перестают работать. Если же высокая внешняя температура еще сопровождается повышенной влажностью, которая затрудняет потоотделение (т.е. испарение воды), то человек может перегреться и получить тепловой удар.

Рассмотрим механизмы физической регуляции температуры тела более подробно:

Перспирация

Суть этого вида теплоотдачи состоит в том, что энергия направляется в окружающую среду путем испарения влаги с кожного покрова и слизистых оболочек, устилающих дыхательные пути.

Этот вид теплоотдачи - один из наиважнейших, поскольку, как уже отмечалось, может продолжаться в среде с высокой температурой, при условии, что процент влажности воздуха будет меньше 100. Это объясняется тем, что чем выше влажность воздуха, тем хуже вода будет испаряться.

Важным условием для эффективности перспирации является циркуляция воздуха. Поэтому если человек будет в непроницаемой для воздухообмена одежде, то пот через какое-то время потеряет возможность испаряться, поскольку влажность воздуха под одеждой превысит 100%. Это приведет к перегреву.

В процессе потоотделения энергия человеческого организма тратится на то, чтобы разорвать молекулярные связи жидкости. Теряя молекулярные связи, вода принимает газообразное состояние, а тем временем излишек энергии выходит из организма.

Испарение воды со слизистых оболочек дыхательных путей и испарение через поверхностную ткань - эпителий (даже когда кажется, что кожа сухая) называется неощутимой перспирацией. Активная работа потовых желез, при которой происходит обильное потоотделение и теплоотдача, называется ощутимой перспирацией.

Излучение электромагнитных волн

Данный способ теплоотдачи работает за счет излучения инфракрасных электромагнитных волн. По законам физики, любой объект, температура которого поднимается выше температуры окружающей среды, начинает отдавать тепло посредством излучения.

Инфракрасное излучение человека

Чтобы не допустить чрезмерной утечки тепла таким способом, человечество изобрело одежду. Ткань одежды помогает создать воздушную прослойку, температура которой принимает значение температуры тела. Это уменьшает излучение.

Количество тепла, рассеиваемого объектом, пропорционально площади поверхности излучения. Это означает, что, меняя положение тела, можно регулировать свою теплоотдачу.

Кондукция

Кондукция или теплопроведение происходит при прикосновении человека к любому другому предмету. Но избавление от излишка тепла может произойти только в том случае, если объект, с которым человек вступил в контакт, имеет более низкую температуру.

Важно помнить, что воздух с низким процентом влажности и жир имеют малое значение теплопроводности, поэтому являются теплоизоляторами.

Конвекция

Суть этого способа теплоотдачи заключается в перенесении энергии циркулирующим вокруг тела воздухом, при условии, что его температура будет ниже температуры тела. Прохладный воздух в момент контакта с кожей прогревается и устремляется наверх, замещаясь новой дозой холодного воздуха, находящегося ниже из-за высокой плотности.

Одежда играет важную роль в том, чтобы при конвекции тело не отдало слишком много тепла. Она представляет собой барьер, замедляющий воздушную циркуляцию и, тем самым, конвекцию.

Центр терморегуляции

Центр терморегуляции человека находится в головном мозге, а именно – в гипоталамусе. Гипоталамус – это часть промежуточного мозга, которая включает в себя множество клеток (около 30 ядер). Функции этого образования заключаются в поддержании гомеостаза (т.е. способности организма к саморегуляции) и деятельности нейроэндокринной системы.

Одной из самых важных функций гипоталамуса является обеспечение и контроль действий, направленных на терморегуляцию тела.

При выполнении этой функции в центре терморегуляции у человека происходят такие процессы:

  1. Периферические и центральные терморецепторы передают информацию в передний отдел гипоталамуса.
  2. В зависимости от того, в нагревании или в охлаждении нуждается наш организм, активизируется центр теплопродукции либо центр теплоотдачи.

При передаче импульсов от рецепторов холода начинает функционировать центр теплопродукции. Он находится в задней части гипоталамуса. От ядер по симпатической нервной системе двигаются импульсы, повышающие скорость обменных процессов, сужающие сосуды, активизирующие скелетные мышцы.

Если организм начинает перегреваться, то начинает активно работать центр теплоотдачи. Он находится в ядрах переднего отдела гипоталамуса. Возникающие там импульсы являются антагонистами механизма теплопродукции. Под их влиянием у человека происходит расширение сосудов, повышается потоотделение, - организм охлаждается.

В терморегуляции человека принимают участие также другие отделы центральной неравной системы, а именно кора больших полушарий мозга, лимбическая система и ретикулярная формация.

Основная функция температурного центра в головном мозге – поддержание постоянного температурного режима. Он определяется суммарным значением температуры организма, когда оба механизма (теплопродукция и теплоотдача) активны менее всего.

