Любой процесс протекает во времени, следовательно можно говорить о скорости процесса. Это относится и к химическим реакциям. Раздел химии, рассматривающий скорости и механизмы химических процессов, называется химической кинетикой. Скорость химических реакций определяется изменением молярной концентрации одного из реагирующих веществ или продуктов реакции в единицу времени. A B

Факторы, влияющие на скорость реакции 1. Природа реагирующих веществ Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало активны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно. Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно при нагревании. Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает. Закон действующих масс Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. Предположим, имеем реакцию: a. A + b. B =d. D + f. F. Общее уравнение скорости реакции запишется как = k [A]a [B]b Это называется кинетическим уравнением реакции. k - константа скорости реакции. k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ. Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит. Показатели степеней при концентрациях в кинетическом уравнении называются порядками реакции по данному веществу, а их сумма общим порядком реакции. Порядки реакций устанавливаются экспериментально, а не по стехиометрическим коэффициентам.

Порядок может быть и дробным. Реакции обычно идут по стадиям, поскольку невозможно представить себе одновременное столкновение большого числа молекул. Предположим, что некая реакция A + 2 B = C + D идет в две стадии A + B = AB и AB + B = C + D, тогда, если первая реакция идет медленно, а вторая быстро, то скорость определяется первой стадией (пока она не пройдет, не может идти вторая), т. е. накоплением частиц АВ. Тогда и = k. CACB. Скорость реакции определяется самой медленной стадией. Отсюда различия между порядком реакции и стехиометрическими коэффициентами. Например, реакция разложения перекиси водорода 2 H 2 O 2= H 2 O + O 2 на самом деле реакция первого порядка, т. к. она лимитируется первой стадией H 2 O 2 = H 2 O + O а вторая стадия О + О = О 2 идет очень быстро. Может быть самой медленной не первая, а вторая или другая стадия и тогда мы получаем иногда дробный порядок, выражая концентрации интермедиатов через концентрации начальных веществ.

Определение порядка реакции. Графический метод. Для определения порядка реакции можно прибегнуть к графическому представлению функций, описывающих зависимость концентрации от времени. Если при построении зависимости С от t получается прямая, это означает, что реакция – нулевого порядка. Если линейна зависимость lg C от t, имеет место реакция первого порядка. При условии что начальная концентрация всех реагентов одинакова, реакция имеет второй порядок, если линейным является график зависимости 1/С от t, и третий – в случае линейности зависимости 1/С 2 от t.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2 - 4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле: t 2/ t 1= (t 2 - t 1)/10 (где t 2 и t 1 - скорости реакции при температурах t 2 и t 1 соответственно; - температурный коэффициент данной реакции). Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A e–Ea/RT где A - предэкспоненциальный множитель, постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная ; Ea - энергия активации, т. е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Энергетическая диаграмма химической реакции. Экзотермическая реакция Эндотермическая реакция А - реагенты, В - активированный комплекс (переходное состояние), С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

Энергия активации обычно составляет 40 - 450 к. Дж/моль и зависит от механизма реакций: а) Простые H 2 +I 2 = 2 HI Еа = 150 - 450 к. Дж/моль б) Реакции ионов с молекулами Еа = 0 - 80 к. Дж/моль. Пример: облучение светом молекулы воды ионизирует ее H 2 O + = H 2 O+ + e-, такой ион уже легко вступает во взаимодействия. в) Радикальные реакции - во взаимодействие вступают радикалы - молекулы с неспаренными электронами. OH, NH 2, CH 3. Еа = 0 – 40 к. Дж/моль.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. Измельчение твердых веществ приводит к увеличению числа активных центров. Активный центр – это участок на поверхности твердого вещества, на котором протекает химическая реакция. Реакция в гомогенной системе протекает за счет диффузии. Диффузия – это самопроизвольный массоперенос, который способствует равномерному распределению вещества по всему объему системы.

Скорость гетерогенных реакций В гетерогенной реакции участвуют несколько фаз, среди которых есть фазы постоянного состава, поэтому концентрация веществ этой фазы считается постоянной: не меняется в процессе реакции и не входит в кинетическое уравнение. Например: Са. О(тв) + СО 2(Г) = Са. СО 3(тв) Скорость реакции зависит только от концентрации СО 2 и кинетическое уравнение имеет вид: u = к * С(СО 2) Взаимодействие протекает на поверхности раздела фаз, и его скорость зависит от степени измельчения Са. О. Реакция складывается из двух стадий: перенос реагентов через поверхность раздела и взаимодействия между реагентами.

5. Присутствие катализатора Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Реакции, протекающие с участием катализаторов, называются катализом. Различают два типа катализа: 1) положительный: скорость реакции возрастает (участвуют катализаторы); 2) отрицательный: скорость реакции уменьшается (участвуют ингибиторы)

Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При этом катализатор не оказывает влияние на изменение энтальпии, энтропии и энергии Гиббса при переходе от исходных веществ к конечным. Также катализатор не оказывает влияние на равновесие процесса, он может лишь ускорить момент его наступления. Энергетическая диаграмма реакции: 1 – без катализатора (Еа) 2 – реакция в присутствии катализатора (Еа (кат))

По характеру каталитических процессов катализ делится на гомогенный и гетерогенный. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях).

При гомогенном катализе реакция идет во всем объеме сосуда, что способствует высокой эффективности действия катализатора, но при этом затруднено выделение продуктов из реакционной смеси. Пример: получение серной кислоты камерным способом 2 NO + O 2 = 2 NO 2 SO 2 + NO 2 = SO 3 + NO Процесс окисления диоксида серы до триоксида катализируется оксидом азота (+2). Наиболее распространенными катализаторами жидкофазных реакций являются кислоты и основания, комплексы переходных металлов и ферменты (ферментативный катализ).

Ферментативный катализ Катализаторами в ферментативном катализе являются ферменты. Под действием ферментов протекают все процессы в живых организмах. Характерной особенностью ферментов является их специфичность. Специфичность – это свойство фермента изменять скорость реакций одного типа и не влиять на многие другие реакции, протекающих в клетке.

Гетерогенный катализ Гетерогенные процессы протекают на поверхности раздела фаз. Более изучены процессы, протекающие в газовых фазах с участием твердого катализатора. Гетерогенный катализ на твердой поверхности объясняется на основе представлений теории адсорбции. Адсобция – это накопление молекул на поверхности раздела фаз (не путать с абсорбцией – поглощение молекул другого вещества всем объемом твердого). Различают адсорбцию двух типов: физическую и химическую.

Физическая адсорбция происходит при связывании молекул с активными центрами на поверхности твердого вещества силами Ван-дер-Ваальса (межмолекулярное взаимодействие). Химическая адсорбция (хемосорбция) происходит, если молекулы связываются с активными центрами на поверхности химическими связями (идет химическая реакция).

Механизм гетерогенного катализа Гетерогенный катализ включает как физическую, так и химическую адсорбцию. Такой катализ включает 5 стадий: 1) диффузия: реагирующие молекулы диффундируют к 2) 3) 4) 5) поверхности твердого катализатора; Адсорбция: сначала идет физическая адсорбция, затем хемосорбция; Химическая реакция: реагирующие молекулы, оказавшиеся рядом, вступают в химическую реакцию с образованием продуктов; Десорбция: стадия, обратная адсорбции – высвобождение продуктов реакции с поверхности твердого катализатора; Диффузия: молекулы продуктов диффундируют от поверхности катализатора

Схема каталитического гидрирования этилена тонкоизмельченным никелем Реакцию каталитического гидрирования суммарно можно записать: С 2 Н 4(г) + Н 2(г) → С 2 Н 6(г) Реакция идет при Т = 400 К. Для увеличения эффективности атализаторов к к ним добавляются вещества – промоторы (оксиды калия, алюминия и др.).

Каталитические преобразователи (конверктеры) используются в некоторых системах выброса выхлопных газов для превращения вредных газов в безвредные. Схема типичного каталитического преобразователя

Выхлопные газы, содержащие СО и углеводороды, пропускают через слой шариков, покрытых платиновыми и палладиевыми катализаторами. Преобразователь нагревают и через него прогоняют избыток воздуха. В результате СО и углеводороды превращаются в СО 2 и воду, которые являются безвредными веществами. Бензин, которыми заправляют автомобили не должен содержать примесей свинца, иначе эти примеси отравят катализатор.

Реакции могут идти в двух противоположных направлениях. Такие реакции называются обратимыми. Необратимых реакций не бывает. Просто в определенных условиях некоторые реакции можно довести практически до конца, если удалять из сферы реакции продукты - осадок, газ или малодиссоциирующее вещество и т. д.

Рассмотрим обратимую реакцию A + В ↔ D + С В начальный момент времени, когда концентрации веществ А и В максимальны, скорость прямой реакции тоже максимальна. С течением времени скорость прямой реакции падает пр= kпр *С(A)*С(B) Реакция приводит к образованию D и С, молекулы которых, сталкиваясь могут вновь реагировать, образуя снова A и B. Чем выше концентрация D и С, тем вероятнее обратный процесс, тем выше скорость обратной реакции об= kоб *С(D) С(С)

Изменение скоростей прямой и обратной реакций можно представить графиком: По мере прохождения реакции наступает такой момент, когда скорости прямой и обратной реакций делаются равными, кривые пр и об сливаются в одну прямую линию, параллельную оси времени, т. е. пр = об

Такое состояние системы называется состоянием равновесия. При равновесии концентрации всех участников реакции остаются постоянными и не меняются со временем, хотя одновременно идут и прямая и обратная реакции. Т. е. равновесие является динамическим. При равновесии пр= об или kпр С(А)*С(В) = kоб С(D) *С(С) откуда - константа химического равновесия равна: Кс = кпр/ кобр = [С] * [D] [А] * [В]

Константа равновесия не зависит от механизма протекания реакции (даже при введении в систему катализатора: катализатор может ускорить наступление момента равновесия, но не влияет на значения равновесных концентраций). Константа равновесия зависит от природы реагирующих веществ и температуры. Зависимость константы равновесия от температуры можно выразить соотношением: ∆G 0 = -R ·T · ln. Kc или ∆G 0 = -2, 3·R ·T · lg. Kc

Так как равновесие в системе является динамическим, то его можно смещать (сдвиг равновесия) в сторону прямой или обратной реакции, изменяя условия: концентрацию, температуру или давление. Чтобы определить, в какую сторону оно сместится, можно воспользоваться принципом Ле Шателье: если на систему, находящуюся в равновесии, оказывается воздействие, равновесие смещается в сторону той реакции, которая ослабляет это воздействие.

Увеличение концентрации кислорода или диоксида серы приведет к смещению равновесия вправо 2 SO 2 + O 2 2 SO 3. Повышение температуры смещает равновесие в сторону эндотермической реакции, поскольку при этом поглощается избыточное тепло и температура понижается Ca. CO 3 Ca. O + CO 2 - Q В данной реакции повышение температуры смещает равновесие в сторону разложения карбоната.

