Последовательность Фибоначчи , известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.


В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618 , через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618 , что обратно пропорционально 1,618 . Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382 , которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение , которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


Если мы примем весь отрезок c за 1 , то отрезок a будет равен 0,618 , отрезок b - 0,382 , только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618 ; 1/0,618=1,618 ) . Отношение c к a равно 1,618 , а с к b 2,618 . Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Изображение: marcus-frings.de

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr


Фото: beart.org.uk
Фото: esdrascalderan on Flickr
Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восемью, потом тринадцатью, 21, 34, 55...

Источники: ; ; ;

Некоторое время назад я обещала прокомментировать утверждение Толкачева о том, что Питер построен по принципу Золотого Сечения, а Москва – по принципу симметрии, и что именно поэтому столь ощутимы различия в восприятии этих двух городов, и именно поэтому петербуржец, приезжая в Москву «заболевает головой», а москвич «заболевает головой», приезжая в Питер. Требуется некоторое время для сонастройки с городом (как при перелете в штаты – требуется сонастройка со временем).

Дело в том, что наш глаз смотрит - ощупывая пространство с помощью определенных движений глаз – саккад (в переводе – хлопок паруса). Глаз совершает «хлопок» и посылает сигнал в мозг «сцепление с поверхностью произошло. Все в порядке. Информация такая-то». И в течение жизни глаз привыкает к определенной ритмике этих саккад. И когда эта ритмика кардинально меняется (с городского пейзажа на лес, с Золотого Сечения на симметрию) – тут то и требуется некоторая работа мозга по перенастройке.

Теперь подробности:
Определение ЗС - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

То есть, если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382. Таким образом, если взять строение, например, храм, построенный по принципу ЗС, то при его высоте скажем 10 метров, высота барабана с куполом будут равны 3,82 см, а высота основания строения будет 6, 18 см. (понятно, что цифры я взяла ровными для наглядности)

А какова связь между ЗС и числами Фибоначчи?

Числа последовательности Фибоначчи это:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…

Закономерность чисел в том, что каждое последующее число равно сумме двух предыдущих чисел.
0 + 1 = 1;
1 + 1 = 2;
2 + 3 = 5;
3 + 5 = 8;
5 + 8 = 13;
8 + 13 = 21 и т.д.,

а отношение смежных чисел приближается к отношению ЗС.
Так, 21: 34 = 0,617, а 34: 55 = 0,618.

То есть в основе ЗС лежат числа последовательности Фибоначчи.
Вот этот ролик ещё раз наглядно демонстрирует эту связь ЗС и чисел Фибоначчи

Где ещё встречаются принцип ЗС и числа последовательности Фибоначчи?

Листья у растений описывается последовательностью Фибоначчи. Зерна подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса также располагаются согласно последовательности Фибоначчи.

Яйцо птицы

Длины фаланг пальцев человека относятся примерно как числа Фибоначчи. Золотое сечение просматривается в пропорциях лица.

Эмиль Розенов исследовал ЗС в музыке эпохи Барокко и классицизма на примере произведений Баха, Моцарта, Бетховена.

Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам ЗС. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних - в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.

Многие элементы декора, а так же шрифты, созданы с использованием ЗС. Например шрифт А.Дюрера (в рисунке буква «А»)

Считается, что термин «Золотое сечение» ввел Леонардо Да Винчи, который говорил, «пусть никто, не будучи математиком, не дерзнет читать мои труды” и показывал пропорции человеческого тела на своём знаменитом рисунке «Витрувианский человек». “Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.

Знаменитый портрет Моны Лизы или Джоконды (1503) создан по принципу золотых треугольников.

Собственно говоря сама звезда или пентакль представляет собой построение ЗС.

Ряд чисел Фибоначчи наглядно моделируется (материализуется) в форме спирали

А в природе спираль ЗС выглядит вот так:

При этом, спираль наблюдается повсеместно (в природе и не только):
- Семена в большинстве растений расположены по спирали
- Паук плетет паутину по спирали
- Спиралью закручивается ураган
- Испуганное стадо северных оленей разбегается по спирали.
- Молекула ДНK закручена двойной спиралью. Молекулу ДНК составляют две вертикально переплетенные спирали длиной 34 ангстрема и шириной 21 ангстрема. Числа 21 и 34 следуют друг за другом в последовательности Фибоначчи.
- Эмбрион развивается в форме спирали
- Спираль «улитки во внутреннем ухе»
- Вода уходит в слив по спирали
- Спиральная динамика показывает развитие личности человека и его ценностей по спирали.
- Ну и конечно, сама Галактика имеет форму спирали

Таким образом можно утверждать, что сама природа построена по принципу Золотого Сечения, оттого эта пропорция гармоничнее воспринимается человеческим глазом. Она не требует «исправления» или дополнения получаемой картинки мира.