Органы внутренней секреции также играют немаловажную роль в терморегуляции тела человека. При пониженной температуре щитовидная железа увеличивает продукцию гормонов, которые ускоряют обменные процессы. Надпочечники владеют способностью контролировать теплоотдачу за счет гормонов, регулирующих процессы окисления.

Нарушения терморегуляции организма: причины, симптомы и лечение

Нарушением терморегуляции называют внезапные изменения температуры тела или отклонения от нормы в 36,6 градусов по Цельсию.

Причинами температурных колебаний могут стать как внешние факторы, так и внутренние, например, заболевания.

Специалисты различают следующие нарушения терморегуляции:

  • озноб;
  • озноб при гиперкинезе (непроизвольных мышечных сокращениях);
  • гипотермия (переохлаждение организма). Гипотермии посвящена ;
  • гипертермия (перегрев организма).

Причин нарушений терморегуляции множество, самые распространенные из них приведены ниже:

  • Приобретенный или врожденный дефект гипоталамуса (если проблема в этом, то перепады температуры могут сопровождаться сбоями в работе желудочно-кишечного тракта, органов дыхания, сердечно-сосудистой системы).
  • Перемена климата (как внешний фактор).
  • Злоупотребление алкогольными напитками.
  • Следствие процессов старения.
  • Психические расстройства.
  • Вегетососудистая дистония (на нашем сайте вы можете прочитать о температурных перепадах при ВСД).

В зависимости от причины, перепады температуры могут сопровождаться различными симптомами, частыми из которых являются лихорадка, головная боль, потеря сознания, сбои в работе пищеварительной системы, ускоренное дыхание.

При нарушениях регуляции температуры организмом нужно обратиться к неврологу. Основные принципы лечения данной проблемы заключаются в:

  • приеме препаратов, воздействующих на эмоциональное состояние пациента (если причина в расстройствах психики);
  • приеме препаратов, оказывающих влияние на деятельность центральной нервной системы;
  • приеме лекарств, способствующих усиленной теплоотдаче в сосудах кожи;
  • общей терапии, в которую входит: физическая активность, закаливание, здоровое питание, прием витаминов.

Механизмы теплоотдачи организма в условиях холода и тепла ">

Механизмы теплоотдачи организма в условиях холода и тепла: а) перераспределение крови между сосудами внутренних органов и сосудами поверхности кожи; б) перераспределение крови в сосудах кожи.

Физическая терморегуляция появилась на более поздних этапах эволюции. Ее механизмы не затрагивают процессов клеточного обмена. Механизмы физической терморегуляции включаются рефлекторно и имеют как любой рефлекторный механизм три основных компонента. Во-первых, это рецепторы, воспринимающие изменение температуры внутри организма или окружающей среды. Второе звено - это центр терморегуляции. Третье звено - эффекторы, которые изменяют процессы теплоотдачи, сохраняя температуру тела на постоянном уровне. В организме, кроме потовой железы, нет собственных эффекторов рефлекторного механизма физической терморегуляции.

Значение физической терморегуляции

Физическая терморегуляция - это регуляция теплоотдачи. Ее механизмы обеспечивают поддержание температуры тела на постоянном уровне как в условиях, когда организму грозит перегрев, так и при охлаждении.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды.

Теплоотдача осуществляется путем теплоизлучения (радиационная теплоотдача), конвекции, т. е. движения и перемешивания нагреваемого телом воздуха, теплопроведения, т.е. отдачи тепла веществом, соприкасающимся с поверхностью тела. Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ.

Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух плохой проводник тепла. В значительной степени препятствует теплоотдаче слой подкожной жировой клетчатки в связи с малой теплопроводностью жира.

Регуляция температуры

Температура кожи, а следовательно интенсивность теплоизлучения и теплопроведения могут изменяться в холодных или жарких условиях внешней среды в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови.

На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются; большее количество крови поступает в сосуды брюшной полости и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла, поэтому теплоотдача уменьшается. Кроме того, при сильном охлаждении кожи происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче.

Перераспределение крови, происходящее на холоде, - уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, - способствует сохранению тепла во внутренних органах, температура которых поддерживается на постоянном уровне.

При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче посредством радиации и конвекции. Для сохранения постоянства температуры тела при высоких температурах окружающей среды имеет значение и потоотделение, происходящее за счет теплоотдачи в процессе испарения воды.

А. Жизнь человека может протекать только в узком диапазоне температур.

Температура оказывает существенное влияние на протекание жизненных процессов в организме человека и на его физиологическую активность. Процессы жизнедеятельности ограничены узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°С и её увеличение выше 43°С, как правило, смертельно. Особенно чувствительны к изменениям температуры нервные клетки.