При увеличении давления равновесие смещается в сторону уменьшения количества молей газа. 2 SO 2 + O 2 2 SO 3 В этой реакции увеличение давления приведет к сдвигу равновесия вправо, уменьшение давление – влево. В случае одинакового количества молей газа в правой и левой частях уравнения изменение давления не влияет на равновесие. N 2(г) + O 2 (г) = 2 NO(г)

Химическая термодинамика изучает превращения энергии и энергетические эффекты, сопровождающие химические и физические процессы, а также возможность и направление самопроизвольного протекания процесса. Химическая термодинамика является основой современной химии. Химическая реакция - процесс, при котором одни связи заменяются другими, образуются одни соединения, разлагаются другие. Следствие - энергетические эффекты, т. е. изменение внутренней энергии системы.

а) Система - тело или группа тел, находящихся во взаимодействии с окружающей средой и мысленно обособляемых от нее (вода в стакане). Если такая система не обменивается веществом со средой (стакан покрыт крышкой), она называется закрытой. Если же система имеет постоянный объем и рассматривается как лишенная возможности обмена веществом и энергией с окружающей средой (вода в термосе), такая система называется изолированной.

б) Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и. д. , т. е. все виды энергии кроме кинетической и потенциальной энергии системы в целом. Внутреннюю энергию нельзя определить, поскольку у системы нельзя отнять всю энергию. в) Фаза - гомогенная часть гетерогенной системы (вода и лед в стакане) Фазовый переход - превращения фаз (таяние льда, кипение воды)

Энергетические превращения в ходе процесса выражаются в виде теплового эффекта - либо теплота выделяется (экзотермические реакции), либо поглощается (эндотермические реакции). Количество выделенной или поглощенной теплоты Q называется тепловым эффектом реакции. Изучением тепловых эффектов занимается термохимия.

Процессы могут протекать либо при постоянном объеме V=const (изохорные процессы), либо при постоянном давлении p=const (изобарные процессы). Поэтому и тепловые эффекты будут различаться Qv и Qp. Система в ходе реакции переходит из начального состояния 1 в конечное состояние 2, каждому из которых соответствует своя внутренняя энергия U 1 и U 2. Таким образом, изменение внутренней энергии системы составляет ∆ U= U 2 - U 1

Cистема, изменяясь, всегда совершает работу А (чаще работу расширения). Следовательно, тепловой эффект реакции равен в соответствии с законом сохранения и превращения энергии (1 закон термодинамики): Q = U + A где А - работа, производимая системой Так как А – это работа расширения, то A = р(V 2 – V 1) = p V Для изохорного процесса (V=const): V = 0, следовательно, U = Qv При р = const (изобарный процесс): Qp = ∆U +A = (U 2 – U 1) + p(V 2 – V 1) = (U 2 + p. V 2) – (U 1 + p. V 1) = H 2 – H 1 обозначим U + p. V = H

H - энтальпия или теплосодержание расширенной системы. Тогда H = Н 2 – Н 1 H - изменение энтальпии системы. Энтальпия - характеристика (функция) состояния системы, отражает энергетическое состояние системы и учитывает работу расширения (для газов). Энтальпия сама по себе как и U не может быть определена. Можно определить только ее изменение в ходе химической реакции.

Раздел химии, изучающий тепловые эффекты, называется термохимией. Химические уравнения, в которых указан тепловой эффект называются термохимическими уравнениями. 1/2 H 2(г) + 1/2 Cl 2(г) = HCl(г); H = - 92 к. Дж Zn(к) + H 2 SO 4(р) = Zn. SO 4(р) + Н 2(г); Н = -163. 2 к. Дж

1) Знак теплового эффекта - если тепло выделяется, внутренняя энергия системы уменьшается (-), для эндотермических процессов (+). 2) При написании термохимических уравнений необходимо указывать агрегатное состояние вещества, поскольку переход из одного агрегатного состояния в другое также сопровождается тепловым эффектом. 3) H зависит от количества вещества, поэтому важно уравнивать реакции, при этом коэффициенты могут быть дробными. Уравнение (1) можно записать и так H 2 + Cl 2 = 2 HCl, но тогда H/ = 2 H. 4) Н зависит от условий - от температуры и давления. Поэтому обычно приводятся стандартные значения Нo Cтандартные условия: p = 1 атм (101 к. Па), температура 25 о. С (298 К) - отличие от нормальных условий.

Законы термохимии 1. Закон Лавуазье-Лапласа: Тепловой эффект обратной реакции равен тепловому эффекту прямой, но с обратным знаком. H = - Qp 2. Закон Гесса: Тепловой эффект реакции зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути процесса. Следствия из закона Гесса 1) Тепловой эффект кругового процесса равен нулю. Круговой процесс - система, выйдя из начального состояния, в него же и возвращается. H 1 + H 2 - H 3 = 0

2) Тепловой эффект реакции равен сумме стандартных энтальпий образования продуктов реакции за вычетом суммы стандартных образования начальных (исходных) веществ с учетом их стехиометрических коэффициентов. Н 0 = Нf 0 (прод)- Нf 0 (исх) Нf 0 – стандартная энтальпия образования 1 моль вещества из простых веществ, к. Дж/моль (значения определяются по справочнику). 3) Тепловой эффект реакции равен сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания конечных продуктов. Нсг 0 = Нсг 0 (прод) - Нсг 0 (исх)

Поскольку H определить нельзя, а можно только определить ее изменение H, т е. нет точки отсчета, договорились, считать за таковую состояние простых веществ, т. е. считать равными нулю стандартную энтальпию образования простых веществ: Нf 0 (прост. в-ва) = 0 Простое вещество – это форма существования химического элемента в том агрегатном состоянии и в той аллотропной модификации, которая наиболее устойчива при стандартных условиях.

Например, кислород – газ, простое вещество O 2, но не жидкость и не O 3. Углерод - простое вещество графит (для перехода в алмаз H>0) Значения Hfo могут быть и отрицательными [ Ho(HCl)=-92. 3 к. Дж/моль], и положительными [ Ho(NO) = +90. 2 к. Дж/моль]. Чем отрицательнее значения стандартных энтальпий образования, тем устойчивее вещества.

На основании второго следствия из закона Гесса можно рассчитать H 0 реакции, зная теплоты образования участвующих веществ. Ca. O(к) + Si. O 2(к) = Ca. Si. O 3(к) Н 0 = Нf 0 (прод)- Нf 0 (исх) Ho = Hfo(Ca. Si. O 3) - Hfo(Ca. O) - Hfo(Si. O 2) Ho = (- 1635) – (- 635. 5) – (- 859. 4) = = - 139. 1 к. Дж/моль Таким образом, на основании следствия из закона Гесса существует возможность расчета тепловых эффектов реакций и определения стандартных энтальпий образования веществ.

По знаку теплового эффекта можно определить возможность протекания химического процесса при стандартных условиях: если ∆Н 0 0 (эндореакция) – процесс самопроизвольно не протекает Тепловые эффекты измеряются экспериментально при помощи калориметра. Выделяющееся или поглощающееся тепло измеряется по изменению температуры теплоносителя (воды), в которую помещен сосуд с реагирующими веществами. Реакция проводится в замкнутом объеме.

Энтропия Основной вопрос когда рассматриваются проблемы термодинамики - принципиальная возможность самопроизвольного протекания процесса, его направление. XIX век. Бертло и Томсен сформулировали следующий принцип: любой химический процесс должен сопровождаться выделением тепла. Аналогия с механикой - тело на наклонной плоскости катится вниз (уменьшение энергии). Кроме того, большинство энтальпий образования, известных в то время были отрицательными. Однако вскоре обнаружились исключения: теплоты образования оксидов азота положительны, самопроизвольно идут многие эндотермические реакции, например растворение солей (нитрат натрия). Следовательно, критерия, предложенного Бертло и Томсеном, не достаточно.

Таким образом, по изменению энергии системы или энтальпии судить о самопроизвольности процесса нельзя. Чтобы предсказать, возможно ли самопроизвольное протекание реакции необходимо ввести еще одну термодинамическую функцию – энтропию. Возьмем два сосуда с разными газами и откроем кран, соединяющий их. Газы смешаются. Никаких изменений внутренней энергии не происходит, однако процесс смешения газов идет самопроизвольно, в то время как их разделение потребует затраты работы. Что изменилось? Изменился порядок.

Вывод: Самопроизвольный процесс, проходящий без изменения энтальпии, совершается в направлении, при котором беспорядок в системе возрастает. Поскольку смешение газов более вероятно, чем их раздельное существование в одном сосуде, можно сказать, что движущей силой смешения газов является тенденция перейти в более вероятное состояние.

Энтропия - это мера беспорядка, хаотичности или неупорядоченности в системе. Определенная трудность при определении энтропии: энергетические запасы смешивающихся газов складываются, а вероятности состояния перемножаются (H=H 1+H 2; но W=W 1 W 2), в то же время, для определения направления процесса нужно суммировать две движущие силы. Химия имеет дело с очень большим числом частиц и поэтому число микросостояний тоже очень большое, т. к. частицы в системе постоянно находятся в движении, а не закреплены на определенном месте.

Поэтому, вероятность состояния системы можно представить в виде функции, которая вела бы себя как энергия. Тогда придумали использовать логарифм вероятности, а для придания ему размерности, сопоставимой с энергией, домножили на R и назвали энтропией S: S = Rln. W Энтропия это логарифмическое выражение вероятности существования системы. Энтропия измеряется в тех же единицах, что и универсальная газовая постоянная R - Дж/К моль. 2 закон термодинамики: реакция осуществляется самопроизвольно только в направлении, при котором энтропия системы возрастает.

Как можно себе представить вероятность состояния? Пусть мы снимаем газ на кинопленку. При рассмотрении каждого кадра в отдельно получается разное расположение молекул при одинаковых условиях (P и T) в каждый момент времени, т. е. множество микросостояний, которые нельзя наложить друг на друга так, чтобы они совпали. Таким образом, энтропия пропорциональна числу микросостояний, которыми можно обеспечить данное макросостояние. Макросостояние определяется температурой и давлением, а микросостояния числом степеней свободы. Одноатомный газ – имеет три степени свободы частиц (движение в трехмерном пространстве); в двухатомных добавляются вращательные степени свободы и колебания атомов; в трехатомных - количество вращательных и колебательных степеней свободы растет. Вывод. Чем сложнее молекула газа, тем больше ее энтропия.

Изменение энтропии Говоря об энтальпии можно оперировать только H, поскольку отсутствует точка отсчета. С энтропией дело обстоит иначе. При абсолютном нуле температур любое вещество должно представлять собой идеальный кристалл - полностью заморожено всякое движение. Следовательно, вероятность такого состояния равна 1, а энтропия равна нулю. 3 закон термодинамики: Энтропия идеального кристалла при 0 К равна 0.