Теперь о Золотом сечении в архитектуре

Пирамида Хеопса представляет собой пропорции ЗС. (Фотография нравится – с заваленным песком Сфинксом).

Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции.

Собор "Нотредам де Пари" в Париже, Франция.

Одно из выдающихся строений, выполненных по принципу ЗС – Смольный Собор в Питере. К собору ведут по краям две дорожки и если приближаться по ним к собору, то тот будто приподнимается в воздухе.

В Москве также есть строения выполненные с использованием ЗС. Например, Храм Василия Блаженного

Однако застройка, использующая принципы симметрии преобладает.
Например, Кремль и Спасская башня.

Высота стен Кремля также нигде не отражает принципа ЗС относительно высоты башен, например. Или взять гостиницу Россия, или гостиницу Космос.

При этом здания, построенные по принципу ЗС представляют больший процент в Питере, при этом это здания уличной застройки. Литейный проспект.

Таким образом, Золотое Сечение использует коэффицент 1,68, а симметрия 50/50.
То есть симметричные здания построены по принципу равенства сторон.

Ещё одной важной характеристикой ЗС является её динамичность и стремление к разворачиванию, за счет последовательности чисел Фибоначчи. Тогда как симметрия – наоборот представляет собой стабильность, устойчивость и неподвижность.

Кроме этого, дополнительное ЗС вносит в план Питера обилие водных пространств, расплескавшихся по городу и диктующих подчиненность города их изгибам. Да и сама схема Питера напоминает спираль или зародыш одновременно.

Папа, правда, высказал другую версию, отчего у москвичей и питерцев «голова болит» при посещении столиц. Папа относит это к энергиям городов:
Санкт-Петербург – имеет мужской род и соответственно мужские энергии,
Ну а Москва – соответственно – женского рода и обладает женскими энергиями.

Так жителям столиц, настроившимся на свой определенный баланс женского и мужского в своих организмах – сложно перестраиваться при посещении города-соседа, а у кого-то может и сложности какие-то имеются с восприятием одной или другой энергий и оттого город сосед могут и вовсе не любить!

В подтверждение этой версии говорит и то, что все российские императрицы правили именно в Питере, тогда как Москва видела лишь царей мужского пола!

Использованные ресурсы.

Вы слышали когда-нибудь, что математику называют «царицей всех наук»? Согласны ли вы с таким утверждением? Пока математика остается для вас набором скучных задачек в учебнике, вряд ли можно прочувствовать красоту, универсальность и даже юмор этой науки.

Но есть в математике такие темы, которые помогают сделать любопытные наблюдения за обычными для нас вещами и явлениями. И даже попытаться проникнуть за завесу тайны создания нашей Вселенной. В мире есть любопытные закономерности, которые могут быть описаны с помощью математики.

Представляем вам числа Фибоначчи

Числами Фибоначчи называют элементы числовой последовательности. В ней каждое следующее число в ряду получается суммированием двух предыдущих чисел.

Пример последовательности: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Записать это можно так:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2

Можно начинать ряд чисел Фибоначчи и с отрицательных значений n . При этом последовательность в таком случае является двусторонней (т.е. охватывает отрицательные и положительные числа) и стремится к бесконечности в обоих направлениях.

Пример такой последовательности: -55, -34, -21, -13, -8, 5, 3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Формула в этом случае выглядит так:

F n = F n+1 - F n+2 или иначе можно так: F -n = (-1) n+1 Fn .

То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе. А с этим названием вообще один сплошной исторический анекдот. Начнем с того, что сам Фибоначчи при жизни никогда не называл себя Фибоначчи – это имя стали применять к Леонардо Пизанскому только спустя несколько столетий после его смерти. Но давайте обо всем по порядку.

Леонардо Пизанский, он же Фибоначчи

Сын торговца, который стал математиком, а впоследствии получил признание потомков в качестве первого крупного математика Европы периода Средних веков. Не в последнюю очередь благодаря числам Фибоначчи (которые тогда, напомним, еще так не назывались). Которые он в начале XIII века описал в своем труде «Liber abaci» («Книга абака», 1202 год).

Путешествую вместе с отцом на Восток, Леонардо изучал математику у арабских учителей (а они в те времена были в этом деле, да и во многих других науках, одними из лучших специалистов). Труды математиков Античности и Древней Индии он прочитал в арабских переводах.