Высокая температура вызывает интенсивное потоотделение, что приводит к обезвоживанию организма, потере минеральных солей и водорастворимых витаминов. Следствием этих процессов является сгущение крови, нарушение солевого обмена, желудочной секреции, развитие витаминного дефицита. Допустимое снижение веса при испарении составляет 2-3%. При потере веса от испарения в 6% нарушается умственная деятельность, а при 15-20% потери веса наступает смерть. Систематическое действие высокой температуры вызывает изменения в сердечно-сосудистой системе: учащение пульса, изменение артериального давления, ослабление функциональной способности сердца. Длительное воздействие высокой температуры приводит к накоплению тепла в организме, при этом температура тела может повыситься до 38-41°С и может возникнуть тепловой удар с потерей сознания.

Низкие температуры могут быть причинами охлаждения и переохлаждения организма. При охлаждении в организме рефлекторно уменьшается теплоотдача и усиливается теплопродукция. Уменьшение теплоотдачи происходит за счёт спазма (сужения) сосудов, увеличения термического сопротивления тканей организма. Длительное воздействие низкой температуры приводит к стойкому сосудистому спазму, нарушению питания тканей. Рост теплопродукции при охлаждении достигается усилием окислительных обменных процессов в организме (понижение температуры тела на 1°С сопровождается приростом обменных процессов на 10°С). Воздействие низких температур сопровождается увеличением артериального давления, объёмом вдоха и уменьшением частоты дыхания. Охлаждение организма изменяет углеводный обмен. Большое охлаждение сопровождается снижением температуры тела, угнетением функций органов и систем организма.

Б. Ядро и внешняя оболочка тела.

С точки зрения терморегуляции тело человека можно представить состоящим из двух компонентов - внешней оболочки и внутреннего ядра .

Ядро - это часть тела, которая имеет постоянную температуру (внутренние органы), а оболочка - часть тела, в которой имеется температурный градиент (это ткани поверхностного слоя тела толщиной 2,5 см). Через оболочку идёт теплообмен между ядром и окружающей средой, то есть изменения теплопроводности оболочки определяют постоянство температуры ядра. Теплопроводность изменяется за счёт изменения кровоснабжения и кровенаполнения тканей оболочки.

Температура разных участков ядра различна. Например, в печени: 37.8-38.0°С, в мозге: 36.9-37.8°С. В целом же температура ядра тела человека составляет 37.0°С. Это достигается с помощью процессов эндогенной терморегуляции, результатом которой является устойчивое равновесие между количеством продуцируемого в организме в единицу времени тепла (теплопродукцией ) и количеством тепла, рассеиваемого организмом за то же время в окружающую среду (теплоотдачей ).

Температура кожи человека на различных участках колеблется от 24.4°С до 34.4°С. Самая низкая температура наблюдается на пальцах ног, самая высокая - в подмышечной впадине. Именно на основании измерения температуры в подмышечной впадине обычно судят о температуре тела в данный момент времени.

По усреднённым данным, средняя температура кожи обнажённого человека в условиях комфортной температуры воздуха составляет 33-34°С. Существуют суточные колебания температуры тела. Амплитуда колебаний может достигать 1°С. Температура тела минимальна в предутренние часы (3-4 часа) и максимальна в дневное время (16-18 часов).

Известно также явление асимметрии температуры. Она наблюдается примерно в 54% случаев, причём температура в левой подмышечной впадине несколько выше, чем в правой. Возможна асимметрия и на других участках кожи, а выраженность асимметрии более чем в 0,5°С свидетельствует о патологии.

В. Теплообмен. Баланс теплообразования и теплоотдачи в организме человека.

Процессы жизнедеятельности человека сопровождаются непрерывным теплообразованием в его организме и отдачей образованного тепла в окружающую среду. Обмен тепловой энергии между организмом и окружающей средой называетсяp теплообменом. Теплопродукция и теплоотдача обусловлены деятельностью центральной нервной системы, регулирующей обмен веществ, кровообращение, потоотделение и деятельность скелетных мышц.

Организм человека - это саморегулируемая система с внутренним источником тепла, в которой в нормальных условиях теплопродукция (количество образованного тепла) равна количеству тепла, отданного во внешнюю среду (теплоотдаче). Постоянство температуры тела называется изотермией . Она обеспечивает независимость обменных процессов в тканях и органах от колебаний температуры окружающей среды.

Внутренняя температура тела человека постоянна (36.5-37°С) благодаря регулированию интенсивности теплопродукции и теплоотдачи в зависимости от температуры внешней среды. А температура кожи человека при воздействии внешних условий может изменяться в относительно широких пределах.