При Т=0 энтропия равна 0. При повышении Т начинаются колебания атомов и S растет до Тпл. Далее следует фазовый переход и скачок энтропии Sпл. С повышением Т энтропия плавно и незначительно растет до Тисп, где снова наблюдается резкий скачок Sисп и опять плавное увеличение. Очевидно, что энтропия жидкости существенно превышает энтропию твердого тела, а энтропия газа - энтропию жидкости. Sгаз>>Sж>>Sтв

Для энтропии справедлив закон Гесса - изменение энтропии, как и изменение энтальпии, не зависит от пути процесса, а зависит только от начального и конечного состояний S = Sf 0 (прод) - Sf 0 (исх) Sf 0 – абсолютная энтропия вещества, Дж/моль*К Знак изменения энтропии указывает направление процесса: если S > 0 процесс протекает самопроизвольно если S

Направление химического процесса Самопроизвольное протекание химического процесса определяется двумя функциями - изменением энтальпии Н, которое отражает взаимодействие атомов, образование химических связей, т. е. определенное упорядочение системы и изменением энтропии S, которое отражает противоположную тенденцию к беспорядочному расположению частиц. Если S=0, то движущей силой процесса будет стремление системы к минимуму внутренней энергии, т. е. уменьшение энтальпии или Н 0.

Для того, чтобы можно было количественно сопоставить эти два критерия, нужно, чтобы они выражались в одинаковых единицах. (Н - к. Дж, S - Дж/K). Так как энтропия напрямую зависит от температуры, то Т S - энтропийный фактор процесса, Н - энтальпийный. В состоянии равновесия оба эти фактора должны равны Н = Т S Это уравнение универсально, оно относится и к равновесию жидкость-пар и к другим фазовым превращениям, а также к химическим реакциям. Благодаря этому равенству можно рассчитать изменение энтропии в равновесном процессе, т. к. при равновесии Н/T = S.

Движущая сила химического процесса определяется двумя функциями состояния системы: стремление к упорядочению (Н) и стремление к беспорядку (TS). Функция, которая учитывает это называется энергией Гиббса G. При Р = const и Т = const энергию Гиббса G находят по выражению: G = Н – ТS или ∆G = ∆Н – Т∆S Это соотношение называется уравнением Гиббса Величина G называется изобарноизотермическим потенциалом или энергией Гиббса, которая зависит от природы вещества, его количества и от температуры.

Энергия Гиббса является функцией состояния, поэтому ее изменение можно также определить по второму следствию из закона Гесса: ∆G 0 = Gf 0 (прод) - Gf 0 (исх) ∆Gf 0 – стандартная свободная энергия образования 1 моль вещества из входящих в него элементов в их стандартных состояниях, к. Дж/моль (определяется по справочнику). ∆Gf 0(прост. в-ва) = 0 По знаку ∆G 0 можно определить направление процесса: если ∆G 0 0, то процесс самопроизвольно не идет

Чем меньше ∆G, тем сильнее стремление к протеканию данного процесса и тем дальше от состояния равновесия, при котором ∆G = 0 и ∆Н = Т · ∆S. Из соотношения ∆G = ∆Н – Т·∆S видно, что самопроизвольно могут протекать и процессы, для которых ∆Н > О (эндотермические). Это возможно, когда ∆S > О, но |T∆S| > |∆H|, и тогда ∆G O.

Пример 1: Вычислить теплоту образования аммиака, исходя из реакции: 2 NH 3(г)+3/2 O 2(г)→N 2(г) + 3 H 2 O(ж), ∆H 0 = -766 к. Дж Теплота образования воды (ж) равна – 286, 2 к. Дж/моль Решение: ∆Н 0 данной химической реакции составит: Н 0 х. р. = Н 0 прод - Н 0 исх= Н 0(N 2) + 3. Н 0(H 2 O) - 2 Н 0(NH 3)– 3/2 Н 0(O 2) Так как теплоты образования простых веществ в стандартном состоянии равны нулю, следовательно: Н 0(NH 3)=[ Н 0(N 2) + 3. Н 0(H 2 O) - Н 0 х. р. ]/2 Н 0(NH 3)= / 2 = 3. (– 286, 2)–(-766)] / 2 = = -46, 3 к. Дж/моль

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе CH 4(г) + CO 2(г) ↔ 2 СО(г) + 2 H 2(г)? Решение: Находим ∆G 0 процесса из соотношения: ∆G 0298 = G 0298 прод - G 0298 исх ∆G 0298= – [(-50, 79) + (-394, 38)] = +170, 63 к. Дж. То, что ∆G 0298>0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298 К и равенстве давлений взятых газов 1, 013· 105 Па (760 мм рт. ст. = 1 атм.). Следовательно, при стандартных условиях будет протекать обратная реакция.

Пример 3. Вычислите ∆Н 0298, ∆S 0298, ∆G 0298 реакции, протекающей по уравнению: Fe 2 O 3(т) + 3 С(графит) = 2 Fe(т) + 3 СО(г) Определить температуру, при которой начнется реакция (температуру равновесия). Возможна ли реакция восстановления Fe 2 O 3 углеродом при температурах 500 и 1000 К? Решение: ∆Н 0 и ∆S 0 находим из соотношений: Н 0 = Нf 0 прод- Нf 0 исх и S 0 = Sf 0 прод- Sf 0 исх ∆Н 0298=(3·(-110, 52) + 2· 0) – (- 822, 10 + 3· 0)= - 331, 56 + 822, 10=+490, 54 к. Дж; ∆S 0298=(2· 27, 2 + 3· 197, 91) – (89, 96 + 3· 5, 69) = 541, 1 Дж/К

Находим температуру равновесия. Так как состояние системы в момент равновесия характеризуется ∆G 0 = 0, то ∆Н 0 = Т·∆S 0, следовательно: Тр = ∆Н 0 /∆S 0 Тр = 490, 54*1000/541, 1 = 906, 6 к Энергию Гиббса при температурах 500 К и 1000 К находим по уравнению Гиббса: ∆G 0 =∆Н 0 -Т·∆S 0 ∆G 500 = 490, 54 – 500· 541, 1/1000=+219, 99 к. Дж; ∆G 1000 = 490, 54 – 1000· 541, 1/1000 = - 50, 56 к. Дж. Так как ∆G 500> 0, а ∆G 1000

Пример 4. Реакция горения этана выражается термохимическим уравнением: C 2 H 6(г) + 3½O 2 = 2 CO 2(г) + 3 H 2 O(ж); ∆H 0= -1559, 87 к. Дж. Вычислите теплоту образования этана, если известны теплоты образования CO 2(г) и H 2 O(ж) (справочные данные). Решение Необходимо вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид 2 С(графит)+3 H 2(г)=C 2 H 6(г); ∆H=? Исходя из следующих данных: а)C 2 H 6(г)+3½O 2(г)=2 CO 2(г)+3 H 2 O(ж); ∆H= -1559, 87 к. Дж. б)С(графит)+O 2(г)=CO 2(г); ∆H = -393, 51 к. Дж. в) H 2(г) + ½O 2 = H 2 O(ж); ∆H = -285, 84 к. Дж. На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) – на 3 , а затем сумму этих уравнений вычесть из уравнения (а):

C 2 H 6 + 3½O 2 – 2 С – 2 O 2 – 3 H 2 – 3/2 O 2 = 2 CO 2 + 3 H 2 O – 2 CO 2 – 3 H 2 O ∆H = -1559, 87 – 2 · (-393, 51) – 3 · (-285, 84); ∆H = -1559, 87 + 787, 02 + 857, 52; C 2 H 6=2 С+3 H 2; ∆H = +84, 67 к. Дж. Так как теплота образования равна теплоте разложения с обратным знаком, то ∆H 0298(C 2 H 6)= -84, 67 к. Дж. К тому же результату придем, если для решения задачи применить вывод из закона Гесса: ∆H =2∆H 0298(C 2 H 6) + 3∆H 0298(C 2 H 6) –∆H 0298(C 2 H 6)– 3½∆H 0298(O 2). Учитывая, что стандартные теплоты образования простых веществ условно приняты равными нулю, ∆H 0298(C 2 H 6) = 2∆H 0298(СО 2) + 3∆H 0298(Н 2 О) – ∆H ∆H 0298(C 2 H 6) = 2 · (-393, 51) + 3 · (-285, 84) + 1559, 87; ∆H 0298(C 2 H 6) = -84, 67 к. Дж.

Вещество при изменении давления и температуры может переходить из одного агрегатного состояния в другое. Эти переходы, совершающиеся при постоянной температуре, называются фазовыми переходами первого рода. Количество теплоты, которое вещество получает из окружающей среды либо отдает окружающей среде при фазовом переходе, есть скрытая теплота фазового перехода Qфп.

Если рассматривается гетерогенная система, в которой нет химических взаимодействий, а возможны лишь фазовые переходы, то при постоянстве температуры и давления в системе существует т. е. фазовое равновесие. Фазовое равновесие характеризуется некоторым числом фаз, компонентов и числом степеней свободы системы.

Компонент – химически однородная составная часть системы, которая может быть выделена из системы и существовать вне её. Число независимых компонентов системы равно разности числа компонентов числа возможных химических реакций между ними. Число степеней свободы – число параметров состояния системы, которые могут быть одновременно произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

Число степеней свободы гетерогенной термодинамической системы в состоянии фазового равновесия, определяется правилом фаз Гиббса: Число степеней свободы равновесной термодинамической системы С равно числу независимых компонентов системы К минус число фаз Ф плюс число внешних факторов, влияющих на равновесие. Для системы, на которую из внешних факторов влияют только температура и давление, можно записать: С = К – Ф + 2

Системы классифицируют по числу компонентов (одно-, двухкомпонентные и т. д.), по числу фаз (одно-, двухфазные и т. д.) и числу степеней свободы (инвариантные, моно-, дивариантные и т. д.). Для систем с фазовыми переходами обычно рассматривают графическую зависимость состояния системы от внешних условий – т. е. диаграммы состояния.

Анализ диаграмм состояния позволяет определить число фаз в системе, границы их существования, характер взаимодействия компонентов. В основе анализа диаграмм состояния лежат два принципа: принцип непрерывности и принцип соответствия.

Принцип непрерывности: при непрерывном изменении параметров состояния все свойства отдельных фаз изменяются также непрерывно; свойства системы в целом изменяются непрерывно до тех пор, пока не изменится число или природа фаз в системе, что приводит к скачкообразному изменению свойств системы.

Принцип соответствия: на диаграмме состояния системы каждой фазе соответствует часть плоскости – поле фазы. Линии пересечения плоскостей отвечают равновесию между двумя фазами. Всякая точка на диаграмме состояния (фигуративная точка) отвечает некоторому состоянию системы с определенными значениями параметров состояния.

Рассмотрим и проанализируем диаграмму состояния воды. Вода – единственное присутствующее в системе вещество, число независимых компонентов К = 1. Диаграмма состояния воды В системе возможны три фазовых равновесия: между жидкостью и газом (линия ОА – зависимость давления насыщенного пара воды от температуры), твердым телом и газом (линия ОВ – зависимость давления насыщенного пара над льдом от температуры), твердым телом и жидкостью (линия ОС – зависимость температуры плавления льда от давления). Три кривые имеют точку пересечения О, называемую тройной точкой воды; тройная точка отвечает равновесию между тремя фазами.