Как следует осмыслив все прочитанное и подключив собственный пытливый ум, Фибоначчи написал несколько научных трактатов по математике, включая уже упомянутую выше «Книгу абака». Кроме нее создал:

  • «Practica geometriae» («Практика геометрии», 1220 год);
  • «Flos» («Цветок», 1225 год – исследование, посвященное кубическим уравнениям);
  • «Liber quadratorum» («Книга квадратов», 1225 год – задачи о неопределенных квадратных уравнениях).

Был большим любителем математических турниров, поэтому в своих трактатах много внимания уделял разбору различных математических задач.

О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.

Фибоначчи и его задачи

После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.

Кролики – не только ценный мех

Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и с увлечением размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.

Надо вычислить, сколько кроликов мы получим через год.

  • В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.
  • Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).
  • Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.
  • Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n -ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: F n = F n-1 + F n-2 .

Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

  1. 1 + 1 = 2
  2. 2 + 1 = 3
  3. 3 + 2 = 5
  4. 5 + 3 = 8
  5. 8 + 5 = 13
  6. 13 + 8 = 21
  7. 21 + 13 = 34
  8. 34 + 21 = 55
  9. 55 + 34 = 89
  10. 89 + 55 = 144
  11. 144 + 89 = 233
  12. 233+ 144 = 377 <…>

Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.

Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению (прочитать о нем подробнее вы сможете дальше в статье).

Говоря языком математики, «предел отношений a n+1 к a n равен золотому сечению» .

Еще задачи по теории чисел

  1. Найдите число, которое можно разделить на 7. Кроме того, если разделить его на 2, 3, 4, 5, 6, в остатке получится единица.
  2. Найдите квадратное число. О нем известно, что если прибавить к нему 5 или отнять 5, снова получится квадратное число.

Ответы на эти задачи мы предлагаем вам поискать самостоятельно. Свои варианты вы можете оставлять нам в комментариях к этой статье. А мы потом подскажем, верными ли были ваши вычисления.

Пояснение о рекурсии

Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.

Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.

Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n- е число равно (n – 1) + (n – 2) .

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887 .

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Золотой прямоугольник и спираль Фибоначчи

Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?

Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.

А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.

Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.

Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.

Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.

Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, почему эта статья называется именно так? И двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе

Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

  • порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);

  • расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);

  • расположение чешуек сосновых шишек;
  • лепестки цветов;
  • ячейки ананаса;
  • соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.

Задачи по комбинаторике

Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.

Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.

Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы (источник - http://www.problems.ru/).

Задача №1:

Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим а n. Отсюда следует, что a 1 = 1, a 2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).

Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как a n–2 . А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как a n–1 .

Отсюда получаем такое равенство: a n = a n–1 + a n–2 (выглядит знакомо, не правда ли?).

Раз мы знаем a 1 и a 2 и помним, что ступенек по условию задачи 10, вычисли по порядку все а n : a 3 = 3, a 4 = 5, a 5 = 8, a 6 = 13, a 7 = 21, a 8 = 34, a 9 = 55, a 10 = 89.

Ответ: 89 способов.

Задача №2:

Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.

Обозначим за a n количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a 1 = 2, a 2 = 3.

В последовательности a 1 , a 2 , <…>, a n мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это a n–1 . А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как a n–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».

Мы смогли обосновать, почему a n = a n–1 + a n–2 .

Вычислим теперь a 3 = a 2 + a 1 = 3 + 2 = 5, a 4 = a 3 + a 2 = 5 + 3 = 8, <…>, a 10 = a 9 + a 8 = 144. И получим знакомую нам последовательность Фибоначчи.

Ответ: 144.

Задача №3:

Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n -ой клетки?

Обозначим число способов перемещения кузнечика по ленте до n -ой клетки как a n . В таком случае a 1 = a 2 = 1. Также в n + 1 -ую клетку кузнечик может попасть либо из n -ой клетки, либо перепрыгнув ее. Отсюда a n + 1 = a n – 1 + a n . Откуда a n = F n – 1 .

Ответ: F n – 1 .

Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.

Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

  • Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.
  • В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.
  • В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.
  • Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.
  • В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк (0, 1, 1, 2, 3, 5, 8, 13, 21):

0 Тронулся в путь состав

1 Щёлкнул один сустав

1 Дрогнул один рукав

2 Всё, доставайте стафф

Всё, доставайте стафф

3 Просьбой о кипятке

Поезд идёт к реке

Поезд идёт в тайге <…>.

  • лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:

Плотная пища жён Фибоначчи

Только на пользу им шла, не иначе.

Весили жёны, согласно молве,

Каждая - как предыдущие две.

Подводим итоги

Мы надеемся, что смогли рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».