В теле человека за 1 час образуется столько тепла, сколько нужно, чтобы вскипятить 1 литр ледяной воды. И если бы тело было непроницаемым для тепла футляром, то уже через час температура тела поднялась бы примерно на 1.5°С, а часов через 40 достигла бы точки кипения воды. Во время тяжёлой физической работы образование тепла увеличивается ещё в несколько раз. И всё же температура нашего тела не меняется. Почему? Всё дело именно в уравновешивании процессов образования и отдачи тепла в организме.

Ведущим фактором, определяющим уровень теплового баланса, является температура окружающей среды. При её отклонении от комфортной зоны в организме устанавливается новый уровень теплового баланса, обеспечивающий изотермию в новых условиях среды. Такое постоянство температуры тела обеспечивается механизмом терморегуляции , включающим процесс теплообразования и процесс тепловыделения, которые регулируются нервно-эндокринным путём.

Г. Понятие терморегуляции организма .

Терморегуляция - это совокупность физиологических процессов, направленных на поддержание относительного постоянства температуры ядра организма в условиях изменения температуры среды с помощью регуляции теплопродукции и теплоотдачи. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если подобные нарушения уже произошли, и осуществляется нервно-гуморальным путём.

Принято считать, что терморегуляция свойственна лишь гомойотермным животным (к ним относятся млекопитающие (в том числе человек), и птицы), организм которых обладает способностью поддерживать температуру внутренних областей тела на относительно постоянном и достаточно высоком уровне (около 37-38°С у млекопитающих и 40-42°С у птиц) независимо от изменений температуры окружающей среды.

Механизм терморегуляции можно представить в виде кибернетической самоуправляющей системы с обратными связями. Температурные колебания окружающего воздуха действуют на специальные рецепторные образования (терморецепторы ), чувствительные к изменению температуры. Терморецепторы передают в центры терморегуляции информацию о тепловом состоянии органа, в свою очередь, центры терморегуляции через нервные волокна, гормоны и другие биологически активные вещества изменяют уровень теплоотдачи и теплопродукции или участков тела (местная терморегуляция), или организма в целом. При выключении центров терморегуляции специальными химическими веществами организм утрачивает способность к поддержанию постоянства температуры. Эту особенность в последние годы используют в медицине для искусственного охлаждения организма во время сложных хирургических операций на сердце.

Кожные терморецепторы.

Подсчитано, что у человека имеется примерно 150.000 холодовых и 16.000 тепловых рецепторов, которые реагируют на изменения температуры внутренних органов. Терморецепторы располагаются в коже, во внутренних органах, дыхательных путях, скелетных мышцах и центральной нервной системе.

Терморецепторы кожи являются быстро адаптирующимися и реагируют не столько на саму температуру, сколько на её изменения. Максимальное число рецепторов находится в области головы и шеи, минимальное - на конечностях.

Холодовые рецепторы менее чувствительны и их порог чувствительности равен 0,012°С (при охлаждении). Порог чувствительности тепловых рецепторов выше и составляет 0,007°С. Вероятно, это связано с большей опасностью для организма именно перегревания.

Д. Виды терморегуляции.

Терморегуляцию можно разделить на два основных вида :

1. Физическая терморегуляция:

Испарение (потоотделение);

Излучение (радиация);

Конвекция.

2. Химическая терморегуляция.

Сократительный термогенез;

Несократительный термогенез.

Физическая терморегуляция (процесс, осуществляющий удаление тепла из организма) - обеспечивает сохранение постоянства температуры тела за счёт изменения отдачи тепла организмом путём проведения через кожу (кондукция и конвекция), лучеиспускания (радиация) и испарения воды. Отдача постоянно образующегося в организме тепла регулируется изменением теплопроводности кожи, подкожного жирового слоя и эпидермиса. Теплоотдача в значительной мере регулируется динамикой кровообращения в теплопроводящих и теплоизолирующих тканях. С повышением температуры окружающей среды в теплоотдаче начинает доминировать испарение.

Кондукция, конвекция и излучение являются пассивными путями теплоотдачи, основанными на законах физики. Они эффективны только при сохранении положительного температурного градиента. Чем меньше разница температуры между телом и окружающей средой, тем меньше тепла отдаётся. При одинаковых показателях или при высокой температуре окружающей среды упомянутые пути не только не эффективны, но при этом ещё происходит и нагрев тела. В этих условиях в организме срабатывает только один механизм отдачи тепла - потоотделение.

При низкой температуре окружающей среды (15°С и ниже) около 90% суточной теплоотдачи происходит за счёт теплопроведения и теплоизлучения. В этих условиях видимого потоотделения не происходит. При температуре воздуха 18-22°С теплоотдача за счёт теплопроводности и теплоизлучения уменьшается, но увеличивается потеря тепла организмом путём испарения влаги с поверхности кожи. При повышении температуры окружающей среды до 35°С теплоотдача с помощью радиации и конвекции становится невозможной, и температура тела поддерживается на постоянном уровне исключительно с помощью испарения воды с поверхности кожи и альвеол лёгких. При большой влажности воздуха, когда испарение воды затруднено, может возникнуть перегревание тела и развиться тепловой удар.