В тройной точке система трехфазна и число степеней свободы равно нулю; три фазы могут находиться в равновесии лишь при строго определенных значениях Т и Р (для воды тройная точка отвечает состоянию с Р = 6. 1 к. Па и Т = 273. 16 К). Внутри каждой из областей диаграммы (АОВ, ВОС, АОС) система однофазна; число степеней свободы системы равно двум (система дивариантна), т. е. можно одновременно изменять и температуру, и давление, не вызывая изменения числа фаз в системе: С = 1 – 1 + 2 = 2 Диаграмма состояния воды На каждой из линий число фаз в системе равно двум и, согласно правилу фаз, система моновариантна, т. е. для каждого значения температуры имеется только одно значение давления, при котором система двухфазна: С = 1 – 2 + 2 = 1

Основные понятия и законы химии. Химическая связь. Строение и свойства вещества

1. Какие вещества называют простыми? Сложными? Из приведенных веществ выберите простые: СО, О 3 , СаО, К, Н 2 , Н 2 О.

2. Какие вещества называют оксидами? Кислотами? Основаниями? Солями?

3. Из приведенных оксидов – SO 2 , CaO, ZnO, Cr 2 O 3 , CrO, P 2 O 5 , CO 2 , Cl 2 O 3 , Al 2 O 3 – выберите основные, кислотные и амфотерные.

4. Какие соли относят к кислым, основным, средним, двойным, смешанным, комплексным?

5. Назовите следующие соединения: ZnOHCl, KHSO 3 , NaAl(SO 4) 2 . К какому классу соединений они относятся?

6. Что называют основностью кислоты?

7. Из приведенных гидроксидов выберите амфотерные: Fe(OH) 2 , KOH, Al(OH) 3 , Ca(OH) 2 , Fe(OH) 3 , Pb(OH) 2 .

8. Что называют схемой реакции? Уравнением реакции?

9. Как называют числа, стоящие в уравнении реакции? Что они показывают?

10. Как перейти от схемы реакции к уравнению?

11. С какими веществами вступают во взаимодействие основные оксиды? Амфотерные оксиды? Кислотные оксиды?

12. С какими веществами вступают во взаимодействие основания?

13. С какими веществами вступают во взаимодействие кислоты?

14. С какими веществами вступают во взаимодействие соли?

15. Определите массовые доли элементов в азотной кислоте HNO 3.

16. Какие металлы взаимодействуют с щелочами?

17. Какие металлы взаимодействуют с растворами серной и соляной кислот?

18. Какие продукты образуются при взаимодействии металлов с азотной кислотой различной концентрации?

19. Какие реакции называют реакциями разложения? Соединения? Замещения? Окислительно-восстановительными?

20. Составьте уравнения реакций: CrCl 3 + NaOH→; CrCl 3 + 2NaOH→; CrCl 3 + 3NaOH→; CrCl 3 + NaOH (избыток) →.

21. Составьте уравнения реакций: Al + KOH →; Al + KOH + Н 2 О →.

22. Что называют атомом? Химическим элементом? Молекулой?

23. Какие элементы относят к металлам? Неметаллам? Почему?

24. Что называют химической формулой вещества? Что она показывает?

25. Что называют структурной формулой вещества? Что она показывает?

26. Что называют количеством вещества?

27. Что называют молем? Что он показывает? Какое количество структурных единиц содержится в моле вещества?

28. Какие массы элементов указаны в Периодической системе?

29. Что называют относительными атомной, молекулярной массами? Как их определяют? Каковы их единицы измерения?

30. Что называют молярной массой вещества? Как ее определяют? Какова ее единица измерения?

31. Какие условия называют нормальными условиями?

32. Какой объем занимает 1 моль газа при н.у.? 5 моль газа при н.у.?

33. Из чего состоит атом?

34. Из чего состоит ядро атома? Какой заряд имеет ядро атома? Чем определяется заряд ядра атома? Чем определяется масса ядра атома?

35. Что называют массовым числом?

36. Что называют энергетическим уровнем? Сколько электронов расположено на отдельном энергетическом уровне?

37. Что называют атомной орбиталью? Как ее изображают?

38. Что характеризует главное квантовое число? Орбитальное квантовое число? Магнитное квантовое число? Спиновое квантовое число?

39. Какова связь между главным и орбитальным квантовыми числами? Между орбитальным и магнитным квантовыми числами?

40. Как называют электроны с = 0? = 1? = 2? = 3? Сколько орбиталей соответствует каждому из данных состояний электрона?

41. Какое состояние атома называют основным? Возбужденным?

42. Сколько электронов может располагаться на одной атомной орбитали? Чем они отличаются?

44. Сколько и какие подуровни могут располагаться на первом энергетическом уровне? На втором? На третьем? На четвертом?

45. Сформулируйте принцип наименьшей энергии, правила Клечковского, принцип Паули, правило Хунда, периодический закон.

46. Что периодически изменяется для атомов элементов?

47. Что общего у элементов одной подгруппы? Одного периода?

48. Чем отличаются элементы главных подгрупп от элементов побочных подгрупп?

49. Составьте электронные формулы ионов Сr +3 , Са +2 , N -3 . Какое количество неспаренных электронов имеют указанные ионы?

50. Какую энергию называют энергией ионизации? Сродством к электрону? Электроотрицательностью?

51. Как изменяются радиусы атомов и ионов в группе и в периоде Периодической системе Д.И. Менделеева?

52. Как изменяются электроотрицательности атомов в группе и в периоде Периодической системе Д.И. Менделеева?

53. Как изменяются металлические свойства элементов и свойства их соединений в группе и в периоде Периодической системе Д.И. Менделеева?

54. Составьте формулы высших оксидов алюминия, фосфора, брома, марганца.

55. Как определяется количество протонов, нейтронов и электронов в атоме?

56. Сколько протонов, нейтронов и электронов содержится в атоме цинка?

57. Сколько электронов и протонов содержится в ионах Сr +3 , Са +2 , N -3 ?

58. Сформулируйте закон сохранения массы? Что остается постоянным при протекании любой химической реакции?

59. Какой параметр остается постоянным в изобарных химических реакциях?

60. Сформулируйте закон постоянства состава. Для веществ какой структуры он справедлив?

61. Сформулируйте закон Авогадро и следствия из него.

62. Если плотность газа по азоту составляет 0,8, то какова молярная масса газа?

63. В случае изменения каких внешних параметров изменяется молярный объем газа?

64. Сформулируйте объединенный газовый закон.

65. Для равных объемов разных газов при одних и тех же условиях массы газов будут равны?

66. Сформулируйте закон Дальтона. Если общее давление смеси азота и водорода составляет 6 атм., а объемное содержание водорода 20%, то каковы парциальные давления компонентов?

67. Запишите уравнение Менделеева-Клапейрона (состояния идеального газа).

68. Какую массу имеет смесь газов, состоящая из 11,2 л азота и 11,2 л фтора (н.у.)?

69. Что называют химическим эквивалентом? Молярной массой эквивалента?

70. Как определяют молярные массы эквивалентов простых и сложных веществ?

71. Определите молярные массы эквивалентов следующих веществ: О 2 , Н 2 О, СаСl 2 , Са(ОН) 2 , Н 2 S.

72. Определите эквивалент Bi(OH) 3 в реакции Bi(OH) 3 + HNO 3 = Bi(OH) 2 (NO 3) + H 2 O.

73. Сформулируйте закон эквивалентов.

74. Что называют молярным объемов эквивалента вещества? Как его определяют?

75. Сформулируйте закон объемных отношений.

76. Какой объем кислорода потребуется на окисление 8 м 3 водорода (н.у.) по реакции 2H 2 + O 2 ↔ 2H 2 O?

77. Какой объем хлороводорода образуется при взаимодействии 15 л хлора и 20 л водорода?

78. Что понимают под химической связью? Укажите характеристики химической связи.

79. Что является мерой прочности химической связи?

80. Что влияет на распределение электронной плотности?

81. Что определяет форму молекулы?

82. Что называют валентностью?

83. Определите валентности азота в следующих соединениях: N 2 , NH 3 , N 2 H 4 , NH 4 Cl, NaNO 3 .

84. Что называют степенью окисления?

85. Какую связь называют ковалентной?

86. Укажите свойства ковалентной связи.

87. Как изменяется полярность связи в ряду КI, КBr, КCl, КF?

88. Молекулы какого вещества неполярны: кислород, хлороводород, аммиак, уксусная кислота.

89. Что понимают под гибридизацией валентных орбиталей?

90. Определите типы гибридизации центральных атомов в следующих веществах: фторид бериллия, хлорид алюминия, метан.

91. Как влияет тип гибридизации на пространственное строение молекул?

92. Какую связь называют ионной? Под воздействием каких сил она возникает?

93. Какую связь называют металлической?

94. Какими свойствами обладают вещества с металлическим типом химической связи?

95. Чему равно максимальное число -связей, которое может образовываться между двумя атомами в молекуле?

96. Как определяется абсолютная электроотрицательность атома элемента?

97. Расположите элементы в порядке возрастания их электроотрицательности: Fe, C, Ag, H, Cl.

98. Что называют дипольным моментом связи? Как его рассчитывают?

99. Какими особенностями обладают вещества с атомной кристаллической решеткой? С молекулярной кристаллической решеткой?

100.Какую связь называют водородной? От чего зависит ее прочность? Между молекулами каких неорганических веществ она возникает?

Термодинамика и кинетика химических реакций

1. Что изучает термодинамика?

2. Что называют термодинамической системой? Какие виды систем существуют?

3. Что называют параметрами состояния? Какие параметры называют интенсивными, экстенсивными? Назовите основные параметры химической системы.

4. Что называют процессом? Самопроизвольным процессом? Циклом? Равновесным процессом? Неравновесным процессом? Обратимым процессом?

5. Что называют фазой? Гомогенной, гетерогенной системой?

6. Что называют функцией состояния?

7. Что характеризует внутренняя энергия U? От чего зависит внутренняя энергия?

8. Что называют теплотой Q? Какие реакции являются экзотермическими, эндотермическими? Как при их протекании изменяется теплота и энтальпия?

9. Что называют работой p∆V?

10. Сформулируйте первый закон термодинамики. Запишите его математически.

11. Сформулируйте первый закон термодинамики для изотермического, изохорного и изобарного процессов.

12. Что называют энтальпией?

13. Что называют тепловым эффектом реакции? От чего зависит тепловой эффект реакции?

14. Какое уравнение называют термодинамическим? Термохимическим?

15. Какие условия называют стандартными?

16. Что называют энтальпией реакции? Стандартной энтальпией реакции?

17. Что называют энтальпией образования вещества? Стандартной энтальпией образования вещества?

18. Какое состояние вещества является стандартным? Чему равна энтальпия образования простого вещества в стандартном состоянии?