Пользуйтесь формулой для чисел Фибоначчи при решении задач по комбинаторике. Вы можете опираться на примеры, описанные в этой статье.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Каналиева Дана

В данной работе мы изучили и проанализировали проявление чисел последовательности Фибоначчи в окружающей нас действительности. Мы обнаружили удивительную математическую связь между числом спиралей у растений, числом веток в любой горизонтальной плоскости и числами последовательности Фибоначчи. Также мы увидели строгую математику в строении человека. Молекула ДНК человека, в которой зашифрована вся программа развития человеческого существа, дыхательная система, строение уха - всё подчиняется определённым числовым соотношениям.

Мы убедились, что у Природы есть свои законы, выраженные с помощью математики.

И математика очень важный инструмент познания тайн Природы.

Скачать:

Предварительный просмотр:

МБОУ «Первомайская средняя общеобразовательная школа»

Оренбургского района Оренбургской области

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

«Загадка чисел

Фибоначчи»

Выполнила: Каналиева Дана

ученица 6 класса

Научный руководитель:

Газизова Валерия Валерьевна

Учитель математики высшей категории

п. Экспериментальный

2012г

Пояснительная записка……………………………………………………………………........ 3.

Введение. История чисел Фибоначчи.……………………………………………………...... 4.

Глава 1. Числа Фибоначчи в живой природе.......……. …………………………………... 5.

Глава 2. Спираль Фибоначчи.......................................................……………..... 9.

Глава 3. Числа Фибоначчи в изобретениях человека.........…………………………….. 13

Глава 4. Наши исследования……………………………………………………………….... 16.

Глава 5. Заключение, выводы……………………………………………………………...... 19.

Список используемой литературы и сайтов Интернета…………………………………........21.

Объект исследования:

Человек, математические абстракции, созданные человеком, изобретения человека, окружающий растительный и животный мир.

Предмет исследования:

форма и строение исследуемых предметов и явлений.

Цель исследования:

изучить проявление чисел Фибоначчи и связанного с ним закона золотого сечения в строении живых и неживых объектов,

найти примеры использования чисел Фибоначчи.

Задачи работы:

Описать способ построения ряда Фибоначчи и спирали Фибоначчи.

Увидеть математические закономерности, в строении человека, растительного мира и неживой природы с точки зрения феномена Золотого сечения.

Новизна исследования:

Открытие чисел Фибоначчи в окружающей нас действительности.

Практическая значимость:

Использование приобретенных знаний и навыков исследовательской работы при изучении других школьных предметов.

Умения и навыки:

Организация и проведение эксперимента.

Использование специальной литературы.

Приобретение умения делать обзор собранного материала (доклад, презентацию)

Оформление работы рисунками, диаграммами, фотографиями.

Активное участие в обсуждении своей работы.

Методы исследования:

эмпирический (наблюдение, эксперимент, измерение).

теоретический (логическая ступень познания).

Пояснительная записка.

«Числа управляют миром! Число - это сила, царящая над богами и смертными!» - так говорили ещё древние пифагорейцы. Актуальна ли в наши дни эта основа учения Пифагора? Изучая в школе науку чисел, нам хочется убедиться в том, что действительно, явления всей Вселенной подчинены определенным числовым соотношениям, найти эту невидимую связь между математикой и жизнью!

Неужели в каждом цветочке,

И в молекуле, и в галактике,

Числовые закономерности

Этой строгой «сухой» математики?

Мы обратились к современному источнику информации - к Интернету и прочитали о числах Фибоначчи, о магических числах, которые таят в себе великую загадку. Оказывается, эти числа можно найти в подсолнухах и сосновых шишках, в крыльях стрекозы и морских звёздах, в ритмах человеческого сердца и в музыкальных ритмах...

Почему же эта последовательность чисел столь распространена в нашем мире?

Мы захотели узнать о тайнах чисел Фибоначчи. Результатом нашей деятельности и явилась данная исследовательская работа.

Гипотеза:

в окружающей нас действительности всё построено по удивительно гармоничным законам с математической точностью.

Всё в мире продуманно и просчитано самым главным нашим дизайнером - Природой!

Введение. История ряда Фибоначчи.

Удивительные числа были открыты итальянским математиком средневековья Леонардо Пизанским, более известным под именем Фибоначчи. Путешествуя по Востоку, он познакомился с достижениями арабской математики, способствовал передаче их на Запад. В одном из своих трудов под названием «Книга вычислений» он представил Европе одно из величайших открытий всех времён и народов - десятичную систему счисления.

Однажды, он ломал голову над решением одной математической задачи. Он пытался создать формулу, описывающую последовательность размножения кроликов.

Разгадкой стал числовой ряд, каждое последующее число которого, является суммой двух предыдущих:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...

Числа, образующие данную последовательность называются "числами Фибоначчи", а сама последовательность - последовательностью Фибоначчи.