У человека в состоянии покоя при температуре воздуха около 20°С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, с помощью радиации теряется 66%, испарения воды - 19%, конвекции - 15% от общей потери тепла организмом.

Химическая терморегуляция (процесс, обеспечивающий образование тепла в организме) - реализуется через обмен веществ и через теплопродукцию таких тканей как мышцы, а также печень, бурый жир, то есть путём изменения уровня теплообразования - за счёт усиления или ослабления интенсивности обмена веществ в клетках организма. При окислении органических веществ выделяется энергия. Часть энергии идёт на синтез АТФ (аденозинтрифосфат - это нуклеотид, играющий исключительно важную роль в обмене энергии и веществ в организме). Эта потенциальная энергия может быть использована организмом в дальнейшей его деятельности. Источником тепла в организме являются все ткани. Кровь, протекая через ткани, нагревается. Повышение температуры окружающей среды вызывает рефлекторное снижение обмена веществ, вследствие этого в организме уменьшается теплообразование. При понижении температуры окружающей среды рефлекторно увеличивается интенсивность метаболических процессов и усиливается теплообразование.

Включение химической терморегуляции происходит тогда, когда физическая терморегуляция оказывается недостаточной для поддержания постоянства температуры тела.

Рассмотрим эти виды терморегуляции.

Физическая терморегуляция:

Под физической терморегуляцией понимают совокупность физиологических процессов, ведущих к изменению уровня теплоотдачи. Существуют следующие пути отдачи тепла организмом в окружающую среду:

Испарение (потоотделение);

Излучение (радиация);

Теплопроведение (кондукция);

Конвекция.

Рассмотрим их подробнее:

1. Испарение (потоотделение):

Испарение (потоотделение) - это отдача тепловой энергии в окружающую среду за счёт испарения пота или влаги с поверхности кожи и слизистых оболочек дыхательных путей. У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путём испарения тепла, чем «неощутимая».

При температуре внешней среды около 20°С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путём испарения организм взрослого человека отдаёт в этих условиях в окружающую среду около 20% всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500-2.000 г/ч.

Человек плохо переносит сравнительно невысокую температуру окружающей среды (32°С) при влажном воздухе. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2-3 ч при температуре 50-55°С. Плохо переносится также непроницаемая для воздуха одежда (резиновая, плотная и т.п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается.

У процесса теплоотдачи при помощи испарения, хотя оно является лишь одним из способов терморегуляции, есть одно исключительное достоинство - если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло другими методами терморегуляции (излучением, конвекцией и кондукцией), которые мы рассмотрим ниже. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остаётся меньше 100%. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путём испарения становится менее эффективной.

При испарении пота наше тело отдаёт свою энергию. Собственно, благодаря энергии нашего тела молекулы жидкости (т.е. пота) разрывают молекулярные связи и переходят из жидкого в газообразное состояние. Энергия тратится на разрыв связей, и, в результате, температура тела понижается. По такому же принципу работает холодильник. Он умудряется поддерживать внутри камеры температуру, гораздо более низкую, чем температура окружающей среды. Делает он это благодаря потребляемой электроэнергии. А мы это делаем, используя энергию, полученную от расщепления пищевых продуктов.

Снизить потери тепла от испарения может помочь контроль над подбором одежды. Одежду нужно подбирать исходя из погодных условий и текущей активности. Не ленитесь снимать лишнюю одежду, когда растут нагрузки. Вы будете меньше потеть. И не ленитесь снова её одеть, когда нагрузки прекращаются. Снимайте влаго- и ветрозащиту, если дождя с ветром нет, иначе одежда будет мокнуть изнутри, от вашего пота. А, контактируя с мокрой одеждой, мы теряем тепло ещё и теплопроводностью. Вода в 25 раз лучше воздуха проводит тепло. Значит, в мокрой одежде мы теряем тепло в 25 раз быстрее. Вот почему важно поддерживать одежду сухой.

Испарение делится на 2 вида:

а) Неощущаемая перспирация (без участия потовых желез) - это испарение воды с поверхности лёгких, слизистых оболочек дыхательных путей и воды, просачивающейся через эпителий кожного покрова (испарение с поверхности кожи идёт даже в случае, если кожа сухая).

За сутки через дыхательные пути испаряется до 400 мл воды, т.е. организм теряет до 232 ккал в сутки. При необходимости эта величина может быть увеличена за счёт тепловой одышки. Через эпидермис в среднем за сутки просачивается около 240 мл воды. Следовательно, этим путём организм теряет до 139 ккал в сутки. Эта величина, как правило, не зависит от процессов регуляции и различных факторов среды.