19. Энтальпия образования H 2 SO 3 по величине равна тепловому эффекту реакции: H 2(г) + S (тв) + 1,5О 2(г) H 2 SO 3(ж) ; H 2(г) + SО 2(г) + 0,5О 2(г) H 2 SO 3(ж) ; H 2 О (г) + SО 2(г) H 2 SO 3(ж) ; 2H (г) + S (тв) + 3О (г) H 2 SO 3(ж) .

20. При взаимодействии 1 моля водорода и 1 моля брома выделилось 500 кДж тепла. Чему равна ∆Н обр, HBr ?

21. При образовании 5 молей вещества А х В у поглотилось 500 кДж тепла. Чему равна ∆Н обр этого вещества?

22. Что называют энтальпией сгорания? Стандартной энтальпией сгорания? Теплотворной способностью?

23. Сформулируйте закон Гесса, первое и второе следствия из него.

24. Какое выражение применимо для расчета ∆Н р реакции 2А + 3В 2С по следствию закона Гесса:

∆Н р = 2∆Н обр, С + 2∆Н обр, А + 3∆Н обр, В; ∆Н р = 2∆Н обр, С – (2∆Н обр, А + 3∆Н обр, В);

∆Н р = 2∆Н обр, А + 3∆Н обр, В –2∆Н обр, С; ∆Н р = – 2∆Н обр, С – (2∆Н обр, А + 3∆Н обр, В)?

25. Стандартная энтальпия сгорания (∆Н 0 сгор) метанола СН 4 О (ж) (М = 32 г/моль) равна -726,6 кДж/моль. Какое количество тепла выделится при сгорании 2,5 кг вещества?

26. В каком случае стандартная энтальпия сгорания одного вещества равна стандартной энтальпии образования другого вещества?

27. Для каких веществ стандартная энтальпия сгорания равна нулю: СО, СО 2 , Н 2 , О 2 ?

28. Для реакции 2Cl 2(г) + 2H 2 O (ж) 4HCl (г) + О 2(г) рассчитайте стандартную энтальпию (кДж), если известны стандартные энтальпии образования веществ:

29. ∆Н = -1410,97 кДж/моль; ∆Н = -2877,13 кДж/моль. Какое количество теплоты выделится при совместном сжигании 2 моль этилена и 4 моль бутана?

30. ∆Н = -1410,97 кДж/моль; ∆Н = -2877,13 кДж/моль. Какое количество теплоты выделится при сжигании 0,7 кг газовой смеси, состоящей из 20% этилена и 80% бутана?

31. Стандартная энтальпия реакции MgCO 3(тв) → MgO (тв) + СО 2(г) равна 101,6 кДж; стандартные энтальпии образования MgO (тв) и СО 2(г) : -601,0 и -393,5 кДж/моль соответственно. Чему равна стандартная энтальпия образования карбоната магния MgСO 3 ?

32. Что называют термодинамической вероятностью системы? Что называют энтропией? Как энтропия выражается через термодинамическую вероятность?

33. Сформулируйте второй закон термодинамики.

34. Что называют стандартной энтропией вещества?

35. Сформулируйте третье начало термодинамики (постулат Планка).

36. Что называют энтропией реакции? Стандартной энтропией реакции?

37. Какое выражение применимо для расчета ∆S р реакции CH 4 + CO 2 2CO + 2H 2:

∆S р = S + S + S + S ; ∆S р = S + S + 2S + 2S ;

∆S р = 2S + 2S – S + S ; ∆S р = 2S + 2S – S – S ?

38. Для реакции 2Cl 2(u) + 2H 2 O (ж) 4HCl (г) + О 2(г) рассчитайте стандартную энтропию (Дж/К), если известны стандартные энтропии образования веществ:

39. Что называют свободной энергией Гиббса? Какова ее связь с другими термодинамическими функциями?

40. Как по знаку энергии Гиббса реакции определяют направление реакции?

41. При каких температурах возможна реакция, если ∆H<0, ∆S>0; ∆H<0, ∆S<0; ∆H>0, ∆S>0; ∆H>0, ∆S<0.

42. Как определяют равновесную температуру процесса?

43. Что называют энергия Гиббса реакции ∆G р? Стандартной энергией Гиббса реакции?

44. Какое выражение применимо для расчета ∆G р реакции 4NH 3(г) + 5O 2(г) 4NO (г) + 6H 2 О (ж)

∆G р = ∆G 4 + ∆G 5 + ∆G 4 + ∆G 6 ; ∆G р = ∆G + ∆G + ∆G + ∆G ;

∆G р = 4∆G + 5∆G - 4∆G - 6∆G ; ∆G р = 4∆G + 6∆G - 4∆G - 5∆G ?

45. Для реакции HNO 3(ж) + HNO 2(ж) 2NO 2(г) + H 2 O (ж) рассчитайте стандартную энергию Гиббса (кДж), если известны стандартные энергии Гиббса образования веществ:

46. Для реакции Fe (тв) + Al 2 O 3(тв) → Al (тв) + Fe 2 O 3(тв) определите равновесную температуру и возможность протекания процесса при 125 0 С, если ∆Н = 853,8 кДж/моль; ∆S = 37,68 Дж/моль·K.

47. Что понимают под скоростью химической реакции?

48. Сформулируйте закон действующих масс.

49. За 40 с в результате двух реакций Zn + 2HCl = ZnCl 2 + H 2 (1) и Zn + 2HBr = ZnBr 2 + H 2 (2) образовалось по 8 г хлорида и бромида цинка. Сравните скорости реакций.

50. Если в реакции 3Fe(NO 3) 2(р-р) + 4HNO 3 = 3Fe(NO 3) 3(р-р) + NO (г) + 2H 2 O (ж) концентрацию Fe(NO 3) 2 увеличить в 7 раза, а концентрацию HNO 3 в 4 раза, то как изменится скорость реакции?

51. Составьте кинетическое уравнение реакции Sb 2 S 3(тв) + 3Н 2(г) 2Sb (тв) + 3H 2 S (г) .

52. Как определяется скорость многостадийной реакции?

53. Как изменится скорость прямой реакции СО (г) + 3Н 2(г) СН 4(г) + Н 2 О (г) при увеличении давления системы в 3 раза?

54. Что называют константой скорость? От чего она зависит?

55. Что называют энергией активации? От чего она зависит?

56. Константа скорости некоторой реакции при температуре 310 К равна 4,6∙10 -5 л·моль -1 ·с -1 , а при температуре 330 К 6,8∙10 -5 л·моль -1 ·с -1 . Чему равна энергия активации равна?

57. Энергия активации некоторой реакции равна 250 кДж/моль. Как изменится константа скорости при изменении температуры проведения реакции от 320 К до 340 К?

58. Запишите уравнение Аррениуса и правило Вант-Гоффа.

59. Энергия активации реакции (1) равна 150 кДж/моль, энергия активации реакции (2) равна 176 кДж/моль. Сравните константы скорости k 1 и k 2 .

60. Чем объяснить повышение скорости реакции с повышением температуры?

61. Что называют температурным коэффициентом реакции?

62. Чему равен температурный коэффициент реакции, если константа скорости некоторой реакции при 283 и 308 К составляет соответственно 1,77 и 7,56 л·моль -1 ·с -1 ?

63. При температуре 350 К реакция закончилась за 3 с, а при температуре 330 К – за 28 с. За какое время она закончится при температуре 310 К?

64. Как влияет энергия активации на температурный коэффициент реакции?

65. Что называют катализатором? Ингибитором? Промотором? Каталитическим ядом?

66. Что называют химическим равновесием? До каких пор в системе сохраняется равновесное состояние?

67. Как связаны скорости прямой и обратной реакций в момент равновесия?

68. Что называют константой равновесия? От чего она зависит?

69. Выразите константу равновесия реакций 2NO + O 2 ↔ 2NO 2 ; Sb 2 S 3(тв) + 3Н 2 ↔ 2Sb (тв) + 3Н 2 S (г) .

70. При некоторой температуре константа равновесия реакции N 2 O 4 ↔ 2NO 2 равна 0,16. В исходном состоянии NO 2 не было, а равновесная концентрация NO 2 составила 0,08 моль/л. Чему будут равны равновесная и исходная концентрация N 2 O 4 ?

71. Сформулируйте принцип Ле Шателье. Как влияют на смешение равновесия изменение температуры, концентрации, общего давления?

72. Химическое динамическое равновесие в системе установилось при 1000 К и давлении 1 атм., когда в результате реакции Fe (тв) + СО 2(г) ↔ FeO (тв) + СО (г) парциальное давление углекислого газа стало равно 0,54 атм. Чему равна константа равновесия К р этой реакции?

73. Равновесные концентрации (моль/л) компонентов газофазной системы, в которой происходила реакция

3N 2 H 4 ↔ 4NH 3 + N 2 , равны: =0,2; =0,4; =0,25. Чему равна константа равновесия обратимой

74. Равновесные концентрации (моль/л) компонентов газофазной системы, в которой происходит реакция

N 2 + 3H 2 ↔ 2NH 3 , равны: =0,12; =0,14; =0,1. Определите исходные концентрации N 2 и H 2 .

75. Равновесные концентрации компонентов газовой фазы системы, в которой происходит реакция

С (тв) + СО 2 ↔ 2СО при 1000 К и Р общ = 1 атм., равны CО 2 - 17% об. и СО - 83% об. Чему равна константа

равновесия реакции?

76. Константа равновесия К с обратимой газофазной реакции СН 4 + Н 2 О ↔ СО + 3Н 2 при некоторой температуре равна 9,54 моль 2 ·л -2 . Равновесные концентрации метана и воды равны соответственно 0,2 моль/л и 0,4 моль/л. Определите равновесные концентрации СО и Н 2 .

77. Запишите взаимосвязь константы равновесия К р и энергии Гиббса ∆G обратимой реакции, протекающей в изотермических условиях.

78. Определите константа равновесия К р газофазной обратимой реакции COCl 2 ↔ CO + Cl 2 ; ∆H 0 = 109,78 кДж,

∆S 0 = 136,62 Дж/К при 900 К.

79. Константа равновесия К р газофазной реакции PCl 3 + Cl 2 ↔ PCl 5 ; ∆Н 0 = -87,87 кДж при 450 К равна 40,29 атм -1 . Определите энергия Гиббса этого процесса (Дж/К).

80. Запишите связь между К р и К с обратимой газофазной реакции 2СО + 2Н 2 ↔ СН 4 + СО 2 .


Похожая информация.


Разрыв химических связей сопровождается поглощением определенного количества энергии (эндотермическая реакция), а образование связи – выделением энергии (экзотермическая реакция). В зависимости от соотношения этих количеств в результате химической реакции энергия выделяется или поглощается. Оба типа реакций являются идут в соответствии со вторым началом термодинамики для открытых систем. Экзотермические реакции порождают хаос, допуская утечку энергии в окружающую среду, но при этом понижают энтропию внутри системы, создавая новую более сложную структуру. Эндотермические реакции понижают энтропию в окружающей среде и за счет энергии взятой извне увеличивают хаос внутри системы.