«Ну и что?» - скажете вы, - «Мали ли мы сами можем придумать подобных числовых рядов, нарастающих по заданной прогрессии?» Действительно, когда появился ряд Фибоначчи, никто, в том числе и он сам, не подозревал, насколько близко ему удалось приблизиться к разгадке одной из величайших тайн мироздания!

Фибоначчи вёл отшельнический образ жизни, много времени проводил на природе, и, гуляя в лесу, он обратил внимание, что эти числа стали буквально преследовать его. Повсюду в природе он снова и снова встречал эти числа. Например, лепестки и листья растений строго укладывались в данный числовой ряд.

В числах Фибоначчи существует интересная особенность: частное от деления последующего числа Фибоначчи на предыдущее, по мере роста самих чисел, стремиться к 1,618. Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне именуется как золотое сечение или золотая пропорция.

В алгебpе это число обозначается гpеческой буквой фи (Ф)

Итак, φ = 1,618

233 / 144 = 1,618

377 / 233 = 1,618

610 / 377 = 1,618

987 / 610 = 1,618

1597 / 987 = 1,618

2584 / 1597 = 1,618

Сколько бы раз мы не делили одно на другое, соседнее с ним число, мы всегда получим 1, 618. А если сделаем наоборот, то есть разделим меньшее число на большее, то получим 0, 618, это число, обратное к 1, 618, тоже называется золотой пропорцией.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду, как арифметическому выражению закона золотого деления.

Учёные, анализируя дальнейшее применение этого числового ряда к природным феноменам и процессам, обнаружили, что эти числа содержатся буквально во всех объектах живой природы, в растениях, в животных и в человеке.

Удивительная математическая игрушка оказалась уникальным кодом, заложенным во все природные объекты самим Творцом Вселенной.

Рассмотрим примеры, где встречаются числа Фибоначчи в живой и неживой природе.

Числа Фибоначчи в живой природе.

Если посмотреть на растения и деревья вокруг нас, то видно, сколь много листьев на каждом из них. Издалека кажется, что ветки и листья на растениях расположены случайным образом, в произвольном порядке. Однако во всех растениях чудесным образом, математически точно спланировано какая веточка откуда будет произрастать, как ветки и листья будут располагаться около стебля или ствола. С первого дня появления растение в точности следует в своём развитии этим законам, то есть ни один лист, ни один цветок не появляется случайно. Ещё до появления растение уже точно запрограммировано. Сколько будет веток на будущем дереве, где вырастут ветки, сколько будет листьев на каждой ветке, и как, в каком порядке будут располагаться листья. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), в числе оборотов на стебле, в числе листьев в цикле проявляет себя ряд Фибоначчи, а стало быть, проявляет себя и закон золотого сечения .

Если вы зададитесь целью отыскать числовые закономерности в живой природе, то заметите, что эти числа часто встречаются в различных спиральных формах, которыми так богат мир растений. Например, черенки листьев примыкают к стеблю по спирали, которая проходит между двумя соседними листьями: полного оборота - у орешника, - у дуба, - у тополя и груши, - у ивы.

Семена подсолнечника, эхинацеи пурпурной и многих других растений, расположены спиралями, причем количества спиралей каждого направления - числа Фибоначчи.

Подсолнечник, 21 и 34 спирали. Эхинацея, 34 и 55 спиралей.

Чёткая, симметричная форма цветов также подчинена строгому закону .

У многих цветов количество лепесточков - именно числа из ряда Фибоначчи. Например:

ирис, 3леп. лютик, 5 леп. златоцвет, 8 леп. дельфиниум,

13 леп.

цикорий,21леп. астра, 34 леп. маргаритки,55леп.

Ряд Фибоначчи характеризует структурную организацию многих живых систем.

Мы уже говорили, что отношений соседних чисел в ряду Фибоначчи есть число φ = 1,618. Оказывается, что и сам человек - просто кладезь числа фи.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы.

M/m=1,618

Первый пример золотого сечения в строении тела человека:

Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.
Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения.

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.


Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.


Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.
Есть и другое, более прозаическое применение пропорций тела человека. Например, используя эти соотношения, криминальные аналитики и археологи по фрагментам частей человеческого тела восстанавливают облик целого.

Золотые пропорции в строении молекулы ДНК.

Все сведения о физиологических особенностях живых существ, будь то растение, животное или человек, хранятся в микроскопической молекуле ДНК, строение которой также содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем - одна стомиллионная доля сантиметра).

Так вот 21 и 34 - это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618.

Не только прямоходящие, но и все плавающие, ползающие, летающие и прыгающие не избежали участи подчиняться числу фи. Сердечная мышца человека сокращается до 0, 618 своего объёма. Строение ракушки улитки соответствует пропорциям Фибоначчи. И таких примеров можно найти предостаточно - было бы желание исследовать природные объекты и процессы. Мир настолько пронизан числами Фибоначчи, что порой кажется: только ими Вселенная и может быть объяснена.