б) Ощущаемая перспирация (при активном участии потовых желез) - это отдача тепла путём испарения пота. В среднем за сутки при комфортной температуре среды выделяется 400-500 мл пота, следовательно, отдаётся до 300 ккал энергии. Испарение 1 л пота у человека с массой тела 75 кг может понизить температуру тела на 10°С. Однако при необходимости объём потоотделения может увеличиться до 12 л в сутки, т.е. путём потоотделения можно потерять до 7.000 ккал в сутки.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность, тем выше эффективность потоотделения как механизма отдачи тепла. При 100% влажности испарение невозможно. При высокой влажности атмосферного воздуха высокая температура переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе (например, в бане) пот выделяется в большом количестве, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение).

2. Излучение (радиация):

Излучение (радиация) - это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5-20 мкм). За счёт излучения отдают энергию все предметы, температура которых выше абсолютного нуля. Электромагнитная радиация свободно проходит сквозь вакуум, атмосферный воздух для неё тоже можно считать «прозрачным».

Как известно, любой предмет, который нагрет выше температуры окружающей среды, излучает тепло. Каждый чувствовал это сидя у костра. Костёр излучает тепло и нагревает предметы вокруг. При этом костер теряет своё тепло.

Тело человека начинает излучать тепло, как только температура окружающей среды опускается ниже, чем температура поверхности кожи. Чтоб предотвратить потери тепла излучением, нужно защитить открытые участки тела. Это делается с помощью одежды. Таким образом, мы создаём прослойку воздуха в одежде между кожей и окружающей средой. Температура этой прослойки будет равна температуре тела и потери тепла излучением уменьшатся. Почему потеря тепла не прекратится совсем? Потому что теперь нагретая одежда будет излучать тепло, теряя его. И, даже надев на себя ещё один слой одежды, вы не остановите излучение.

Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения (площади поверхности тела, не покрытой одеждой) и разности средних значений температур кожи и окружающей среды. При температуре окружающей среды 20°С и относительной влажности воздуха 40-60% организм взрослого человека рассеивает путём излучения около 40-50% всего отдаваемого тепла. Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Теплоотдача путём излучения возрастает при понижении температуры окружающей среды и уменьшается при её повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при её понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), то отдача тепла излучением становится невозможной.

Снизить теплоотдачу организма излучением можно за счёт уменьшения площади поверхности излучения - изменением положения тела . Например, когда собаке или кошке холодно, они сворачиваются в клубок, уменьшая тем самым поверхность теплоотдачи; когда жарко, животные, наоборот, принимают положение, при котором поверхность теплоотдачи максимально возрастает. Этого способа физической терморегуляции не лишён и человек, «сворачиваясь в клубок» во время сна в холодном помещении.

3. Теплопроведение (кондукция):

Теплопроведение (кондукция) - это способ отдачи тепла, который имеет место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела.

Потери тепла теплопроводностью возникают тогда, когда происходит прямой контакт с холодным предметом. В этот момент наше тело отдаёт своё тепло. Скорость потери тепла сильно зависит от теплопроводности предмета, с которым мы соприкасаемся. Например, теплопроводность камня в 10 раз выше, чем древесины. Поэтому, сидя на камне, мы будем терять тепло гораздо быстрее. Вы, наверняка, замечали, что сидеть на камне как-то холоднее, чем на бревне.

Решение? Изолировать своё тело от холодных предметов с помощью плохих проводников тепла. Проще говоря, например, если вы путешествуете в горах, то устраиваясь на привал, садитесь на туристический коврик или свёрток одежды. На ночь обязательно подкладывайте под спальник туристический коврик, соответствующий погодным условиям. Или, в крайнем случае, толстый слой сухой травы или хвои. Земля хорошо проводит (а значит «отбирает») тепло и сильно охлаждается ночью. Зимой не берите металлические предметы голыми руками. Используйте перчатки. В сильные морозы от металлических предметов можно получить местное обморожение.

Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами (плохими проводниками тепла). Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей. Теплоизолирующие свойства одежды тем выше, чем мельче ячеистость её структуры, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды, что даёт возможность организму человека уменьшить рассеяние тепла путём теплопроводности. Температура воздуха под одеждой достигает 30°С. И, наоборот, обнажённое тело теряет тепло, так как воздух на его поверхности всё время сменяется. Поэтому температура кожи обнажённых частей тела намного ниже, чем одетых.