Основными направлениями современной химии являются кинетика и термодинамика химических реакций, которые позволяют теоретически объяснить эффективность и скорость протекания реакций. В соответствии с господствующей теорией «соударения», эффективность и скорость реакции зависят от концентрации реагирующих веществ и кинетической энергии хаотичного движения их молекул. Однако высокая эффективность и скорость многих реакций имеет место и при низких концентрациях и пониженной температуре. В этом случае эффективность обеспечивается наличием в реакционной смеси катализатора - вещества, ускоряющего химическую реакцию, но не входящее в состав ее конечных продуктов. Например. Механизм действия катализатора К в реакции А+В=АВ можно схематически показать так: 1) А+ К = А К ; 2) А К .+В=АВ+ К . При этом взаимодействие реагирующих веществ с катализаторами не обязательно имеет химическую природу. Эффективность реакций в живых клетках ограничена достаточно низкими температурами, связными с сохранением белковой структуры и низкими концентрациями реагирующих веществ, поэтому все клеточные реакции являются каталитическими . Роль катализаторов большинства реакций в живых клетках играют белки - ферменты. В основе механизма работы многих ферментов лежит соответствие его пространственной структуры и пространственных структур реагирующих веществ по принципу «ключа» - «замочной скважины». Как правило, ферменты являются высокоспецифичными и обеспечивают только одну или несколько однотипных реакций.

Все химические реакции делятся на два типа: обратимые и необратимые. Необратимые реакции протекают только в одном направлении – образование продуктов реакции и идут до полного

расходования хотя бы одного из реагирующих веществ.

В ходе обратимых реакций ни одно из реагирующих веществ не расходуется полностью. Обратимыми называют реакции, которые одновременно протекают в прямом и обратном направлении.

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием. В равновесном состоянии прямая и обратная реакции не прекращаются. Но так как их скорости при этом равны, то видимых изменений в системе не происходит: концентрации всех реагирующих веществ остаются постоянными. Изучение термодинамики обратимых и необратимых химических реакций показало, что динамическое равновесие обратимых реакций может быть смещено, и направление этого смещения определяется принципом французского ученого Ле-Шателье. Если на систему, находящуюся в состоянии динамического равновесия оказать внешнее воздействие (изменить концентрацию, температуру, давление), то равновесие смещается в сторону той реакции, которая противодействует этому воздействию. На этом принципе базируется саморегуляция равновесия не только химических реакций, но и любых других открытых систем.


Во многих химических реакциях сначала образуется небольшое вещество активных атомов или свободных радикалов, быстро реагирующих с молекулами исходных веществ, затем они снова образуются так, что их концентрация не меняется. Получается, что одна такая частица может вызвать цепь повторяющихся неразветвленных и разветвленных реакций (цепных реакций).

Кинетика и термодинамика различных типов химических реакций легли в основу таких направлений современной химии, как химическая эволюция и самоуправляемые сложные химические реакции. Создавая комплекс определенных физических условий, источников энергии и катализаторов, можно добиться того, что смесь определенных простых веществ путем последовательности неконтролируемых человеком химических реакций с образованием промежуточных соединений, придет к созданию нужного нам конечного продукта. Таким образом, в условиях ультрафиолетового облучения периодических электрических разрядов, из смеси водорода, аммиака, метана, окиси углерода, углекислого газа, сероводорода и минимальных количеств кислорода, удалось получить самопроизвольный синтез аминокислот, сахаров, азотистых оснований и более сложных органических соединений. Например - предшественники ферментов и хлорофилл растений. Все это в принципе доказывает возможность появления сложных органических соединений из неорганических простых веществ путем самопроизвольной химической эволюции.

«ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ, ХИМИЧЕСКОЙ КИНЕТИКИ И РАВНОВЕСИЯ»

Основы химической термодинамики

1 . Что изучает химическая термодинамика:

1) скорости протекания химических превращений и ме­ханизмы этих превращений;

2) энергетические характеристики физических и хими­ческих процессов и способность химических систем выпол­нять полезную работу;

3) условия смещения химического равновесия;

4) влияние катализаторов на скорость биохимических процессов.

2. Открытой системой называют такую систему, которая:

3. Закрытой системой называют такую систему, которая:

1) не обменивается с окружающей средой ни веществом, ни энергией;

2) обменивается с окружающей средой и веществом, и энергией;

3) обменивается с окружающей средой энергией, но не обменивается веществом;

4) обменивается с окружающей средой веществом, но не обменивается энергией.

4. Изолированной системой называют такую систему, которая:

1) не обменивается с окружающей средой ни веществом, ни энергией;

2) обменивается с окружающей средой и веществом, и энергией;

3) обменивается с окружающей средой энергией, но не обменивается веществом;

4) обменивается с окружающей средой веществом, но не обменивается энергией.

5. К какому типу термодинамических систем принадле­жит раствор, находящийся в запаянной ампуле, помещен ной в термостат?

1) изолированной;

2) открытой;

3) закрытой;

4) стационарной.

6. К какому типу термодинамических систем принадле жит раствор, находящийся в запаянной ампуле?

1) изолированной;

2) открытой;

3) закрытой;

4) стационарной.

7. К какому типу термодинамических систем принадле жит живая клетка?

1) открытой;

2) закрытой;

3) изолированной;

4) равновесной.

8 . Какие параметры термодинамической системы назы- I вают экстенсивными?

1) величина которых не зависит от числа частиц в системе;

3) величина которых зависит от агрегатного состояния системы;

9. Какие параметры термодинамической системы назы­вают интенсивными?

!) величина которых не зависит от числа частиц в системе;

2) величина которых зависит от числа частиц в системе;

3) величина которых зависит от агрегатного состояния;

4) величина которых зависит от времени.

10 . Функциями состояния термодинамической системы называют такие величины, которые:

1) зависят только от начального и конечного состояния системы;

2) зависят от пути процесса;

3) зависят только от начального состояния системы;

4) зависят только от конечного состояния системы.

11 . Какие величины являются функциями состояния си­стемы: а) внутренняя энергия; б) работа; в) теплота; г) эн­тальпия; д) энтропия.

3) все величины;

4) а, б, в, г.

12 . Какие из следующих свойств являются интенсив­ными: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

3) б, в, г, е;

13. Какие из следующих свойств являются экстенсивны­ми: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

3) б, в, г, е;

14 . Какие формы обмена энергией между системой и окружающей средой рассматривает термодинамика: а) теп­лота; б) работа; в) химическая; г) электрическая; д) механи­ческая; е) ядерная и солнечная?

2) в, г,д, е;

3) а, в, г, д, е;

4) а, в, г, д.

15. Процессы, протекающие при постоянной темпера­туре, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

16 . Процессы, протекающие при постоянном объеме, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

17 . Процессы, протекающие при постоянном давлении, называются:

1) изобарическими;

2) изотермическими;

3) изохорическими;

4) адиабатическими.

18 . Внутренняя энергия системы - это: 1) весь запас энергии системы, кроме потенциальной энер­гии ее положения и кинетической энергии системы в целом;

2) весь запас энергии системы;

3) весь запас энергии системы, кроме потенциальной энергии ее положения;

4) величина, характеризующая меру неупорядоченнос­ти расположения частиц системы.

19 . Какой закон отражает связь между работой, тепло­той и внутренней энергией системы?

1) второй закон термодинамики;

2) закон Гесса;

3) первый закон термодинамики;

4) закон Вант-Гоффа.

20 . Первый закон термодинамики отражает связь между:

1) работой, теплотой и внутренней энергией;

2) свободной энергией Гиббса, энтальпией и энтропией системы;

3) работой и теплотой системы;

4) работой и внутренней энергией.

21 . Какое уравнение является математическим выра­жением первого закона термодинамики для изолирован­ных систем?

l)AU=0 2)AU=Q-p-AV 3)AG = AH-TAS

22 . Какое уравнение является математическим выраже­нием первого закона термодинамики для закрытых систем?

1)AU=0; 2)AU=Q-p-AV;

3) AG = AH - T*AS;

23 . Постоянной или переменной величиной является внутренняя энергия изолированной системы?

1) постоянной;

2) переменной.

24 . В изолированной системе протекает реакция сгора­ния водорода с образованием жидкой воды. Изменяется ли внутренняя энергия и энтальпия системы?

1) внутренняя энергия не изменится, энтальпия изменится;

2) внутренняя энергия изменится, энтальпия не изменится;

3) внутренняя энергия не изменится, энтальпия не изменится;

4) внутренняя энергия изменится, энтальпия изменится.

25 . При каких условиях изменение внутренней энергии равно теплоте, получаемой системой из окружающей среды?

1) при постоянном объеме;

3) при постоянном давлении;

4) ни при каких.

26 . Тепловой эффект реакции, протекающей при посто­янном объеме, называется изменением:

1) энтальпии;

2) внутренней энергии;

3) энтропии;

4) свободной энергии Гиббса.

27 . Энтальпия реакции - это:

28. Химические процессы, при протекании которых про­исходит уменьшение энтальпии системы и во внешнюю сре­ду выделяется теплота, называются:

1) эндотермическимий;

2) экзотермическими;

3) экзэргоническими;

4) эндэргоническими.

29 . При каких условиях изменение энтальпии равно теп­лоте, получаемой системой из окружающей среды?

1) при постоянном объеме;

2) при постоянной температуре;

3) при постоянном давлении;

4) ни при каких.

30 . Тепловой эффект реакции, протекающей при посто-янном давлении, называется изменением:

1) внутренней энергии;

2) ни одно из предыдущих определений неверно;

3) энтальпии;

4) энтропии.

31. Какие процессы называют эндотермическими?

32 . Какие процессы называют экзотермическими?

1) для которых АН отрицательно;

2) для которых AG отрицательно;

3) для которых АН положительно;

4) для которых AG положительно.

33 . Укажите формулировку закона Гесса:

1) тепловой эффект реакции зависит только от началь­ного и конечного состояния системы и не зависит от пути реакции;

2) теплота, поглощаемая системой при постоянном объе­ме, равна изменению внутренней энергии системы;

3) теплота, поглощаемая системой при постоянном дав­лении, равна изменению энтальпии системы;

4) тепловой эффект реакции не зависит от начально­го и конечного состояния системы, а зависит от пути ре­акции.

34. Какой закон лежит в основе расчетов калорийности продуктов питания?

1) Вант-Гоффа;

3) Сеченова;

35. При окислении каких веществ в условиях организма выделяется большее количество энергии?

1) белков;

3) углеводов;

4) углеводов и белков.

36 . Самопроизвольным называется процесс, который:

1) осуществляется без помощи катализатора;

2) сопровождается выделением теплоты;

3) осуществляется без затраты энергии извне;

4) протекает быстро.