Спираль Фибоначчи.


В математике нет иной формы, которая обладала бы такими же уникальными свойствами, как спираль, потому, что
в основе строения спирали лежит правило Золотого сечения!

Чтобы понять математическое построение спирали, повторим, что такое Золотое сечение.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей, или, другими словами, меньший отрезок так относится к большему, как больший ко всему.

То есть (a+b) /a = a / b

Прямоугольник с именно таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168: 1.
Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника,

мы снова получим золотой прямоугольник меньших размеров.

Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов.

Например, спиралевидную форму можно увидеть и в расположении семян подсолнечника, в ананасах, кактусах, строении лепестков роз и так далее.

Нас удивляет и восхищает спиральное строение ракушек.


У большинства улиток, которые обладают раковинами, раковина растет в форме спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.
Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет спиральная форма ракушки?

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением.

Спирали есть и в человеке. С помощью спиралей мы слышим:

Также, во внутреннем ухе человека имеется орган Cochlea ("Улитка"), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и сотворена в форме улитки, имеющей в себе золотые пропорции.

Спирали есть на наших ладошках и пальцах:

В животном мире мы также можем найти множество примеров спиралей.

В форме спирали развиваются рога и бивни животных, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль.

Интересно, что спиралью закручивается ураган, облака циклона и это хорошо видно из космоса:

В океанских и морских волнах спираль можно математически отразить на графике с точками 1,1,2,3,5,8,13,21,34 и 55.

Такую «бытовую» и «прозаическую» спираль тоже все узнают.

Ведь вода убегает из ванной по спирали:

Да и живём мы с вами в спирали, ведь галактика - это спираль, соответствующая формуле Золотого сечения!

Итак, мы выяснили, что если взять Золотой прямоугольник и разбить его на более мелкие прямоугольники в точной последовательности Фибоначчи, а потом каждый из них разделить в таких пропорциях еще и еще, то получится система, которая называется спираль Фибоначчи.

Эту спираль мы обнаружили в самых неожиданных предметах и явлениях. Теперь понятно, почему спираль называют ещё «кривой жизни».
Спираль стала символом эволюции, ведь и развивается всё именно по спирали.

Числа Фибоначчи в изобретениях человека.

Подсмотрев у природы закон, выраженный последовательностью чисел Фибоначчи, учёные и люди искусства стараются подражать ему, воплощать этот закон в своих творениях.

Пропорция фи позволяет создавать шедевры живописи, грамотно вписывать в пространство архитектурные сооружения.

Не только деятели науки, но и архитекторы, дизайнеры и художники поражаются этой безупречной спирали у ракушки наутилуса,

занимающей наименьшее пространство и обеспечивающей наименьшую потерю тепла. Американские и тайские архитекторы, вдохновленные примером «наутилуса с камерами» в вопросе размещения максимума в минимуме пространства, заняты разработкой соответствующих проектов.

С незапамятных времен пропорция Золотого сечения считается наивысшей пропорцией совершенства, гармонии и даже божественности. Золотое отношение можно обнаружить и в скульптурах, и даже в музыке. Примером являются музыкальные произведения Моцарта. Даже биржевые курсы и алфавит иврита содержат золотое отношение.

Но мы хотим остановиться на уникальном примере создания эффективной солнечной установки. Американский школьник из Нью-Йорка Эйдан Дуайер свёл воедино свои знания о деревьях и обнаружил, что эффективность солнечных электростанций можно повысить, если привлечь математику. Будучи на зимней прогулке, Дуайер задумался, зачем деревьям такой «рисунок» веток и листьев. Он знал, что ветки на деревьях располагаются согласно последовательности Фибоначчи, а листья осуществляют фотосинтез.

В какой-то момент сообразительный мальчуган решил проверить, не помогает ли такое положение ветвей собирать больше солнечного света. Эйдан построил на своём заднем дворе опытную установку с маленькими солнечными батареями вместо листьев и проверил её в действии. Оказалось, что в сравнении с обычной плоской солнечной панелью его «дерево» собирает на 20% больше энергии и на 2,5 часа дольше эффективно работает.

Модель солнечного дерева Дуайера и графики, построенные школьником.

"А ещё такая установка занимает меньше места, чем плоская панель, собирает на 50% больше солнца зимой даже там, где она не смотрит на юг, да и снег в том количестве она не накапливает. Кроме того, дизайн в виде дерева гораздо больше подходит для городского пейзажа", — отмечает юный изобретатель.