Влажный, насыщенный водяными парами воздух характеризуется высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

4. Конвекция:

Конвекция - это способ теплоотдачи организма, осуществляемый путём переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20°С, а относительная влажность - 40-60%, тело взрослого человека рассеивает в окружающую среду путём теплопроведения и конвекции около 25-30% тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Суть процесса конвекции лежит в следующем - наше тело нагревает воздух вблизи кожи; нагретый воздух становиться легче холодного и поднимается вверх, а его замещает холодный воздух, который снова нагревается, становится легче и вытесняется следующей порцией холодного. Если нагретый воздух не захватить с помощью одежды, то этот процесс будет бесконечным. Фактически нас греет не одежда, а воздух, который она задерживает.

Когда дует ветер, ситуация ухудшается. Ветер несёт огромные порции ненагретого воздуха. Даже когда мы одеваем тёплый свитер, ветру ничего не стоит выгнать из него тёплый воздух. То же самое происходит, когда мы движемся. Наше тело «врезается» в воздух, и он течёт вокруг нас, действуя как ветер. Это тоже умножает потери тепла.

Какое решение? Надевать ветрозащитный слой: ветровку и непродуваемые штаны. Не забывать о защите шеи и головы. Из-за активного кровообращения мозга, шея и голова - это наиболее нагретые участки тела, поэтому потери тепла от них очень большие. Также, в холодную погоду нужно избегать продуваемых мест как во время движения, так и при выборе места для ночлега.

Химическая терморегуляция:

Химическая терморегуляция теплообразования осуществляется за счёт изменения уровня обмена веществ (окислительных процессов), вызванных микровибрацией мышц (колебаниями), что приводит к изменению образования тепла в организме.

Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиз АТФ (аденозинтрифосфат - это нуклеотид, который играет исключительно важную роль в обмене энергии и веществ в организме; в первую очередь это соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах). При расщеплении питательных веществ часть освобождённой энергии аккумулируется в АТФ, часть рассеивается в виде тепла (первичная теплота - 65-70% энергии). При использовании макроэргических связей молекул АТФ часть энергии идёт на выполнение полезной работы, а часть рассеивается (вторичная теплота). Таким образом, два потока теплоты - первичной и вторичной - являются теплопродукцией.

Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела как в нормальных условиях, так и при изменении температуры окружающей среды. У человека усиление теплообразования вследствие увеличения интенсивности обмена веществ отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. Для человека в обычной лёгкой одежде эта зона находится в пределах 18-20°С, а для обнажённого равна 28°С.

Оптимальная температура во время пребывания в воде выше, чем на воздухе. Это обусловлено тем, что вода, обладающая высокой теплоёмкостью и теплопроводностью, охлаждает тело в 14 раз сильнее, чем воздух, поэтому в прохладной ванне обмен веществ повышается значительно больше, чем во время пребывания на воздухе при той же температуре.

Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряжённой мускулатурой, интенсивность окислительных процессов, а вместе с тем и теплообразование, повышаются на 10%. Небольшая двигательная активность ведёт к увеличению теплообразования на 50-80%, а тяжёлая мышечная работа - на 400-500%.

В химической терморегуляции значительную роль играют также печень и почки. Температура крови печёночной вены выше температуры крови печёночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает.

При необходимости повысить теплопродукцию, помимо возможности получения тепла извне, в организме используются механизмы, увеличивающие производство тепловой энергии. К таким механизмам относятся сократительный и несократительный термогенез .

1. Сократительный термогенез.

Этот вид терморегуляции работает, если нам холодно и необходимо поднять температуру тела. Заключается этот метод в сокращении мышц . При сокращении мышц возрастает гидролиз АТФ, поэтому возрастает поток вторичной теплоты, идущей на согревание тела.

Произвольная активность мышечного аппарата, в основном, возникает под влиянием коры больших полушарий. При этом повышение теплопродукции возможно в 3-5 раз по сравнению с величиной основного обмена.

Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса (волосы на теле «встают дыбом», появляются «мурашки»). С точки зрения механики сокращения, данный тонус представляет собой микровибрацию и позволяет увеличить теплопродукцию на 25-40% от исходного уровня. Обычно в создании тонуса принимают участие мышцы шеи, головы, туловища и конечностей.

При более значительном переохлаждении терморегуляционный тонус переходит в особый вид мышечных сокращений - мышечную холодовую дрожь , при которой мышцы не совершают полезной работы и их сокращение направлено исключительно на выработку тепла.Холодовая дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц, в результате чего значительно усиливаются обменные процессы организма, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечёт за собой повышение теплообразования. Дрожь начинается часто с мышц шеи, лица. Это объясняется тем, что, прежде всего, должна повыситься температура крови, которая течёт к головному мозгу. Считается, что теплопродукция при холодовой дрожи в 2-3 раза выше, чем при произвольной мышечной деятельности.