37 . Энтропия реакции - это:

1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях;

2) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изохорно-изотер-мических условиях;

3) величина, характеризующая возможность самопро­извольного протекания процесса;

4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

38 . Какой функцией состояния характеризуется тенден­ция системы к достижению вероятного состояния, которо­му соответствует максимальная беспорядочность распреде­ления частиц?

1) энтальпией;

2) энтропией;

3) энергией Гиббса;

4) внутренней энергией.

39 . В каком соотношении находятся энтропии трех агрегат­ных состояний одного вещества: газа, жидкости, твердого тела:

I) S (г) > S (ж) > S (тв); 2)S(тв)>S(ж)>S(г); 3)S(ж)>S(г)>S(TB); 4) агрегатное состояние не влияет на значение энтропии.

40 . В каком из следующих процессов должно наблюдать­ся наибольшее положительное изменение энтропии:

1) СН3ОН (тв) --> СН,ОН (г);

2) СH4OH (тв) --> СН 3 ОН (ж);

3) СН,ОН (г) -> CH4OH (тв);

4) СН,ОН (ж) -> СН3ОН (тв).

41 . Выберите правильное утверждение: энтропия систе­мы увеличивается при:

1) повышении давления;

2) переходе от жидкого к твердому агрегатному состоянию

3) повышении температуры;

4) переходе от газообразного к жидкому состоянию.

42. Какую термодинамическую функцию можно исполь­зовать, чтобы предсказать возможность самопроизвольно­го протекания реакции в изолированной системе?

1) энтальпию;

2) внутреннюю энергию;

3) энтропию;

4) потенциальную энергию системы.

43 . Какое уравнение является математическим выраже­нием 2-го закона термодинамики для изолированных систем?

44 . Если система обратимым образом получает количе­ство теплоты Q при температуре Т, то об T;

2) возрастает на величину Q/T;

3) возрастает на величину, большую Q/T;

4) возрастает на величину, меньшую Q/T.

45 . В изолированной системе самопроизвольно проте­кает химическая реакция с образованием некоторого коли­чества продукта. Как изменяется энтропия такой системы?

1) увеличивается

2) уменьшается

3) не изменяется

4) достигает минимального значения

46 . Укажите, в каких процессах и при каких условиях изменение энтропии может быть равно работе процесса?

1) в изобарных, при постоянных Р и Т;

2) в изохорных, при постоянных V и Т;

З) изменение энтропии никогда не равно работе; 4) в изотермических, при постоянных Р и 47 . Как изменится связанная энергия системы TS при нагревании и при ее конденсации?

1) при нагревании растет, при конденсации уменьшается;

2) при нагревании уменьшается, при конденсации растет;

3) не происходит изменение T-S;

4) при нагревании и конденсации растет.

48 . Какие параметры системы необходимо поддержи­вать постоянными, чтобы по знаку изменения энтропии можно было судить о направлении самопроизвольного про­текания процесса?

1) давление и температуру;

2) объем и температуру;

3) внутреннюю энергию и объем;

4) только температуру.

49 . В изолированной системе все самопроизвольные процессы протекают в сторону увеличения беспорядка. Как при этом изменяется энтропия?

1) не изменяется;

2) увеличивается;

3) уменьшается;

4) сначала увеличивается, а затем уменьшается.

50 . Энтропия возрастает на величину Q/T для:

1) обратимого процесса;

2) необратимого процесса;

3) гомогенного;

4) гетерогенного.

51 Как изменяется энтропия системы за счет прямой и обратной реакции при синтезе аммиака?

3) энтропия не изменяется в ходе реакции;

4) энтропия увеличивается для прямой и обратной ре­акции.

52 . Какими одновременно действующими факторами определяется направленность химического процесса?

1) энтальпийным и температурным;

2) энтальпийным и энтропийным;

3) энтропийным и температурным;

4) изменением энергии Гиббса и температуры.

53. В изобарно-изотермических условиях максимальная работа, осуществляемая системой:

1) равна убыли энергии Гиббса;

2) больше убыли энергии Гиббса;

3) меньше убыли энергии Гиббса;

4) равна убыли энтальпии.

54 . Какие условия необходимо соблюдать, чтобы мак­симальная работа в системе совершалась за счет убыли энер­гии Гиббса?

1) необходимо поддерживать постоянными V и t;

2) необходимо поддерживать постоянными Р и t;

3) необходимо поддерживать постоянными АН и AS;

4) необходимо поддерживать постоянными PиV

55 . За счет чего совершается максимальная полезная работа химической реакции при постоянных давлении и температуре?

1) за счет убыли энергии Гиббса;

3) за счет увеличения энтальпии;

4) за счет уменьшения энтропии.

56. За счет чего совершается маскимальная полезная рабо­та живым организмом в изобарно-изотермических условиях?

1) за счет убыли энтальпии;

2) за счет увеличения энтропии;

3) за счет убыли энергии Гиббса;

4) за счет увеличения энергии Гиббса.

57 . Какие процессы называют эндэргоническими?

58. Какие процессы называют экзэргоническими?

2) AG 0; 4) AG > 0.

59. Самопроизвольный характер процесса лучше опре­делять путем оценки:

1)энтропии;

3) энтальпии;

2) свободной энергии Гиббса;

4) температуры.

60 . Какую термодинамическую функцию можно исполь­зовать для предсказания возможности самопроизвольного протекания процессов в живом организме?

1) энтальпию;

3) энтропию;

2) внутреннюю энергию;

4) свободную энергию Гиббса.

61 . Для обратимых процессов изменение свободной энергии Гиббса...

1) всегда равно нулю;

2) всегда отрицательно;

3) всегда положительно;

62 . Для необратимых процессов изменение свободной энергии:

1) всегда равно нулю;

2) всегда отрицательно;

3) всегда положительно;

4) положительно или отрицательно в зависимости от обстоятельств.

63. В изобарно-изотермических условиях в системе са­мопроизвольно могут осуществляться только такие процес­сы, в результате которых энергия Гиббса:

1) не меняется;

2) увеличивается;

3) уменьшается;

4) достигает максиального значения.

64 . Для некоторой химической реакции в газовой фазе при постоянных Р и TAG > 0. В каком направлении само­произвольно протекает эта реакция?

Г) в прямом направлении;

2) не может протекать при данных условиях;

3) в обратном направлении;

4) находится в состоянии равновесия.

65 . Каков знак AG процесса таяния льда при 263 К?

66 . В каком из следующих случаев реакция неосуществи­ма при любых температурах?

1)AH>0;AS>0; 2)AH>0;AH

3)A#4)AH= 0;AS = 0.

67. В каком из следующих случаев реакция возможна при любых температурах?

1)ДH 0; 2)AH 0; AS > 0; 4)AH = 0;AS = 0.

68 . Если АН

1) [АН] > ;

2) при любых соотношениях АН и TAS; 3){AH]

4) [АН] = [Т-А S].

69 . При каких значениях по знаку АН и AS в системе возможны только экзотермические процессы?

70. При каких соотношениях АН и T* AS химический про­цесс направлен в сторону эндотермической реакции:

71 . При каких постоянных термодинамических парамет­рах изменение энтальпии может служить критерием направ­ления самопроизвольного процесса? Какой знак DH в этих условиях указывает на самопроизвольный процесс?

1) при постоянных S и Р, АН

3) при постоянных Put, АН

2) при постоянных 5 и Р, АН > 0; 4) при постоянных Vn t, АН > 0.

72 . Можно ли и в каких случаях по знаку изменения эн­тальпии в ходе химической реакции судить о возможности ее протекания при постоянных Ти Р1

1) можно, если ЛЯ » T-AS;

2) при данных условиях нельзя;

3) можно, если АН « T-AS;

4) можно, если АН = T-AS.

73 . Реакция ЗН 2 + N 2 -> 2NH 3 проводится при 110°С, так что все реагенты и продукты находятся в газовой фазе. Ка­кие из указанных ниже величин сохраняются в ходе реакции?

2) энтропия;

3) энтальпия;

74 . Какие из следующих утверждений верны для реак­ций, протекающих в стандартных условиях?

1) эндотермические реакции не могут протекать само­произвольно;

2) эндотермические реакции могут протекать при дос­таточно низких температурах;

3) эндотермические реакции могут протекать при высо­ких температурах, если AS > 0;

4) эндотермические реакции могут протекать при высо­ких температурах, если AS

75 . Каковы особенности биохимических процессов: а) под­чиняются принципу энергетического сопряжения; б) как правило обратимы; в) сложные; г) только экзэргонические (AG

1) а, б, в, г;

2) б, в, г; 3) а, 6, в; 4) в, д.

76 . Экзэргонические реакции в организме протекают самопроизвольно, так как:

77 . Эндэргонические реакции в организме требуют под­вода энергии, так как: 1)AG >0;

78 . При гидролизе любого пептида АН 0, бу­дет ли данный процесс протекать самопроизвольно?

1) будет, так как AG > 0;

3) не будет, так как AG > 0;

2) будет, так как AG

4) не будет, так как AG

79 . Калорийностью питательных веществ называется энергия:

1) выделяемая при полном окислении 1 г питательных веществ;

2) выделяемая при полном окислении 1 моль питатель­ных веществ;

3) необходимая для полного окислении 1 г питательных веществ;

4) необходимая для полного окислении 1 моль питатель­ных веществ.

80 . Для процесса тепловой денатурации многих фермен­тов ЛЯ > 0 и AS > 0. Может ли данный процесс протекать самопроизвольно?

1) может при высоких температурах, так как \T-AS\ > |АД];

2) может при низких температурах, так как \T-AS\

3) не может, так как \T-AS\ > |AH];

4) не может, так как \T-AS\

81 . Для процесса тепловой гидратации многих белков АН

1) может при достаточно низких температурах, так как |AH| > \T-AS\;

2) может при достаточно низких температурах, так как |АЯ|

3) может при высоких температурах, так как |АH)

4) не может ни при каких температурах.

Программа

Параметров химических реакций, химического равновесия ; - рассчитывать тепловые эффекты и скорость химических реакций... реакций; - основы физической и коллоидной химии, химической кинетики , электрохимии, химической термодинамики и термохимии; ...

  • Задачи профессиональной деятельности выпускника. Компетенции выпускника, формируемые в результате освоения ооп впо. Документы, регламентирующие содержание и организацию образовательного процесса при реализации ооп впо (3)

    Регламент

    Модуль 2. Основные физико-химические закономерности протекания химических процессов Основы химической термодинамики . Основы химической кинетики . Химическое равновесие . Модуль 3..Основы химии растворов Общие...

  • Данное пособие может быть использовано для самостоятельной работы студентами нехимических специальностей

    Документ

    Простые вещества. На этой основе в химической термодинамике создана система расчета тепловых эффектов... , Cr2O3? ТЕМА 2. ХИМИЧЕСКАЯ КИНЕТИКА И ХИМИЧЕСКОЕ РАВНОВЕСИЕ Как было показано ранее, химическая термодинамика позволяет предсказать принципиальную...