Эйдана признали одним из лучших молодых естествоиспытателей 2011 года. Конкурс «2011 Young Naturalist» проводил музей естествознания Нью-Йорка. Эйдан подал предварительную заявку на патент своего изобретения .

Ученые продолжают активно развивать теорию чисел Фибоначчи и золотого сечения.

Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта.

Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения.

В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Итак, мы видим, что сфера применения последовательности чисел Фибоначчи очень многогранна:

Наблюдая за явлениями, происходящими в природе, учёные сделали поразительные выводы о том, что вся последовательность событий, происходящих в жизни, революции, крушения, банкротства, периоды процветания, законы и волны развития на фондовом и валютных рынках, циклы семейной жизни, и так далее, организуются на временной шкале в виде циклов, волн. Эти циклы и волны тоже распределяются в соответствии с числовым рядом Фибоначчи!

Опираясь на эти знания, человек научится в будущем прогнозировать различные события и управлять ими.

4. Наши исследования.

Мы продолжили наши наблюдения, и изучили строение

Сосновой шишки

тысячелистника

комара

человека

И убедились, что в этих, таких разных на первый взгляд объектах, незримо присутствуют те самые числа последовательности Фибоначчи.

Итак, шаг 1.

Возьмём сосновую шишку:

Рассмотрим её поближе:

Замечаем две серии спиралей Фибоначчи: одна - по часовой стрелки, другая - против, их число 8 и 13.

Шаг 2.

Возьмём тысячелистник:

Внимательно рассмотрим строение стеблей и цветов:

Заметим, что каждая новая ветвь тысячелистника растет из пазухи, и от новой ветви растут новые ветви. Складывая старые и новые ветви, мы нашли число Фибоначчи в каждой горизонтальной плоскости.

Шаг 3.

А проявляются ли числа Фибоначчи в морфологии различных организмов? Рассмотрим всем известного комара:

Видим: 3 пары ног, голове 5 усиков - антенн, брюшко делится на 8 сегментов.

Вывод:

В наших исследованиях мы увидели, что в окружающих нас растениях, живых организмах и даже в строении человека проявляют себя числа из последовательности Фибоначчи, что отражает гармоничность их строения.

Сосновая шишка, тысячелистник, комар, человек устроены с математической точностью.

Мы искали ответ на вопрос: как проявляет себя ряд Фибоначчи в окружающей нас действительности? Но, отвечая на него, получали новые и новые вопросы.

Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Спираль скручивается или раскручивается?

Как удивительно человек познаёт этот мир!!!

Найдя ответ на один вопрос, получает следующий. Разгадает его, получает два новых. Разберётся с ними, появятся ещё три. Решив и их, обзаведётся пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Узнаёте?

Заключение.

Самим творцом во все объекты

Заложен уникальный код,

И тот, кто дружен с математикой,

Его познает и поймёт!

Мы изучили и проанализировали проявление чисел последовательности Фибоначчи в окружающей нас действительности. Также мы узнали, что закономерности этого числового ряда, в том числе и закономерности «Золотой» симметрии, проявляются в энергетических переходах элементарных частиц, в планетарных и космических системах, в генных структурах живых организмов.

Мы обнаружили удивительную математическую связь между числом спиралей у растений, числом веток в любой горизонтальной плоскости и числами в последовательности Фибоначчи. Мы увидели, как морфология различных организмов тоже подчиняется этому таинственному закону. Также мы увидели строгую математику в строении человека. Молекула ДНК человека, в которой зашифрована вся программа развития человеческого существа, дыхательная система, строение уха, - всё подчиняется определённым числовым соотношениям.

Мы узнали, что сосновые шишки, раковины улиток, волны океана, рога животных, облака циклона и галактики - все они образуют логарифмические спирали. Даже человеческий палец, который составлен из трех фаланг, находящихся по отношению друг к другу в Золотой пропорции, принимает спиральную форму, когда сжимается.

Вечность времени и световые годы космоса разделяют сосновую шишку и спиральную галактику, но строение остаётся тем же самым: коэффициент 1,618 ! Возможно, это первостепенный закон, управляющий природными явлениями.

Таким образом, наша гипотеза о существовании особых числовых закономерностей, которые отвечают за гармонию, подтверждается.

Действительно, всё в мире продуманно и просчитано самым главным нашим дизайнером - Природой!

Мы убедились, что у Природы есть свои законы, выраженные с помощью математики. И математика - это очень важный инструмент

для познания тайн природы.

Список литературы и сайтов Интернета:

1. Воробьев Н. Н. Числа Фибоначчи. - М., Наука, 1984.
2. Гика М. Эстетика пропорций в природе и искусстве. - М., 1936.