Описанный механизм работает на рефлекторном уровне, без участия нашего сознания. Но поднять температуру тела можно и при помощи сознательной двигательной активности . При выполнении физической нагрузки разной мощности теплопродукция возрастает в 5-15 раз по сравнению с уровнем покоя. Температура ядра на протяжении первых 15-30 минут длительной работы довольно быстро повышается до относительно стационарного уровня, а затем сохраняется на этом уровне или продолжает медленно повышаться.

2. Несократительный термогенез:

Этот вид терморегуляции может приводить как к повышению, так и к понижению температуры тела. Он осуществляется путём ускорения или замедления катаболических процессов обмена веществ (окисление жирных кислот). А это, в свою очередь, будет приводить к снижению или увеличению теплопродукции. За счёт этого вида термогенеза уровень теплопродукции у человека может вырасти в 3 раза по сравнению с уровнем основного обмена.

Регуляция процессов несократительного термогенеза осуществляется путём активации симпатической нервной системы, продукции гормонов щитовидной и мозгового слоя надпочечников.

Е. Управление терморегуляцией.

Гипоталамус.

Система терморегуляции состоит из ряда элементов с взаимосвязанными функциями. Информация о температуре поступает от терморецепторов и при помощи нервной системы попадает в мозг.

Основную роль в терморегуляции играет гипоталамус . В нём расположены основные центры терморегуляции, которые координируют многочисленные и сложные процессы, обеспечивающие сохранение температуры тела на постоянном уровне.

Гипоталамус - это небольшая область в промежуточном мозге, включающая в себя большое число групп клеток (свыше 30 ядер), которые регулируют нейроэндокринную деятельность мозга и гомеостаз (способность сохранять постоянство своего внутреннего состояния) организма. Гипоталамус связан нервными путями практически со всеми отделами центральной нервной системы, включая кору, гиппокамп, миндалину, мозжечок, ствол мозга и спинной мозг. Вместе с гипофизом гипоталамус образует гипоталамо-гипофизарную систему, в которой гипоталамус управляет выделением гормонов гипофиза и является центральным связующим звеном между нервной и эндокринной системой. Он выделяет гормоны и нейропептиды, и регулирует такие функции как ощущение голода и жажды, терморегуляция организма, половое поведение, сон и бодрствование (циркадные ритмы). Исследования последних лет показывают, что гипоталамус играет важную роль и в регуляции высших функций, таких как память и эмоциональное состояние, и тем самым участвует в формировании различных аспектов поведения.

Разрушение центров гипоталамуса или нарушение нервных связей ведёт к утрате способности регулировать температуру тела.

В переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи (они обеспечивают физическую терморегуляцию - сужение сосудов, потоотделение).При разрушении нейронов переднего гипоталамуса организм плохо переносит высокие температуры, но физиологическая активность в условиях холода сохраняется.

Нейроны заднего гипоталамуса управляют процессами теплообразования (они обеспечивают химическую терморегуляцию - усиление теплообразования, мышечную дрожь).При их повреждении нарушается способность к усилению энергообмена, поэтому организм плохо переносит холод.

Термочувствительные нервные клетки преоптической области гипоталамуса непосредственно «измеряют» температуру артериальной крови, протекающей через мозг, и обладают высокой чувствительностью к температурным изменениям (способны различать разницу температуры крови в 0,011°С). Отношение холодо- и теплочувствительных нейронов в гипоталамусе составляет 1:6, поэтому центральные терморецепторы преимущественно активируются при повышении температуры «ядра» тела человека.

На основе анализа и интеграции информации о значении температуры крови и периферических тканей, в преоптической области гипоталамуса непрерывно определяется среднее (интегральное) значение температуры тела. Эти данные передаются через вставочные нейроны в группу нейронов переднего отдела гипоталамуса, задающих в организме определённый уровень температуры тела - «установочную точку» терморегуляции. На основе анализа и сравнений значений средней температуры тела и заданной величины температуры, подлежащей регулированию, механизмы «установочной точки» через эффекторные нейроны заднего гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру.

Таким образом, за счёт функции центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей, позволяющее поддерживать температуру тела в оптимальных для жизнедеятельности организма пределах.

Эндокринная система.

Гипоталамус управляет процессами теплопродукции и теплоотдачи, посылая нервные импульсы к железам внутренней секреции, главным образом щитовидной, и надпочечникам.

Участие щитовидной железы в терморегуляции обусловлено тем, что влияние пониженной температуры приводит к усиленному выделению её гормонов (тироксин, трийодтиронин), ускоряющих обмен веществ и, следовательно, теплообразование.

Роль надпочечников связана с выделением ими в кровь катехоламинов (адреналин, норадреналин, дофамин), которые, усиливая или уменьшая окислительные процессы в тканях (например, мышечной), увеличивают или уменьшают теплопродукцию и сужают или увеличивают кожные сосуды, меняя уровень теплоотдачи.