  • Рабочая программа дисциплины химия направление подготовки

    Рабочая программа

    4.1.5. Окислительно-восстановительные процессы. Основы электрохимии Окислительно-восстановительные процессы. ... Способы количественного выражения состава растворов. 5 Химическая термодинамика 6 Кинетика и равновесие . 7 Диссоциация, рН, гидролиз 8 ...

  • 1 . Что изучает химическая термодинамика:

    1) скорости протекания химических превращений и ме­ханизмы этих превращений;

    2) энергетические характеристики физических и хими­ческих процессов и способность химических систем выпол­нять полезную работу;

    3) условия смещения химического равновесия;

    4) влияние катализаторов на скорость биохимических процессов.

    2. Открытой системой называют такую систему, которая:

    2) обменивается с окружающей средой и веществом, и энергией;

    3. Закрытой системой называют такую систему, которая:

    1) не обменивается с окружающей средой ни веществом, ни энергией;

    3) обменивается с окружающей средой энергией, но не обменивается веществом ;

    4) обменивается с окружающей средой веществом, но не обменивается энергией.

    4. Изолированной системой называют такую систему, которая:

    1) не обменивается с окружающей средой ни веществом, ни энергией ;

    2) обменивается с окружающей средой и веществом, и энергией;

    3) обменивается с окружающей средой энергией, но не обменивается веществом;

    4) обменивается с окружающей средой веществом, но не обменивается энергией.

    5. К какому типу термодинамических систем принадле­жит раствор, находящийся в запаянной ампуле, помещен ной в термостат?

    1) изолированной;

    2) открытой;

    3) закрытой;

    4) стационарной.

    6. К какому типу термодинамических систем принадле жит раствор, находящийся в запаянной ампуле?

    1) изолированной;

    2) открытой;

    3) закрытой;

    4) стационарной.

    7. К какому типу термодинамических систем принадле жит живая клетка?

    1) открытой ;

    2) закрытой;

    3) изолированной;

    4) равновесной.

    8 . Какие параметры термодинамической системы назы-Iвают экстенсивными?

    1) величина которых не зависит от числа частиц в системе;

    2) величина которых зависит от числа частиц в системе ;

    3) величина которых зависит от агрегатного состояния системы;

    9. Какие параметры термодинамической системы назы­вают интенсивными?

    !) величина которых не зависит от числа частиц в системе ;

    2) величина которых зависит от числа частиц в системе;

    3) величина которых зависит от агрегатного состояния;

    4) величина которых зависит от времени.

    10 . Функциями состояния термодинамической системы называют такие величины, которые:

    1) зависят только от начального и конечного состояния системы ;

    2) зависят от пути процесса;

    3) зависят только от начального состояния системы;

    4) зависят только от конечного состояния системы.

    11 . Какие величины являются функциями состояния си­стемы: а) внутренняя энергия; б) работа; в) теплота; г) эн­тальпия; д) энтропия.

    1) а, г, д;

    3) все величины;

    4) а, б, в, г.

    12 . Какие из следующих свойств являются интенсив­ными: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

    1) а, б, г;

    3) б, в, г, е;

    13. Какие из следующих свойств являются экстенсивны­ми: а) плотность; б) давление; в) масса; г) температура; д) энтальпия; е) объем?

    1) в, д, е;

    3) б, в, г, е;

    14 . Какие формы обмена энергией между системой и окружающей средой рассматривает термодинамика: а) теп­лота; б) работа; в) химическая; г) электрическая; д) механи­ческая; е) ядерная и солнечная?

    1)а,б;

    2) в, г,д, е;

    3) а, в, г, д, е;

    4) а, в, г, д.

    15. Процессы, протекающие при постоянной темпера­туре, называются:

    1) изобарическими;

    2) изотермическими ;

    3) изохорическими;

    4) адиабатическими.

    16 . Процессы, протекающие при постоянном объеме, называются:

    1) изобарическими;

    2) изотермическими;

    3) изохорическими;

    4) адиабатическими.

    17 . Процессы, протекающие при постоянном давлении, называются:

    1) изобарическими ;

    2) изотермическими;

    3) изохорическими;

    4) адиабатическими.

    18 . Внутренняя энергия системы - это:1) весь запас энергии системы, кроме потенциальной энер­гии ее положения и кинетической энергии системы в целом;

    2) весь запас энергии системы;

    3) весь запас энергии системы, кроме потенциальной энергии ее положения;

    4) величина, характеризующая меру неупорядоченнос­ти расположения частиц системы.

    19 . Какой закон отражает связь между работой, тепло­той и внутренней энергией системы?

    1) второй закон термодинамики;

    2) закон Гесса;

    3) первый закон термодинамики;

    4) закон Вант-Гоффа.

    20 . Первый закон термодинамики отражает связь между:

    1) работой, теплотой и внутренней энергией;

    2) свободной энергией Гиббса, энтальпией и энтропией системы;

    3) работой и теплотой системы;

    4) работой и внутренней энергией.

    21 . Какое уравнение является математическим выра­жением первого закона термодинамики для изолирован­ных систем?

    l)AU=0 2)AU=Q-p-AV 3)AG = AH-TAS

    22 . Какое уравнение является математическим выраже­нием первого закона термодинамики для закрытых систем?

    2)AU=Q-p-AV ;

    3) AG = AH - T*AS;

    23 . Постоянной или переменной величиной является внутренняя энергия изолированной системы?

    1) постоянной;

    2) переменной.

    24 . В изолированной системе протекает реакция сгора­ния водорода с образованием жидкой воды. Изменяется ли внутренняя энергия и энтальпия системы?

    1) внутренняя энергия не изменится, энтальпия изменится;

    2) внутренняя энергия изменится, энтальпия не изменится ;

    3) внутренняя энергия не изменится, энтальпия не изменится;

    4) внутренняя энергия изменится, энтальпия изменится.

    25 . При каких условиях изменение внутренней энергии равно теплоте, получаемой системой из окружающей среды?

    1) при постоянном объеме ;

    3) при постоянном давлении;

    4) ни при каких.

    26 . Тепловой эффект реакции, протекающей при посто­янном объеме, называется изменением:

    1) энтальпии;

    2) внутренней энергии;

    3) энтропии;

    4) свободной энергии Гиббса.

    27 . Энтальпия реакции - это:

    1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях ;

    4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

    28. Химические процессы, при протекании которых про­исходит уменьшение энтальпии системы и во внешнюю сре­ду выделяется теплота, называются:

    1) эндотермическимий;

    2) экзотермическими;

    3) экзэргоническими;

    4) эндэргоническими.

    29 . При каких условиях изменение энтальпии равно теп­лоте, получаемой системой из окружающей среды?

    1) при постоянном объеме;

    2) при постоянной температуре;

    3) при постоянном давлении ;

    4) ни при каких.

    30 . Тепловой эффект реакции, протекающей при посто-янном давлении, называется изменением:

    1) внутренней энергии;

    2) ни одно из предыдущих определений неверно;

    3) энтальпии;

    4) энтропии.

    31. Какие процессы называют эндотермическими?

    1) для которых АН отрицательно;

    3) для которых АН положительно ;

    32 . Какие процессы называют экзотермическими?

    1) для которых АН отрицательно ;

    2) для которых AGотрицательно;

    3) для которых АН положительно;

    4) для которых AGположительно.

    33 . Укажите формулировку закона Гесса:

    1) тепловой эффект реакции зависит только от началь­ного и конечного состояния системы и не зависит от пути реакции ;

    2) теплота, поглощаемая системой при постоянном объе­ме, равна изменению внутренней энергии системы;

    3) теплота, поглощаемая системой при постоянном дав­лении, равна изменению энтальпии системы;

    4) тепловой эффект реакции не зависит от начально­го и конечного состояния системы, а зависит от пути ре­акции.

    34. Какой закон лежит в основе расчетов калорийности продуктов питания?

    1) Вант-Гоффа;

    2) Гесса;

    3) Сеченова;

    35. При окислении каких веществ в условиях организма выделяется большее количество энергии?

    1) белков;

    2) жиров ;

    3) углеводов;

    4) углеводов и белков.

    36 . Самопроизвольным называется процесс, который:

    1) осуществляется без помощи катализатора;

    2) сопровождается выделением теплоты;

    3) осуществляется без затраты энергии извне ;

    4) протекает быстро.

    37 . Энтропия реакции - это:

    1) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изобарно-изотер-мических условиях;

    2) количество теплоты, которое выделяется или погло­щается в ходе химической реакции при изохорно-изотер-мических условиях;

    3) величина, характеризующая возможность самопро­извольного протекания процесса;

    4) величина, характеризующая меру неупорядоченнос­ти расположения и движения частиц системы.

    38 . Какой функцией состояния характеризуется тенден­ция системы к достижению вероятного состояния, которо­му соответствует максимальная беспорядочность распреде­ления частиц?

    1) энтальпией;

    2) энтропией ;

    3) энергией Гиббса;

    4) внутренней энергией.

    39 . В каком соотношении находятся энтропии трех агрегат­ных состояний одного вещества: газа, жидкости, твердого тела:

    I ) S (г) > S (ж) > S (тв); 2)S(тв)>S(ж)>S(г); 3)S(ж)>S(г)>S(TB); 4) агрегатное состояние не влияет на значение энтропии.

    40 . В каком из следующих процессов должно наблюдать­ся наибольшее положительное изменение энтропии:

    1) СН3ОН (тв) --> СН,ОН (г);

    2) СH3OH(тв) --> СН 3 ОН (ж);

    3) СН,ОН (г) -> CH3OH(тв);

    4) СН,ОН (ж) -> СН3ОН (тв).

    41 . Выберите правильное утверждение: энтропия систе­мы увеличивается при:

    1) повышении давления;

    2) переходе от жидкого к твердому агрегатному состоянию

    3) повышении температуры;

    4) переходе от газообразного к жидкому состоянию.

    42. Какую термодинамическую функцию можно исполь­зовать, чтобы предсказать возможность самопроизвольно­го протекания реакции в изолированной системе?

    1) энтальпию;

    2) внутреннюю энергию;

    3) энтропию;

    4) потенциальную энергию системы.

    43 . Какое уравнение является математическим выраже­нием 2-го закона термодинамики для изолированных систем?

    2)AS>Q\T

    44 . Если система обратимым образом получает количе­ство теплотыQпри температуре Т, то обT;

    2) возрастает на величину Q / T ;

    3) возрастает на величину, большую Q/T;

    4) возрастает на величину, меньшую Q/T.

    45 . В изолированной системе самопроизвольно проте­кает химическая реакция с образованием некоторого коли­чества продукта. Как изменяется энтропия такой системы?

    1) увеличивается

    2) уменьшается

    3) не изменяется

    4) достигает минимального значения

    46 . Укажите, в каких процессах и при каких условиях изменение энтропии может быть равно работе процесса?

    1) в изобарных, при постоянных Р и Т;

    2) в изохорных, при постоянных Vи Т;

    З) изменение энтропии никогда не равно работе;

    4) в изотермических, при постоянных Р и 47 . Как изменится связанная энергия системыTSпри нагревании и при ее конденсации?