3. Дмитриев А. Хаос, фракталы и информация. // Наука и жизнь, № 5, 2001.
4. Кашницкий С. Е. Гармония, сотканная из парадоксов // Культура и

Жизнь. - 1982.- № 10.
5. Малай Г. Гармония - тождество парадоксов // МН. - 1982.- № 19.
6. Соколов А. Тайны золотого сечения // Техника молодежи. - 1978.- № 5.
7. Стахов А. П. Коды золотой пропорции. - М., 1984.
8. Урманцев Ю. А. Симметрия природы и природа симметрии. - М., 1974.
9. Урманцев Ю. А. Золотое сечение // Природа. - 1968.- № 11.

10. Шевелев И.Ш., Марутаев М.А., Шмелев И.П. Золотое сечение/Три

Взгляда на природу гармонии.-М., 1990.

11.Шубников А. В., Копцик В. А. Симметрия в науке и искусстве. -М.:

Числа Фибоначчи - элементы числовой последовательности.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи), который жил и работал торговцем и математиком в итальянском городе Пизе. Он один из самых прославленных европейских ученых своего времени. Среди его величайших достижений - введение арабских цифр, заменивших римские. Fn =Fn-1 +Fn-2

Математический ряд асимптотически (то есть приближаясь все медленнее и медленнее) стремится к постоянному отношению. Однако это отношение иррационально; оно имеет бесконечную, непредсказуемую последовательность десятичных значений, выстраивающихся после него. Оно никогда не может быть выражено точно. Если каждое число, являющееся частью ряда, разделить на предшествующее значение (например, 13-^8 или 21 -ИЗ), результат действия выразится в отношении, которое колеблется вокруг иррационального числа 1,61803398875, чуть больше или чуть меньше соседних отношений ряда. Отношение никогда, до бесконечности, не будет точным до последней цифры (даже при использовании самых мощных компьютеров, созданных в наше время). Ради краткости, будем использовать в качестве отношения Фибоначчи число 1,618 и просим читателей не забывать об этой погрешности.

Числа Фибоначчи имеют важное значение и во время выполнения анализа Алгоритм Евклида для определения наибольшего общего делителя двух чисел. Числа Фибоначчи происходят в формулу о диагонали треугольником Паскаля (биномиальных коэффициентов).

Числа Фибоначчи оказались связанными с « золотым сечением».

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое « золотое сечение»? Ответ неизвестен до сих пор. Числа Фибоначчи действительно актуальны для теории практики в наше время. Подъем значимости произошел в 20 веке и продолжается до сих пор. Использование чисел Фибоначчи в экономике и информатике и привлекло массы людей к их изучению.

Методика моего исследования заключалась в изучении специализированной литературы и обобщении полученной информации, а так же проведении собственных исследований и выявлений свойств чисел и сферы их использования.

В ходе научных исследования определила само понятия чисел Фибоначчи, их свойства. Так же я выяснила интересные закономерности в живой природе, непосредственно в строении семян подсолнуха.

На подсолнухе семечки выстраиваются в спирали, причем количества спиралей, идущих в другую сторону, различны - они являются последовательными числами Фибоначчи.

На этом подсолнухе 34 и 55.

То же наблюдается и на плодах ананаса, где спиралей бывает 8 и 14. С уникальным свойством чисел Фибоначчи связаны листьев кукурузы.

Дроби вида a/b, соответствующие винтообразному расположению листьев ног стебелька растения, часто являются отношениями последовательных чисел Фибоначчи. Для орешника это отношение равно 2/3, для дуба-3/5, для тополя 5/8, для ивы 8/13 и т. д.

Рассматривая расположения листьев на стебле растений можно заметить, что между каждыми парами листьев (А и С) третья расположено в месте золотого сечения(В)

Ещё интересное свойство числа Фибоначчи является, что произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.

В результате исследования я пришла к следующим выводам: числа Фибоначчи - уникальная арифметическая прогрессия, появившаяся в 13 веке нашей эры. Данное прогрессия не теряет своей актуальности, что и подтвердилось в ходе моих исследований. Число Фибоначчи встречаются не то и в программировании и экономических прогнозах, в живописи, архитектуре и музыке. Картины таких известных художников, как Леонардо да Винчи, Микеланджело, Рафаэля и Боттичелли скрывают в себе магию золотого сечения. Даже И. И. Шишкин использовал золотое сечение в своей картине «Сосновая роща».

В это сложно поверить, но золотое сечение встречается и в музыкальных произведениях таких великих композиторов, как Моцарт, Бетховен, Шопен и т. д.

Числа Фибоначчи встречается и в архитектуре. Например, золотое сечение использовалось при строительстве Парфенона и собора Парижской Богоматери

Я обнаружила, что Числа Фибоначчи используются и в наших краях. Например, наличники домов, фронтоны.